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Rayleigh Quotient Trial Functions

Proof

Rayleigh Quotient

The Sturm-Liouville Differential Equation problem:
d
& (1) 52) +at)o 2ot =0,
Multiply by ¢ and integrate:

[ o (4002 + atwr6?] a2 [ otare=o.

The eigenvalue satisfies:

- /ab [‘Z’CZC (p@ji) +q<x)¢2] da

B ff d20(x)dx

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Sturm-Liouville Problems



Rayleigh Quotient Trial Functions

Proof

Rayleigh Quotient

Integrate the eigenvalue equation by parts:

b b 2

e (E) - q<x)¢2] s
ff d%0(x)dx

which is the Rayleigh Quotient.

— pp2e

)\:

i

The eigenvalues are nonnegative (A > 0), if
b
Q ¢<0.

These conditions commonly hold for Physical problems, where
q <0 or energy-absorbing.
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Rayleigh Quotient

Trial Functions
Proof

Minimization Principle

The eigenvalue satisfies:

Theorem (Minimization Principle)

The minimum value of the Rayleigh quotient for all continuous
functions satisfying the BCs (not necessarily the differential equation)

1s the lowest eigenvalue:
b 2
du b du 2
— pust +/ <> —q(z)u”| dz
ot | 1P\ & q(z)
A = min

u f: u2o(z)dz

)

This minimum occurs at u = ¢1, the lowest eigenfunction.
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Rayleigh Quotient Trial Functions

Proof

Trial functions

Trial functions: Cannot test all continuous functions satisfying
the BCs, but select trial functions, ur,

b b dU,T 2
—pUngfTT " +/ D (dx) —q(x)u?p] dx

f; uzo(x)dr

A < RQur] =

)

This provides an upper bound for \i.

Example: Consider the Sturm-Liouville problem:
"+ Xp =0, #(0)=0 and ¢(1)=0.

This example has an eigenvalue, A\; = w2, with an associated
eigenfunction, ¢; = sin(rz).
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Rayleigh Quotient Trial Functions

Proof

Trial functions

Example: We compute the Rayleigh quotient with 3 test
functions, ui(x), us(z), and us(z):

Tent function:
1 1t g
uy(w) = - L e
l—2, x> % o8t ]
Quadratic function: sosf i
wy ()
— 2 04¢ ! i
us(z) =z — x°.
2() o
Eigenfunction: 0.2 .
. 0 . . ; i
uz(x) = sin(mx). 0 02 04 06 08 1

We insert each of these functions into the Rayleigh quotient.
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Rayleigh Quotient Trial Functions

Proof

Trial functions

Example: The Rayleigh quotient with

satisfies:

W ! dU1 2
—uldcz;|o+/0 <dx> dz
Jo udd
1/2
f/ dx+f1/2d$
f1/2x2d;1;+f1/2 (1 —x)? 2dy
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Rayleigh Quotient Trial Functions

Proof

Trial functions

Example: The Rayleigh quotient with us(z) = 2 — 2 satisfies:

1 2
d
_u2dc;;2’0+/ (;f) dzx
M < RQ[ua] = 0 :
1 [us] T udde
fo x)2dx
fo a:—xQ)de

The Rayleigh quotient with uz(z) = sin(mwz) satisfies:

1 2
du
it [ () @
— 0 x
A < RQlusg] = fl W2 ;
zifolcosz(m)dx _ T a2 .60
Jy sin®(7x)dx 3
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Rayleigh Quotient Trial Functions

Proof

Rayleigh quotient

Proof: The proof of the Rayleigh quotient generally uses the
Calculus of Variations, which cannot be developed here.

Our proof is based on eigenfunction expansion.

We assume u is a continuous function satisfying homogeneous
BCs

Assuming homogeneous BCs gives the equivalent form for the
Rayleigh quotient:
b
— [ uL(u)dx
RQlu) — s L
[, uodx

)

where L is the Sturm-Liouville operator.

