
Spring 2018 Take-Home Exam 2 solutions Math 541

1. Consider the matrix A and vector b given by

A =

 1 −1 α
−1 2 −α
α 1 1

 and b =

 −2
3
2

 .

a. Gaussian elimination begins with R2 +R1 and R3 − αR1 to row reduce the first column, so
L21 = −1 and L31 = α. This gives the extended matrix system:

1 −1 α
... −2

−1 2 −α
... 3

α 1 1
... 2

 −→


1 −1 α
... −2

0 1 0
... 1

0 1 + α 1− α2
... 2 + 2α


The second column is row reduced by R3 − (1 + α)R2, so L32 = α+ 1, or

−→


1 −1 α

... −2

0 1 0
... 1

0 0 1− α2
... 1 + α


This results in L and U having the following compact representation:

L =

 1 0 0
−1 1 0
α α+ 1 1

 and U =

 1 −1 α
0 1 0
0 0 1− α2

 .

b. From the LU factorization in Part a, we solve Ax = b and readily obtain (by back substitu-
tion):

x =

 1
α−1

1
1

1−α

 ,

provided α 6= ±1. If α = −1, then there are infinitely many solutions as x3 is arbitrary, giving

x =

 −1 + c
1
c

 ,

while α = 1 implies there are no solutions.

c. To find the condition number, κ1(A), we find the 1-norm of the matrices A and A−1. Since

A =

 1 −1 α
−1 2 −α
α 1 1

 and A−1 =


−(α+2)
(α2−1)

−1
(α−1)

α
(α2−1)

1 1 0
(2α+1)
(α2−1)

1
(α−1)

−1
(α2−1)

 ,

the 1-norm of these matrices comes from the max of the sum of the absolute value of the column
elements or

‖A‖1 = max {2 + |α|, 4, 1 + 2|α|}
and

‖A−1‖1 = max

(
|α|+ 1

|α2 − 1|
, 1 + 2 (|α− 1|)−1 , 1 +

∣∣∣∣ 2 + α

α2 − 1

∣∣∣∣+

∣∣∣∣2α+ 1

α2 − 1

∣∣∣∣) .
The condition number depends on α from above with

κ1(A) = ‖A‖1‖A−1‖1.

d. With α = 1.01, we can begin use our program lutx to find the LU = PA factorization. The
result gives the matrices:

L =

 1 0 0
−0.99 1 0
0.99 −0.6656 1

 , U =

 1.01 1 1
0 2.99 −0.0199
0 0 0.006656

 , and P =

 0 0 1
0 1 0
1 0 0

 .

From MatLab, we find the condition number for A is

κ1(A) = 1204.

Alternately, we use the norms above to find that ‖A‖1 = 4 and ‖A−1‖1 = 301, so again
κ1(A) = 1204, which suggests we could easily have problems in 3-digit arithmetic. The exact
solution to Ax = b is:

x =

 100
1
−100

 .

Next we perform 3-digit arithmetic using Gaussian elimination with partial pivoting. The
first operation is R1 ↔ R3, which can be written:

[A : b] =


1 −1 1.01

... −2

−1 2 −1.01
... 3

1.01 1 1
... 2

↔


1.01 1 1
... 2

−1 2 −1.01
... 3

1 −1 1.01
... −2


We perform the two pivots R2 + 1

1.01R1 and R3 − 1
1.01R1, which with 3-digit arithmetic gives

1.01 1 1
... 2

0 2.99 −0.02
... 4.98

0 −1.99 0.02
... −3.98


Next we perform the pivot R3 + 1.99

2.99R2., which with 3-digit arithmetic gives:


1.01 1 1

... 2

0 2.99 −0.02
... 4.98

0 0 0.0067
... −0.66



From this point, we perform back substitution with 3-digit arithmetic, yielding

x3 = −98.5, x2 = 1.01, and x1 = 98.5.

The 1-norm of the absolute error is

|1.5 + 0.01 + 1.5| = 3.01.

2. a. The steady state diffusion in a quiescent fluid body with a first order chemical reaction
may be modeled by the following boundary value problem:

D
d2w

dx2
−Kw = 0, with w(0) = 0, w(1) = C, and x ∈ (0, 1),

where w is the concentration of the substance, D is the diffusivity, K is the reaction rate, and C
is the fixed boundary concentration at x = 0. For this problem, we assume that D = 0.01 cm2/s,
K = 0.1 s−1, and C = 5.0 g/cm3. It can be shown that the continuous solution to this boundary
value problem is

w(x) =
5 sinh(

√
10(1− x))

sinh(
√

10)
.

