Math 531 - Partial Differential Equations Sturm-Liouville Problems Part B

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2023

Outline

- Self-Adjoint Operators
 - Lagrange's Identity
 - Green's Formula and Self-adjointness
- 2 Sturm-Liouville Properties
 - Orthogonality of Eigenfunctions
 - Real Eigenvalues
 - Unique Eigenfunctions

Regular Sturm-Liouville Problem

The **Regular Sturm-Liouville** problem satisfies:

$$\frac{d}{dx}\left(p(x)\frac{d\phi}{dx}\right) + q(x)\phi + \lambda\sigma(x)\phi = 0,$$

with the *homogeneous BCs*:

$$\beta_1 \phi(a) + \beta_2 \phi'(a) = 0,$$

$$\beta_3 \phi(b) + \beta_4 \phi'(b) = 0,$$

where (i) β_i are real, (ii) The functions p(x), q(x), and $\sigma(x)$ are real, continuous functions for $x \in [a, b]$ with p(x) > 0 and $\sigma(x) > 0$.

The following theorems will NOT be proved:

- There are infinitely many *eigenvalues*.
- ② Any *piecewise smooth* function can be expanded by the *eigenfunctions*.
- 3 Each succeeding *eigenfunction* has an additional zero.

Linear Operator

Linear Operator: Let L be the linear differential operator:

$$L = \frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x),$$

$$L(y) = \frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + q(x)y.$$

The Sturm-Liouville differential equation is written:

$$L(\phi) + \lambda \sigma(x)\phi = 0,$$

where λ is an *eigenvalue* and ϕ is an *eigenfunction*.

Note: The Linear Operator does NOT have to act on an *eigenvalue problem*.

Lagrange's Identity

Theorem (Lagrange's Identity)

Let L be the Linear Operator:

$$L = \frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x).$$

The following formula:

$$uL(v) - vL(u) = \frac{d}{dx} \left[p \left(u \frac{dv}{dx} - v \frac{du}{dx} \right) \right],$$

is known as the differential form of Lagrange's identity.

Linear Operator

Proof: This identity is readily shown

$$\begin{split} uL(v) - vL(u) &= u \left[\frac{d}{dx} \left(p(x) \frac{dv}{dx} \right) + q(x)v \right] - v \left[\frac{d}{dx} \left(p(x) \frac{du}{dx} \right) + q(x)u \right], \\ &= u \frac{d}{dx} \left(p(x) \frac{dv}{dx} \right) - v \frac{d}{dx} \left(p(x) \frac{du}{dx} \right). \end{split}$$

However, from the product rule we see that

$$\frac{d}{dx} \left(u \left(p \frac{dv}{dx} \right) \right) = u \frac{d}{dx} \left(p(x) \frac{dv}{dx} \right) + \frac{du}{dx} \cdot p \frac{dv}{dx},$$

$$\frac{d}{dx} \left(v \left(p \frac{du}{dx} \right) \right) = v \frac{d}{dx} \left(p(x) \frac{du}{dx} \right) + \frac{dv}{dx} \cdot p \frac{du}{dx}.$$

Subtracting these equations, we can insert into the expression for uL(v) - vL(u) to obtain **Lagrange's identity**:

$$uL(v) - vL(u) = \frac{d}{dx} \left[p \left(u \frac{dv}{dx} - v \frac{du}{dx} \right) \right].$$
 q.e.d.

Green's Formula

Lagrange's identity relates to the first part of the *linear differential operator* from the Sturm-Liouville problem.

Theorem (Green's Formula)

The integration of Lagrange's identity give's Green's formula:

$$\int_{a}^{b} [uL(v) - vL(u)]dx = p\left(u\frac{dv}{dx} - v\frac{du}{dx}\right)\Big|_{a}^{b}$$

for u and v continuously differentiable for $x \in (a, b)$.

This *linear differential operator* has important properties when there are $homogeneous\ BCs$.

Self-adjoint

Suppose that u and v are any two functions with the additional restriction that the boundary terms vanish:

$$p\left(u\frac{dv}{dx} - v\frac{du}{dx}\right)\Big|_a^b = 0.$$

Theorem (Self-adjoint)

If u and v are any two functions satisfying the same set of homogeneous BCs of the regular Sturm-Liouville problem, then

$$\int_{a}^{b} [uL(v) - vL(u)]dx = 0.$$

The linear operator L satisfying this condition is self-adjoint.

Self-adjoint

The theorem for self-adjointness of the linear operator L extends to other Sturm-Liouville problems.

- HW Exercises examine some regular Sturm-Liouville problems.
- 2 It is easy to show for **periodic BCs**.
- Also, easy to show if the **Sturm-Liouville problem** is singular at x = 0 and has p(0) = 0 with $\phi(0)$ bounded.