We take u expanded by the eigenfunctions

u(e) = 3 aud ().
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Rayleigh Quotient Trial Functions

Proof

Rayleigh quotient

Proof (cont): Since L is a linear operator, we expect

=Y anL(n(@) = = Y anruodn(z)
n=1 n=1

where later we show the interchange of the summation and operator
when u is continuous and satisfies homogeneous BCs of the
etgenfunctions.

With different dummy summations, the Rayleigh quotient becomes

Ju (Ceey Yon mtn Ao )dz
f (Zm 1Zn 1aman¢m¢n )

We interchange the summation and integration and use
orthogonality to give

RQlu] =

S a2 [, $Rodx
Dne1 O fa prode SDSU

RQu] =
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Rayleigh Quotient Trial Functions

Proof

Rayleigh quotient

Proof: The previous equation gives the exact expression for the
Rayleigh quotient in terms of the generalized Fourier coefficients
an of u. If Ay is the lowest eigenwvalue, then we obtain:

MYy nf ¢2odx

R >
M P red

= A1

Note that equality holds only if a,, = 0 for n > 1, which gives the
minimization result that RQ[u] = A; for u = a1¢;.

The proof is easily extended to show that if a; = 0 for the
eigenfunction expansion of u, then RQ[u] = Ao when a,, = 0 for
n > 2 and u = as¢ps.

Thus, the minimum value for all continuous functions u that are
orthogonal to the lowest eigenfunction and satisfy the
homogeneous BC's is the next-to-lowest eigenvalue. SDST
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Eigenvalue Equation
Robin Boundary Conditions Ze nd Negative Eigenvalue
Summary

Robin Boundary Conditions

Heat Equation with BC of Third Kind: Consider the PDE

ou _ o
ot Ox?’
with the BCs
Ju
u(0,t) =0 and %(L,t) = —hu(L,t).

If h > 0, then this is a physical problem and the right endpoint
represents Newton’s law of cooling with an environmental
temperature of 0°.

Note: The problem solving below can be done equally well with the
String Equation, u; = c?ug,, where the right BC represents a
restoring force for h > 0 and is called an elastic BC.

If h < 0, either problem is not physical, as the heat equation would
be having heat constantly pumped into the rod, and the string
equation has a destabilizing force on the right end. SD0S0
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Eigenvalue Equation
Robin Boundary Conditions Ze nd Negative Eigenvalue
Summary

Robin Boundary Conditions

Separation of Variables: Let

u(z,t) = G(t)o(x),

then as before, the time dependent ODEs are

Heat Flow: ﬁ = —)\kG,
dt
2
Vibrating String: CZT? = -G

The Sturm-Liouville problem becomes:

d2¢ ,
T3HA=0 9(0)=0 and ¢(L)+he(L) =0,

where h > 0 is physical and h < 0 is nonphysical.
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

Positive eigenvalues: Let A = o? > 0, then

o(x) = ¢1 cos(ax) + cosin(ax).

The BC, ¢(0) = 0, implies ¢; = 0.

The other BC, ¢'(L) + h¢(L) = 0, implies that
cg (acos(aL) + hsin(al)) =0 or
o alL
L = —— = — —
tan(al) = =3 = =37

This is a transcendental equation in «, which cannot be solved
exactly.
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

Eigenvalue equation is given by

tan(al) = —%, h > 0.

This equation can only be
solved numerically, such as
Maple or MatLab

This sketch is for the
physical case, h > 0.

Visually, can see that
asymptotically:

1
ap L~ (n— 2) ,

as n — o0
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Elgenvalue Equation
Robin Boundary Conditions er: gative Eigenvalue

Robin Boundary Conditions

Again the eigenvalue equation is given by

al
t L)=—— —1<hL <0.
an(al) = 57,
This sketch is for the 15
nonphysical case,
—1<hL <0, 10
which is 1 of 3 cases.
There is a lowest .
eigenvalue, \; < 5 9
Asymptotically:
0 =" tan(al)
1
ap L~ (n — 2) ,
0 /2 T 3n/2 2 512
as n — 00
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

There are two additional cases for the nonphysical problem, where

L
tan(al) = —Z—L, hL=-1 or hL< -1
In both cases, the first positive eigenvalue satisfies 7 < A < 37”

1 1
5 5
O z = tan(al) 0 z = tan(al)
0 /2 m 3m/2  2m 512 0 /2 s 32 2m 5m/2
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

The nonphysical problem with hL = —1 has its first positive
eigenvalue, ol ~ 4.49341 (\ = o?).