With the diffusion operator discretized with a second order difference, boundary value problem
can written as a matrix system, AW = b, where

A =



1 0 · · · · · · · · · 0
1 −q 1 0 · · · 0
0 1 −q 1 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · 0 1 −q 1
0 · · · · · · · · · 0 1


and b =


C
0
...
0

 ,

with q = 2 +Kh2/D. Thus, if n = 4, then h = 0.25 and q = 2.625.

The matrix and vector become

A =


1 0 0 0 0
1 −2.625 1 0 0
0 1 −2.625 1 0
0 0 1 −2.625 1
0 0 0 0 1


and b = [5, 0, 0, 0, 0]T This matrix A can be inserted into the MatLab code lutx. The resulting
LU -factorization is

L =


1 0 0 0 0
1 1 0 0 0
0 −0.3810 1 0 0
0 0 −0.4456 1 0
0 0 0 0 1



and

U =


1 0 0 0 0
0 −2.6250 1 0 0
0 0 −2.2440 1 0
0 0 0 −2.1794 1
0 0 0 0 1


The solution of AW = b, using MatLab’s bA is

W =


5.0

2.29423399
1.02236422
0.38947208

0.0

 .

The actual solutions, w(0.25) = 2.25221659, w(0.5) = 0.98692744, and w(0.75) = 0.37127130.
It follows that the absolute errors are 0.04201740, 0.03543678, and 0.01820078 at x = 0.25, 0.5,
and 0.75, respectively.

b. With n = 8, the diagonal of the matrix A has aii = −2.15625 in this 9 × 9 matrix. The
solution is below on the left. With n = 16, the diagonal of the matrix A has aii = −2.0390625
in this 17× 17 matrix. The solution is below on the right.

W8 =



5.0
3.36843745
2.26319325
1.51157299
0.99613601
0.63634529
0.37598352
0.17436917

0


. W16 =



5.0
4.10102924
3.36225494
2.75481872
2.25499260
1.84325214
1.50351371
1.22250628
0.98925301
0.79464244
0.63107258
0.49215399
0.37246018
0.26731558
0.17261300
0.08465312

0



.

The table below gives the values at x = 0.25, 0.5, 0.75 for the exact solution, the approximations,
and the absolute errors.

x w(x) W4 Err4 W8 Err8 W16 Err16

0.25 2.252217 2.294234 0.042017 2.263193 0.010977 2.254993 0.002776

0.5 0.986927 1.022364 0.035437 0.996136 0.009209 0.989253 0.002326

0.75 0.371271 0.389472 0.018201 0.375984 0.004712 0.372460 0.001189

We see that halving the stepsize quarters the error, so this numerical approximation is O(h2).
Using the values at x = 0.5, we see that Err4/(0.25)2 = 0.56699, Err8/(0.125)2 = 0.58935,

and Err16/(0.0625)2 = 0.0.59535. These values are roughly constant, confirming the method
is O(h2). Below is the graph of the actual solution with the three approximations above. We
observe that all approximations are fairly accurate.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
Continuous
Discrete 16
Discrete 8
Discrete 4

Figure 1: Plot of exact solution with the approximations for n = 4, n = 8, and n = 16.

c. Jacobi’s iterative method for this problem takes the matrix A above and decomposes into a
diagonal matrix D, a strictly lower triangular matrix L, and a strictly upper triangular matrix
U , so that A = D − L − U . The matrix Tj = D−1(L + U) and vector cj = D−1b, then a
convergent iterative scheme was produced by

w(k+1) = Tjw
(k) + cj , k = 0, 1, ...,

where x0 is an initial vector. Let x0 = [0, ..., 0]T (initially clear solution). The program below
perform k steps of this iteration.

1 function [w] = prob2Cc jacobi(w0,k,n)
2 % Compute Jacobi Iterate - perform k iterations
3

4 h = 1/n;
5 D = 0.01;
6 K = 0.1;
7 C = 5.0;
8 q = 2+K*hˆ2/D;
9

10 Dc = -q*eye(n+1);Dc(1,1) = 1;Dc(n+1,n+1)=1;
11 Lc = diag(ones(n,1),-1);Lc(n+1,n)=0;
12 Uc = diag(ones(n,1),1);Uc(1,2)=0;
13 Tc = inv(Dc)*(-Lc-Uc);
14 cc = inv(Dc)*[C;zeros(n,1)];
15

16 w = w0;
17 for i = 1:k

18 w = Tc*w + cc;
19 end
20

21 end

Below are the iterates with k = 4, 10, 20, and 50.

w(4) =



5.0
2.817579
1.075404
0.498738

0
0
0
0
0


w(10) =



5.0
3.216946
1.936540
1.167132
0.580088
0.321872
0.113947
0.052845

0



w(20) =



5.0
3.339076
2.199882
1.441000
0.907273
0.566213
0.313624
0.145449

0


w(50) =



5.0
3.368154
2.262581
1.510888
0.995271
0.635660
0.375372
0.174085

0


Below is a graph showing the first 10 iterates of w(k) along with the exact solution.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Figure 2: Plot of exact solution with the approximations for first 10 iterates.