Zero E.V.: Consider A = 0, which gives the solution ¢(x) = c1z + co
The BC ¢(0) = ¢z = 0.
The other BC

¢'(L) + he(L) = cr(1+ hL) =0,

so if hL = —1, then Ao = 0 is an etgenvalue with associated
etgenfunction,

oo(z) = x.
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walue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

Negative E.V.: We don’t expect negative eigenvalues for physical
problems, as it produces an exponentially growing ¢-solution.

Suppose A = —a? < 0, so ¢” — a? = 0, which has the general solution:
¢(x) = c1 cosh(ax) + ¢o sinh(ax).

The BC ¢(0) = ¢; = 0.

The remaining BC gives:
¢z (avcosh(al) 4+ hsinh(al)) =0,

which is nontrivial if

« al,
tanh(al) = —— = ——
anh(aL) A A
which is another transcendental equation. SDSO
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

There are 4 cases to consider solving

al
tanh(al) = ——.
(@L) = =7+
14 T T T T T T T T
Physical case (hL > 0)
12} 1
has a negative slope, so S N
only intersects origin. ir N P :
osl L \\x) Z = tanh(al)|
When —1 < AL < 0, only ' >
intersects origin. w 06T 1
When hL = —1, line is o4r L/X 1
tangent to origin. 02t w 1
When hL < —1, there 0 ol |
is a unique positive ol

etgenvalue
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ation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions - Physical Problem

Heat Equation: Consider the PDE
ou 0u

ot ox?’
with the BCs
ou

u(0,t) =0 and o

(L,t) = —hu(L,t), h>0,

and ICs
u(z,0) = f(x).

The Sturm-Liouville problem had eigenvalues, )\, = a2, where
an, n=12 .. solves

a, L
t L)=——F
an(a, L) WL
and corresponding eigenfunctions
$n = sin(an). SDSU
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quation
Robin Boundary Conditions and gative Eigenvalue

Robin Boundary Conditions - Physical Problem

Heat Equation (cont): The time dependent solution is

Gp(t) = e Frnt = e kant

With the product solution, u, (z,t) = Gy (t)¢n(x), the superposition
principle gives:

Z Ape” sm(anx)

an L
hL

where «,, satisfies tan(a, L) = —

The generalized Fourier coefficients satisfy:

fo ) sin(ay,z)dx

A, = L
I sm2 (apz)dz
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quation
gative Eigenvalue

Heat Equation (cont): However, with sin(a, L) = —9= cos(a, L)

/L i (o) = 20, L —sin(20,L) _ Lh+ cosz(anL).
0 dap, 2h

Thus, the generalized Fourier coefficients satisfy:

2h/ f(z)sin anm)dﬂc
Lh + cos?(a, L)

and the temperature in the rod is given by

ZA e " sm(oznx)
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Robin Boundary Conditions

Robin Boundary Conditions - Physical Problem

Take L =10, k = 1, and h = 0.5 and suppose f(x) = 100 for
0 <z < 10. The Fourier coefficients are readily found:

_ 200A (1 — cos(a, L))
"y, (Lh + cos?(a, L))’

Solution with 100 terms.
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quation
Robin Boundary Conditions and tive Eigenvalue

Robin Boundary Conditions - Physical Problem

% Solutions to the heat flow equation
% on one—-dimensional rod length L
% Right end with Robin Condition
format compact;
L = 10;
Temp = 100;

rod, initially
7 tfin = 20;
8 k = 1;
9 h = 0.5;

width of plate
Constant temperature of

S U e W N =

o° oP

final time

heat coef of the medium

Newton cooling constant

10 NptsX=151; number of x pts

11 NptsT=151; number of t pts

12 Nf=100; % number of Fourier terms
13 x=linspace (0,L,NptsX);

14 t=linspace(0,tfin, NptsT);