3. a. The exact integral is found by the substitution u = x4 (so du = 4x3dx)), which gives

0.4

∫ 3

0
x3 cos(x4) dx = 0.1

∫ 81

0
cos(u) du

= 0.1 sin(u)

∣∣∣∣81

0

= 0.1 sin(81) = −0.06298879943.

Below is a graph of the function, showing the increasingly rapid oscillations and the growing
amplitude:

0 0.5 1 1.5 2 2.5 3
-15

-10

-5

0

5

10

15

Figure 3: Graph of f(x) = 0.4x3 cos(x4).

b. The MatLab program below can be used to compute the Composite Midpoint rule with
n = 12 or h = 0.25.

1 function M = compmidptth2 4A(a,b,N)
2 % Composite Midpoint Rule for function f(x)
3 % on [a,b] using N steps
4 f = @(x) 0.2*x.ˆ3.*sin(x.ˆ4);
5 h = (b-a)/N;
6 i = 1:N;
7 ci = a+0.5*(2*i-1)*h;
8 M = h*sum(f(ci));
9 end

The Composite Midpoint Rule with n = 12 or h = 0.25 gives:

0.4

∫ 3

0
x3 cos(x4) dx ≈ 2.0531341407 with abs err = 2.1161229401,

which gives a very poor approximation.

The MatLab program below can be used to compute the Composite Simpson’s rule with
n = 12 or h = 0.25.

1 function S = compsimpth2 4A(a,b,N)
2 % Composite Simpson's Rule for function f(x)
3 % on [a,b] using 2N steps
4 f = @(x) 0.2*x.ˆ3.*sin(x.ˆ4);
5 h = (b-a)/(2*N);
6 i = 0:N-1;
7 xi = a+2*i*h;
8 xi1 = a+2*(i+0.5)*h;
9 xi2 = a+2*(i+1)*h;

10 S = (h/3)*sum(f(xi)+4*f(xi1)+f(xi2));
11 end

The Composite Simpson’s Rule with n = 12 or h = 0.25 gives:

0.4

∫ 3

0
x3 cos(x4) dx ≈ 3.2220584345 with abs err = 3.2850472339,

which still gives a very poor approximation.

c. This part uses the Composite Midpoint and Composite Simpson’s Rules starting with n = 12
or h = 0.25 to approximate the integral above and halving the stepsize until the accuracy is less
than a tolerance of 10−6. As this function oscillates quite rapidly, it requires a large number of
steps to accurately approximate the solution.
The Composite Midpoint rule is analyzed with the MatLab program below:

1 function [H,Eh,S,N] = compmidtolth2 3C(a,b,tol)
2 % Composite Midpoint Rule for function f(x)
3 % on [a,b] doubling steps til within tolerance
4 f = @(x) 0.4*x.ˆ3.*cos(x.ˆ4);
5 ex = -0.062988799427445;
6 S0 = 0;
7 N = 12;
8 S = 1;
9 H = [];

10 Eh = [];
11 while (abs(S-S0)>tol)
12 S0 = S;
13 h = (b-a)/N;
14 H = [H,h];
15 i = 1:N;
16 ci = a+0.5*(2*i-1)*h;
17 S = h*sum(f(ci));
18 eh = abs(S-ex);
19 Eh = [Eh,eh];
20 N = 2*N;
21 end
22 N = N/2;
23 p = polyfit(log(H),log(Eh),1)
24 nn = length(H);

25 lnH = log(H);
26 lnE = log(Eh);
27 plot([lnH(1),lnH(nn)],[(p(1)*lnH(1)+p(2)),(p(1)*lnH(nn)+p(2))],'b-');
28 hold on
29 plot(lnH,lnE,'bo');grid
30

31 fontlabs = 'Times New Roman';
32 xlabel('$\ln(h)$','FontSize',16,'FontName',fontlabs, ...
33 'interpreter','latex');
34 ylabel('$\ln(err)$','FontSize',16,'FontName',fontlabs, ...
35 'interpreter','latex');
36 mytitle = 'Problem 3c: Midpoint';
37 title(mytitle,'FontSize',16,'FontName', ...
38 'Times New Roman','interpreter','latex');
39 set(gca,'FontSize',16);
40

41 print -depsc th2 3Cm gr.eps
42 end

This program requires n = 49152 steps with a stepsize of h = 0.00006103515625 to obtain the
accuracy to the desired tolerance (absolute error of 1.1534× 10−7. The graph below shows the
log-log plot of the stepsize and the absolute error. The MatLab program polyfit gives the
best fit slope to be p = 2.1245, which is consistent with the expected p = 2.

-10 -8 -6 -4 -2 0
-20

-15

-10

-5

0

5

Figure 4: Graph of log of stepsize vs log of absolute error for Midpoint rule.

The Composite Simpson’s rule is analyzed with the MatLab program below:

1 function [H,Eh,S,N] = compsimptolth2 3C(a,b,tol)
2 % Composite Simpson's Rule for function f(x)
3 % on [a,b] doubling steps til within tolerance
4 f = @(x) 0.4*x.ˆ3.*cos(x.ˆ4);
5 ex = -0.062988799427445;
6 S0 = 0;

7 N = 6;
8 S = 1;
9 H = [];

10 Eh = [];
11 while (abs(S-S0)>tol)
12 S0 = S;
13 h = (b-a)/(2*N);
14 H = [H,h];
15 i = 0:N-1;
16 xi = a+2*i*h;
17 xi1 = a+2*(i+0.5)*h;
18 xi2 = a+2*(i+1)*h;
19 S = (h/3)*sum(f(xi)+4*f(xi1)+f(xi2));
20 eh = abs(S-ex);
21 Eh = [Eh,eh];
22 N = 2*N;
23 end
24 p = polyfit(log(H),log(Eh),1)
25 nn = length(H);
26 lnH = log(H);
27 lnE = log(Eh);
28 plot([lnH(1),lnH(nn)],[(p(1)*lnH(1)+p(2)),(p(1)*lnH(nn)+p(2))],'b-');
29 hold on
30 plot(lnH,lnE,'bo');grid
31

32 fontlabs = 'Times New Roman';
33 xlabel('$\ln(h)$','FontSize',16,'FontName',fontlabs, ...
34 'interpreter','latex');
35 ylabel('$\ln(err)$','FontSize',16,'FontName',fontlabs, ...
36 'interpreter','latex');
37 mytitle = 'Problem 3c: Simpson';
38 title(mytitle,'FontSize',16,'FontName', ...
39 'Times New Roman','interpreter','latex');
40 set(gca,'FontSize',16);
41

42 print -depsc th2 3Cs gr.eps
43 end

This program requires n = 3072 steps with a stepsize of h = 0.0009765625 to obtain the
accuracy to the desired tolerance. The graph below shows the log-log plot of the stepsize and
the absolute error. The MatLab program polyfit gives the best fit slope to be p = 3.5676,
which is below the expected p = 4 because of the initial points on the graph.

d. The Adaptive Composite Simpson’s Rule program used the same core program ACSR provided
in class, while slight modifications were made to the AdaptiveCSRsin code at the beginning
as seen below:

1 %
2 % Adaptive CSR
3 %
4 % This is the setup/driver part...
5 % Play with the tolerance for different results.
6 %
7

8 tol = 10ˆ(-6);
9 a = 0;

10 b = 3;

-7 -6 -5 -4 -3 -2 -1
-20

-15

-10

-5

0

5

Figure 5: Graph of log of stepsize vs log of absolute error for Simpson’s rule.

11

12 f = @(x) 0.4*x.ˆ3.*cos(x.ˆ4);
13

14 figure(1); xv = 0:0.001:3;

The output generates all the intervals of integration, which can be easily copied into a spread-
sheet, where the number of rows can be counted. (Better coding would allow inserting an index
counter, but I deemed it not worth the effort, given an existing program that suffices.) The
number of steps was reduced substantially to only n = 448, since the early portion of the graph
could use fairly large stepsizes. The reduction is to about 14.6% of the number of steps use in
the Composite Simpson’s rule. Below are graphic output from the Adaptive scheme used.

0 1 2 3
0

5

10

4 a. The exact integral is found by integration by parts twice, which gives∫ 4

0
2x2e−0.6x dx = −10

3
x2e−0.6x

∣∣∣∣4
0

+
20

3

∫ 4

0
x e−0.6x dx

= −160

3
e−12/5 − 100

9
xe−0.6x

∣∣∣∣4
0

+
100

9

∫ 4

0
e−0.6x dx

= −160

3
e−12/5 − 400

9
e−12/5 − 500

27
e−0.6x

∣∣∣∣4
0

= −3140

27
e−12/5 +

500

27
= 7.9683565434.