15 [X,T]=meshgrid(x,t);

o o0 o o o
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walue Equation
Robin Boundary Conditions Zero and Neg e Eigenvalue
Summary

Robin Boundary Conditions - Physical Problem

17 figure (1)

18 clf

19 a = zeros(1l,Nf);

20 b = zeros(1,Nf);

21 U = zeros (NptsT, NptsX) ;
22 z0 = 2.7;

23 for n=1:Nf

24 z0 = fsolve (Q(x) h*L*xsin(x)+x*cos (x),z0);

25 a(n) = z0/L;

26 b (n)=(2+«Tempxh/ (a (n) * (Lxh+ (cos (a(n)*L)) "2))) ...

27 * (1l-cos (a(n)*L)); % Fourier coefficients

28 Un=Db (n) rexp (-k* (a(n)) "2xT) .*sin(a(n) *X) ; %
Temperature (n)

29 U=U+Un;

30 z0 = z0 + pi;

31 end
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Robin Boundary Conditions

quation
tive Eigenvalue

Robin Boundary Conditions - Physical Problem

32
33
34
35
36
37
38
39
40

set (gca, 'FontSize', [12]);
surf (X, T,0);

shading interp

colormap (jet)

xlabel ('$x$', 'Fontsize',12, "interpreter', 'latex');
ylabel ('S$t$', 'Fontsize',12, "interpreter', 'latex"');

zlabel ('Su(x,t)$"', 'Fontsize',12, "interpreter', 'latex")}

axis tight
view([141 101])
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Fourier Series - BC 3¢ Kind

The solution of the Heat Equation with Robin BCs used the Fourier expansion
of f(x) = 100 with the eigenfunctions, ¢, = sin(anx). Below are graphs showing
the eigenfunction expansion.
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walue Equation
Robin Boundary Conditions Zero and Neg e Eigenvalue
Summary

Fourier Series - BC 3¢ Kind

1 % Fourier series

2 format compact;

3 L = 10; % width of plate

4 Temp = 100; % Constant temperature of
rod, initially

5 h = 0.5; % Newton cooling constant

6 NptsX=500; % number of x pts

7 Nf=100; % number of Fourier terms

8 X=linspace (0, L,NptsX);

9 a = zeros(1l,Nf);

10 b = zeros(1l,Nf);

11 U = zeros(l,NptsX);

12 Ul = zeros(1l,NptsX);

13 U2 = zeros(l,NptsX);

14 U3 = zeros(l,NptsX);

15 z0 = 2.7;
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Robin Boundary Conditions

Fourier Series - BC 3¢ Kind

walue Equation
gative Eigenvalue

16 for n=1:Nf

17 z0 = fsolve (@ (x) h*xL*xsin(x)+x*cos (x),z0);

18 a(n) = z0/L;

19 b (n)=(2+«Tempxh/ (a (n)* (Lxh+ (cos (a(n)*L)) "2))) ...
20 * (1l-cos (a(n)*L)); % Fourier coefficients
21 Un = b(n)*sin(a(n)*X); % Temperature (n)

22 U = U+Un;

23 if (n < 5)

24 Ul = Ul+Un;

25 end

26 if (n < 10)

27 U2 = U2+Un;

28 end

29 if (n < 20)

30 U3 = U3+Un;

31 end

32 z0 = z0 + pi;

33 end $DST
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walue Equation
Robin Boundary Conditions ero and Negative Eigenvalue
Summary

Fourier Series - BC 3¢ Kind

34 plot(X,Ul, 'm-', 'LineWidth',1.5);
35 hold on

36 plot(X,U2,'r-','LinewWidth',1.5);

37 plot(X,U3,'-',"'Color', [0 0.5 0], '"LineWidth',1.5);
38 plot(X,U, 'b-"','LineWidth',1.5);

39 plot ([0 10],[100 100], 'k-", 'Linewidth',1.5);

40 grid;

41 legend('n = 5','n = 10','n = 20','n = 100", ...