Below is a graph of this function.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Figure 6: Graph of f(x) = 2x2e−0.6x.

b. The MatLab program below can be used to compute the integral with Gaussian quadrature
with 2, 3, 4, and 5 points. Only lines 2 and 3 need to be changed with the appropriate value.

1 [L,Lroots,GQw] = LegendrePolynomials(8);
2 gr = Lroots{5};
3 wt = GQw{5};
4 a = 0; b = 4;
5 f = @(x) 2*x.ˆ2.*exp(-0.6*x);
6 gx = ((b-a)*gr + (b+a))/2;
7 wx = wt*(b-a)/2;
8 S = sum(wx.*f(gx))

For Gaussian quadrature with 2 points the program gives:∫ 4

0
2x2e−0.6x dx ≈ 7.7181496432 with abs err = 0.2502069002.

For Gaussian quadrature with 3 points the program gives:∫ 4

0
2x2e−0.6x dx ≈ 7.9564402246 with abs err = 0.0119163188.

For Gaussian quadrature with 4 points the program gives:∫ 4

0
2x2e−0.6x dx ≈ 7.9681879155 with abs err = 1.686279× 10−4.

For Gaussian quadrature with 5 points the program gives:∫
2
x2e−0.6x dx ≈ 7.9683553612 with abs err = 1.1822× 10−6.

c. The MatLab program below can be used to compute the Composite Simpson’s rule with
n = 4 or h = 1.

1 function S = compsimpth2 4C(a,b,N)
2 % Composite Simpson's Rule for function f(x)
3 % on [a,b] using 2N steps
4 f = @(x) 2*x.ˆ2.*exp(-0.6*x);
5 h = (b-a)/(2*N);
6 i = 0:N-1;
7 xi = a+2*i*h;
8 xi1 = a+2*(i+0.5)*h;
9 xi2 = a+2*(i+1)*h;

10 S = (h/3)*sum(f(xi)+4*f(xi1)+f(xi2));
11 end

The Composite Simpson’s Rule with n = 4 or h = 1 gives:∫ 4

0
2x2e−0.6x dx ≈ 8.0046983122 with abs err = 0.0363417688.

d. The Composite Simpson’s rule is analyzed with the MatLab program almost identical to
Problem 3c. The only differences between these are the tolerance entered, which is tol =
1.1822× 10−6, N = 2 in Line 7, and Line 4 of the code:

4 f = @(x) 2*x.ˆ2.*exp(-0.6*x);

This program gives: ∫ 4

0
2x2e−0.6x dx ≈ 7.96835658.

and requires n = 128 steps with a stepsize of h = 0.03125 to obtain the accuracy to the desired
tolerance. The graph below shows the log-log plot of the stepsize and the absolute error. The
MatLab program polyfit gives the best fit slope to be p = 3.9678, which is very close to the
expected p = 4.

-4 -3 -2 -1 0
-20

-15

-10

-5

0

Figure 7: Graph of log of stepsize vs log of absolute error for Simpson’s rule.

5. a. We have the two approximations to the integral with the Trapezoid rule on the interval
[a, b], where ∆x = b−a

N . The first is∫ b

a
f(x)dx = T∆xf +K2(∆x)2 +K4(∆x)4 + · · · ,

where

T∆xf =
∆x

2

f(a) + f(b) + 2

N−1∑
j=1

f(xj)

 , xj = a+ j∆x.

By cutting the mesh size in half, we obtain:∫ b

a
f(x)dx = T∆x/2f +

K2

4
(∆x)2 +

K4

16
(∆x)4 + · · ·

Multiplying the second approximation by 4 and subtracting the first approximation gives:

3

∫ b

a
f(x)dx = 4T∆x/2f +K2(∆x)2 +

K4

4
(∆x)4

−
(
T∆xf +K2(∆x)2 +K4(∆x)4

)
+ · · ·

3

∫ b

a
f(x)dx = 4T∆x/2f − T∆xf −

3K4

4
(∆x)4 + · · ·∫ b

a
f(x)dx =

1

3

(
4T∆x/2f − T∆xf

)
− K4

4
(∆x)4 + · · ·

So, you now have two approximations, one better than the other. Using these two approxima-
tions, show how you get the approximation∫ b

a
f(x)dx =

1

3

(
4T∆x/2f − T∆xf

)
− K4

4
(∆x)4 + · · ·

Thus, two second order methods are combined in a linear manner to produce a fourth order
method (Richardson Extrapolation).

b. Below is a code which implements this new method (with the function in Part c).