42 '"location', 'southeast');

43 x1im ([0 1071);

44 ylim ([0 1207);

45 xlabel ('$x$', 'Fontsize',12, 'interpreter', 'latex');

46 ylabel ('S$Sf(x)$','Fontsize',12, "interpreter','latex');
47 set (gca, 'FontsSize', [12]);

Joseph M. Mahaffy, (jmahaffyOmail.sdsu.edu) Sturm-Liouville Problems — (82/45)



Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions - Non-Physical Problem

Heat Equation with Non-Physical BCs satisfies:
PDE: u; = kugy,, BC: u(0,t) =0,

IC: u(z,0) = f(x), ug(L,t) = —hu(L,t) with h <0.

For —1 < h < 0, the Sturm-Liouville problem is the same as the
physical problem with eigenvalues, )\, = a2, where

ap, n=1,2, ... solves tan(a, L) = — o‘h”LL, and corresponding
etgenfunctions are

¢dn = sin(a,x).

The solution satisfies:

o0
u(z,t) = Z Apekent sin(a,x),
n=1

with the same generalized Fourier coeflicients as for the physical
problem. SDSUO
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walue Equation
Robin Boundary Conditions Zero and Neg e Eigenvalue
Summary

Robin Boundary Conditions - Non-Physical Problem

Heat Equation with Non-Physical BCs and h = —1 has A\g = 0 with the
eigenfunction ¢o(x) = z, so the solution becomes:

o0
u(z,t) = Aox + Z Anefko‘gtt sin(anx),

n=1
with A,, as before for n = 1,2, ... and

3 /OL zf(z)dz.

AO:L3

If h < =1 and B; solves tanh(51L) = f%, then there is the additional
eigenfunction ¢_j(x) = sinh(B1x), so the solution becomes:

oo
u(z,t) = A_1ek6%t sinh(B1z) + Z Anefko‘it sin(an ),
n=1
with A, as before for n = 1,2,... and

201 fOL f(z) sinh(B1z)dx
cosh(B1L)sinh(B1L) — 1 L° SDST

-1 =
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quation
Robin Boundary Conditions and gative Eigenvalue

Robin Boundary Conditions - Physical Problem

Heat Equation with h = 0 (insulated right end) satisfies:
PDE: u; = kugs, BC: u(0,t) =0,

IC: u(z,0) = f(x), ug(L,t) = 0.
This problem is solved in the normal manner as before, and it is easy

_1)2;2
to see that the eigenvalues, \,, = %, with corresponding

etgenfunctions are

The solution satisfies:

= it [ (R—3) T
u(z,t) = ZAne sin | S——— ],
n=1

with similar Fourier coefficients to our original Heat problem.
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Apprersimetion IPrepenties

Eigenvalue Asymptotic Behavior

Examine the Sturm-Liouville eigenvalue problem in the form

i [P0+ o) +atwls =0,

The eigenvalues generally must be computed numerically.

There is a number of people working on details of these problems, so
the scope of this problem is beyond this course. (See Mark Dunster)

Interpret this problem like a spring-mass problem for large A\, where
x is time and ¢ is position.

o p(x) acts like the mass.
o For )\ large, —Ao(x)¢ acts like a restoring force

@ This solution rapidly oscillates
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Eigenvalue Asymptotic Behavior

roximatio Properties
Other Properties - Sturm-Liouville Apprersimetion IPrepenties

Eigenvalue Asymptotic Behavior

With large A, the solution oscillates rapidly over a few periods, so can
approximate the coefficients as constants.

Thus, the DE is approximated near any point xg by
d2
p(xo)d—;f + Ao(z9)d = 0,
which is like a standard spring-mass problem.

It follows that the frequency is approximated by
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Eigenvalue Asymptotic Behavior

roximatio Properties
Other Properties - Sturm-Liouville Apprersimetion IPrepenties

Eigenvalue Asymptotic Behavior

The amplitude and frequency are slow varying, so
¢(x) = A(z) cos(¥(x)).

o (op)~1/1

With Taylor series, we write

d(x) = A(x) cos[t(mo) + ' (x0)(x — z0) + ...],

so the local frequency is ' (xg), where

Y (x0) = A/2 (Z((;vs))>1/2.
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Apprersimetion IPrepenties

Eigenvalue Asymptotic Behavior

Integrating 1’ (zo) gives the correct phase

P(z) = A1/2 /I (M)m dzg.

p(0)

It can be shown (beyond this class) that the independent solutions are

approximated for large \ by
z 75\ 1/2
ﬂ,\l/?/ (7) dxo | .
p

If #(0) = 0, then the eigenfunction can be approximated by

¢(z) = (op)~/*sin <)\1/2 /m (%)1/2 d$0> + ..

If the second BC is ¢(L) = 0, then

L 1/2
A\1/2 7 dro ~ nm or A | —
o \p L <a>1/2

dzo SDSO

¢(x) ~ (op)~ "/ *eap
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Apprersimetion IPrepenties

Eigenvalue Asymptotic Behavior

Example: Consider the eigenvalue problem
d2
with BCs ¢(0) =0 and ¢(1) = 0.

Our approximation gives:

2

2 A { nm :|2 _ n27T _ n27T2
! 1/2 - o112 49372 _1)2°
Jo (1 +20)'/2dzo [%(1+zo)3/2|0] 5 (2 b

n Numerical Formula

1 6.5484 6.6424

2 26.4649 26.5697

3 59.6742 59.7819

4 106.1700 106.2789

5 165.9513 165.0607

6 239.0177 239.1275

7 325.3691 325.4790 SDST
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Eigenvalue Asymptotic Behavior
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Approximation Properties

We claimed that any piecewise smooth function, f(x), can be
represented by the generalized Fourier series of eigenfunctions:

oo
x) ~ Z an&n ()
n=1
By orthogonality with weight o(x) of the eigenfunctions

ff %xa( )dm
f¢2 Yo (x)

Suppose we use a finite expansion,

M

How do we choose «,, to obtain the best approximation?
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Other Properties - Sturm-Liouville

Approximation Properties

How do we define the “best approximation?”

Definition (Mean-Square Deviation)

The standard measure of Error is the mean-square deviation,
which is given by:

2

b M
E = / F@) = angn(@)| o(x)d.

This deviation uses the weighting function, o(z).

It penalizes heavily for a large deviation on a small interval.
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Eigenvalue Asymptotic Behavior
q a P g
Other Properties - Sturm-Liouville Apprersimeiion IPreperties

Approximation Properties

The best approximation solves the system:

oE
aai

=0, i=1,2,..,M.

or

OE b M .
0= Do 72/a [f(z) - ;antﬁn(x)] ¢i(z)o(x)dz, i=1,2,.., M.

This would be complicated, except that we have mutual
orthogonality of the ¢;(x)’s, so

/f@ /¢2

Solving this system for «; gives the «; as the generalized Fourier
coefficients.
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Apprersimeiion IPreperties

Approximation Properties

An alternate proof of this result shows that the minimum error is:

b M b
FE = / flods — Za%/ (;Siadx.
a n=1 a

This equation shows that as M increases, the error decreases.

Definition (Bessel’s Inequality)
Since E > 0,

b M b
/ fPodx > Z ai/ P2 odz.
a n=1 a

More importantly, any Sturm-Liouville eigenvalue problem has
an eigenfunction expansion of f(x), which converges in the mean

to f(x). spso
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Apprersimeiion IPreperties

Approximation Properties

The convergence itn mean implies that

lim E =0,

M —o00
which gives the following:

Definition (Parseval’s Equality)
Since £ > 0,

b 0o b
/ fPodr = Z ai/ P2odz.
a n=1 a

This inequality is a generalization of the Pythagorean theorem,
which important in showing completeness.
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