1 function S = comptrapth2 5C(a,b,N)
2 % Modified Trapezoid Rule for function f(x)
3 % on [a,b] doubling steps til within tolerance
4 f = @(x) 0.5 + sin(x.ˆ2).*exp(-0.4*x);
5 ex = 5.45052322777848;
6 h1 = (b-a)/N;
7 i = 0:N-1;
8 xi = a+i*h1;
9 xi1 = a+(i+1)*h1;

10 S1 = (h1/2)*sum(f(xi)+f(xi1));
11

12 h2 = (b-a)/(2*N);
13 j = 0:2*N-1;
14 xj = a+j*h2;
15 xj1 = a+(j+1)*h2;
16 S2 = (h2/2)*sum(f(xj)+f(xj1));
17

18 S = (1/3)*(4*S2 - S1);
19 eh = abs(S-ex)
20 end

c. A graph of the function shows a damped oscillation as seen below:

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Figure 8: Graph of f(x) = 0.5 + sin(x2)e−0.4x on [0, 10].

The method from Part a is tested on the integral:∫ 10

0
0.5 + sin(x2)e−0.4xdx,

with h = 0.5 (N = 20). For this integral, Maple gives the numerical value of 5.450523228.
The higher order Trapezoid method (from the program above) gives an approximation of
5.493486864, which has an absolute error of 0.042963636. If the CSR is implemented we obtain
exactly the same answer (since they are effectively the same method). Note we must compare
with h = 0.25 on the CSR for equivalency, since the modified Trapezoid uses a half-step. The
clock times were 0.006565 for the modified Trapezoid rule compared to 0.004529 for the Simp-
son’s rule, showing slightly more calculations for the modified Trapezoid rule and making it
slightly less efficient.

d. The code above is expanded to find the solution to a particular tolerance and produce the
log-log plot, which proves the order of convergence.

1 function [H,Eh,S,N] = comptraptolth2 5C(a,b,tol)
2 % Modified Trapezoid Rule for function f(x)
3 % on [a,b] doubling steps til within tolerance
4 f = @(x) 0.5 + sin(x.ˆ2).*exp(-0.4*x);
5 ex = 5.45052322777848;
6 S0 = 0;
7 N = 10;
8 S = 1;
9 H = [];

10 Eh = [];
11 while (abs(S-S0)>tol)
12 S0 = S;
13 h1 = (b-a)/N;
14 H = [H,h1];
15 i = 0:N-1;
16 xi = a+i*h1;
17 xi1 = a+(i+1)*h1;
18 S1 = (h1/2)*sum(f(xi)+f(xi1));
19

20 h2 = (b-a)/(2*N);
21 j = 0:2*N-1;
22 xj = a+j*h2;
23 xj1 = a+(j+1)*h2;
24 S2 = (h2/2)*sum(f(xj)+f(xj1));
25

26 S = (1/3)*(4*S2 - S1);
27 eh = abs(S-ex);
28 Eh = [Eh,eh];
29 N = 2*N;
30 end
31 N = N/2;
32 p = polyfit(log(H),log(Eh),1)
33 nn = length(H);
34 lnH = log(H);
35 lnE = log(Eh);
36 plot([lnH(1),lnH(nn)],[(p(1)*lnH(1)+p(2)),(p(1)*lnH(nn)+p(2))],'b-');
37 hold on
38 plot(lnH,lnE,'bo');grid
39

40 fontlabs = 'Times New Roman';
41 xlabel('$\ln(h)$','FontSize',16,'FontName',fontlabs, ...
42 'interpreter','latex');
43 ylabel('Absolute Error','FontSize',16,'FontName',fontlabs, ...
44 'interpreter','latex');
45 mytitle = '';
46 title(mytitle,'FontSize',16,'FontName', ...
47 'Times New Roman','interpreter','latex');
48 set(gca,'FontSize',16);
49

50 print -depsc th2 5C gr.eps
51 end

We implement the code above using comptraptolth2 5C(0,10,1e-8). It finds that the step-
size needs to be reduced to ∆x = 0.0078125 (N = 1280) to obtain the tolerance of 10−8. The
graph below shows the log-log plot of the stepsize and the absolute error. The MatLab program
polyfit gives the best fit slope to be p = 4.3091, which is consistent with the expected p = 4
(some wandering initially).

-5 -4 -3 -2 -1 0
-25

-20

-15

-10

-5

0

Figure 9: Graph of log of stepsize vs log of absolute error for the modified Trapezoid rule.

When the Composite Simpson’s rule is modified for the function above, its graphic output is
identical. The program is almost identical to the one in Problem 4, so is omitted. Both programs
go to the same stepsize to obtain the tolerance set. (Note that the Simpson’s h = ∆x/2 for the
modified Trapezoid rule.) The graphs of the log-log plots of stepsize vs absolute error are the
same ultimately moving towards the p = 4.

6. a. This examines the risk of cadmium over a lifetime of accumulation. The risk increases
with smoking adding additional amounts of cadmium over the normal entering through food.
The average amount of Cd in the kidney (in mg) acquired mostly through food satisfies:

C(t) =
74

39

(
1− e−0.039t

)
.

The exposure to Cd, E(t), is found by the integral:

E(t) =

∫ t

0
C(s)ds.

Below is table of the approximations using the Composite Trapezoid and Simpson’s rules at
ages 30, 50, and 70 with a stepsize of h = 5.

t Exact Trapezoid Abs Err Simpson Abs Err

30 23.370910 23.264659 0.106251 23.370641 0.00026830

50 53.141539 53.009390 0.132149 53.141206 0.00033370

70 87.341372 87.197352 0.144021 87.341009 0.00036368

The programs for this table are below.

1 function T = comptrapth2 6Ca(a,b,N)
2 % Composite Trapezoid Rule for function f(x)
3 % on [a,b] using N steps
4 f = @(x) (74/39)*(1 - exp(-0.039*x));
5 h = (b-a)/N;
6 i = 0:N-1;
7 xi = a+i*h;
8 xi1 = a+(i+1)*h;
9 T = (h/2)*sum(f(xi)+f(xi1));

10 end

1 function S = compsimpth2 6Ca(a,b,N)
2 % Composite Simpson's Rule for function f(x)
3 % on [a,b] using 2N steps
4 f = @(x) (74/39)*(1 - exp(-0.039*x));
5 h = (b-a)/(2*N);
6 i = 0:N-1;
7 xi = a+2*i*h;
8 xi1 = a+2*(i+0.5)*h;
9 xi2 = a+2*(i+1)*h;

10 S = (h/3)*sum(f(xi)+4*f(xi1)+f(xi2));
11 end

b. To find the age with a tolerance of 10−2 of the average nonsmoker when he or she achieves
an exposure level of 100 mg-yr, begin by setting the tolerance of a Composite Simpson’s Rule
quite low, say 10−6 to assure that the integral is close to the exact value over any specified
interval. Next we connect this to a bisection method with a tolerance below the critical level
of 10−2 (preferably an order of magnitude lower). Combining these techniques for this model
we find the level of 100 mg yr is achieved at age:

age100 = 77.075 years.

Below is the bisection script followed by the function needed for the Simpson’s rule.

1 %BISECTION METHOD - Modify function below, then can
2 % find its roots in [a,b] to tolerance tol
3 a = 50; b = 100;
4 tol = 0.0005;
5 S0 = compsimptolth2 6Cb(0,a,1e-6);
6 S1 = compsimptolth2 6Cb(0,b,1e-6);
7 f0 = S0 - 100;
8 f1 = S1 - 100;
9 if (f0*f1 > 0)

10 fprintf('Error in choice of a and b\n');
11 return
12 end
13 while (abs(b-a) ≥ tol)
14 m = (a+b)/2;
15 SM = compsimptolth2 6Cb(0,m,1e-6);
16 fm = SM - 100;
17 if (fm == 0)
18 break;
19 elseif(f1*fm < 0)
20 a = m;
21 else
22 b = m;
23 end
24 end
25 root = m

1 function [S] = compsimptolth2 6Cb(a,b,tol)
2 % Composite Simpson's Rule for function f(x)
3 % on [a,b] doubling steps til within tolerance
4 f = @(x) (74/39)*(1 - exp(-0.039*x));
5 S0 = 0;
6 N = 10;
7 S = 1;
8 while (abs(S-S0)>tol)
9 S0 = S;

10 h = (b-a)/(2*N);
11 i = 0:N-1;
12 xi = a+2*i*h;
13 xi1 = a+2*(i+0.5)*h;
14 xi2 = a+2*(i+1)*h;
15 S = (h/3)*sum(f(xi)+4*f(xi1)+f(xi2));
16 N = 2*N;
17 end
18 end

c. This part assumes someone smokes regularly after age 16 and more than doubles his or her
intake of Cd. The functions change at t = 16, so the exposure integral uses C(t) until t = 16,
then for t ≥ 16 the function becomes:

C1(t) =
74

39

(
1.9 +

(
(1− e−16k)− 1.9

)
e−k(t−16)

)
,

where k = 0.039. The exposure, E1(t), for the smoker satisfies:

E1(t) =

∫ 16

0
C(s)ds+

∫ t

16
C1(s)ds.

Below is table of the approximations using the Composite Trapezoid and Simpson’s rules at
ages 30, 50, and 70 for a smoker with a stepsize of h = 1.

t Exact Trapezoid Abs Err Simpson Abs Err

30 28.855765 28.849177 0.006588 28.855764 6.679E-07

50 79.043172 79.033807 0.009365 79.043171 9.495E-07

70 141.099697 141.089058 0.010639 141.099695 1.0786E-06

This table uses a script that calls the Composite Trapezoid and Simpson’s rules codes for
0 ≤ t ≤ 16 and calls a variant of these rules. The script and top parts of the other codes are
shown below.

1 % Smoker Cadmium script: Enter some age > 16
2 a = 70;
3 T0 = comptrapth2 6Ca(0,16,16);
4 N = a - 16;
5 T1 = comptrapth2 6Cc(16,a,N);
6 T = T0 + T1

1 function T = comptrapth2 6Cc(a,b,N)
2 % Composite Trapezoid Rule for function f(x)
3 % on [a,b] using N steps
4 f = @(x) (74/39)*(1.9 + ((1 - exp(-16*0.039)) - 1.9)*...
5 exp(-0.039*(x-16)));

1 % Smoker Cadmium script: Enter some age > 16
2 a = 70;
3 T0 = compsimpth2 6Ca(0,16,8);
4 N = (a - 16)/2;
5 T1 = compsimpth2 6Cc(16,a,N);
6 T = T0 + T1

1 function S = compsimpth2 6Cc(a,b,N)
2 % Composite Simpson's Rule for function f(x)
3 % on [a,b] using 2N steps
4 f = @(x) (74/39)*(1.9 + ((1 - exp(-16*0.039)) - 1.9)*...
5 exp(-0.039*(x-16)));

e. To find the age with a tolerance of 10−2 of the smoker described above when he or she achieves
an exposure level of 100 mg-yr, begin by using the Composite Simpson’s Rule for the nonsmoker
to age 16. Then proceed as Part b with the code modified to use the smoker cadmium function.
In this case we find the level of 100 mg yr is achieved at age:

age100 = 57.050 years.

Below is the bisection script followed by the function needed for the Simpson’s rule (first lines,
which are followed as above in Part b.

1 %BISECTION METHOD - Modify function below, then can
2 % find its roots in [a,b] to tolerance tol
3 a = 50; b = 100;
4 tol = 0.0005;
5 B0 = compsimptolth2 6Cb(0,16,1e-6);
6 S0 = compsimptolth2 6Ce(16,a,1e-6);
7 S1 = compsimptolth2 6Ce(16,b,1e-6);
8 f0 = B0 + S0 - 100;
9 f1 = B0 + S1 - 100;

10 if (f0*f1 > 0)
11 fprintf('Error in choice of a and b\n');
12 return
13 end
14 while (abs(b-a) ≥ tol)
15 m = (a+b)/2;
16 SM = compsimptolth2 6Ce(16,m,1e-6);
17 fm = B0 + SM - 100;
18 if (fm == 0)
19 break;
20 elseif(f1*fm < 0)
21 a = m;
22 else
23 b = m;
24 end
25 end
26 root = m

1 function [S] = compsimptolth2 6Ce(a,b,tol)
2 % Composite Simpson's Rule for function f(x)
3 % on [a,b] doubling steps til within tolerance
4 f = @(x) (74/39)*(1.9 + ((1 - exp(-16*0.039)) - 1.9)*...
5 exp(-0.039*(x-16)));

e. Below is a graph of the two models, E(t) and E1(t), for exposure to Cd for t ∈ [0, 70].
The graphs show aging increases the Cd exposure in all people (like many heavy metals). The
increase in Cd by a factor of 1.9 results in significant increases of Cd exposure for the smoker.
As seen above, the nonsmoker takes about 77 years to achieve an exposure of 100 mg yr, while
the smoker achieves this at the significantly lower age near 57. At age 30, the smoker has about
a 23.5% higher exposure than the nonsmoker. However, by age 60 the smoker has 56.1% higher
exposure, so significantly more risk due to Cd. Thus, the cumulative effects of smoking take a
serious toll with aging.

0 20 40 60 80
0

50

100

150

200
Nonsmoker
Smoker

Figure 10: Graph of Cadmium exposure - Smoking vs Nonsmoking.