Orthogonality of Eigenfunctions

Let λ_n and λ_m be distinct *eigenvalues* with corresponding *eigenfunctions* ϕ_n and ϕ_m , so

$$L(\phi_n) + \lambda_n \sigma(x) \phi_n = 0,$$

$$L(\phi_m) + \lambda_m \sigma(x) \phi_m = 0.$$

It follows that

$$\int_{a}^{b} [\phi_m L(\phi_n) - \phi_n L(\phi_m)] dx = (\lambda_m - \lambda_n) \int_{a}^{b} \phi_m \phi_n \sigma(x) dx$$

By Green's Formula:

$$(\lambda_m - \lambda_n) \int_a^b \phi_m \phi_n \sigma(x) dx = p(x) \left(\phi_m \frac{d\phi_n}{dx} - \phi_n \frac{d\phi_m}{dx} \right) \Big|_a^b.$$

Orthogonality of Eigenfunctions

From before

$$(\lambda_m - \lambda_n) \int_a^b \phi_m \phi_n \sigma(x) dx = p(x) \left(\phi_m \frac{d\phi_n}{dx} - \phi_n \frac{d\phi_m}{dx} \right) \Big|_a^b,$$

so if ϕ_m and ϕ_n satisfy the same **homogeneous** BCs the right hand side is **zero**.

Thus,

$$(\lambda_m - \lambda_n) \int_a^b \phi_m \phi_n \sigma(x) dx = 0,$$

which says that *eigenfunctions* corresponding to different *eigenvalues* are **orthogonal** with respect to the weighting function, $\sigma(x)$.

Real Eigenvalues

Suppose that an *eigenvalue*, λ , is **complex** and it has a corresponding *eigenfunction*, $\phi(x)$,

$$L(\phi) + \lambda \sigma \phi = 0.$$

Take the complex conjugate, so

$$\overline{L(\phi) + \lambda \sigma \phi} = \overline{L(\phi)} + \overline{\lambda} \sigma \overline{\phi} = 0.$$

However, $\overline{L(\phi)} = L(\overline{\phi})$, since the coefficients of L are real, so

$$L(\overline{\phi}) + \overline{\lambda}\sigma\overline{\phi} = 0.$$

Thus, if λ is a **complex** *eigenvalue* with corresponding *eigenfunction* ϕ , then $\overline{\lambda}$ is also an *eigenvalue* with *eigenfunction* $\overline{\phi}$.

Real Eigenvalues

By our orthogonality theorem,

$$(\lambda - \overline{\lambda}) \int_{a}^{b} \phi \overline{\phi} \sigma dx = 0.$$

However, $\phi \overline{\phi} = |\phi|^2 \ge 0$ and $\sigma > 0$.

Thus, the integral is **zero** if and only if $\phi(x) \equiv 0$, which is not an *eigenfunction*, or $\lambda - \overline{\lambda} = 0$, which implies λ is real.

Thus, eigenvalues of a Sturm-Liouville problem are real.

Uniqueness

Suppose that ϕ_1 and ϕ_2 are *eigenfunctions* corresponding to λ , so

$$L(\phi_1) + \lambda \sigma \phi_1 = 0$$
 and $L(\phi_2) + \lambda \sigma \phi_2 = 0$.

Since λ is the same,

$$\phi_2 L(\phi_1) - \phi_1 L(\phi_2) = 0.$$

Lagrange's identity implies:

$$\phi_2 L(\phi_1) - \phi_1 L(\phi_2) = \frac{d}{dx} \left[p \left(\phi_2 \frac{d\phi_1}{dx} - \phi_1 \frac{d\phi_2}{dx} \right) \right] = 0.$$

Therefore, $p\left(\phi_2 \frac{d\phi_1}{dx} - \phi_1 \frac{d\phi_2}{dx}\right)$ is a constant.

Uniqueness

Using the Lagrange's identity, we obtained

$$p\left(\phi_2 \frac{d\phi_1}{dx} - \phi_1 \frac{d\phi_2}{dx}\right) = C.$$

The constant C = 0, if we have regular Sturm-Liouville problem with at least one *homogeneous BC*.

It follows that

$$\phi_2 \frac{d\phi_1}{dx} - \phi_1 \frac{d\phi_2}{dx} = 0$$
 or $\frac{d}{dx} \left(\frac{\phi_2}{\phi_1} \right) = 0.$

Thus, $\phi_2(x) = c\phi_1(x)$ with these BCs, so the **eigenfunction** is **unique**.

Non-Uniqueness

Earlier we showed that *periodic BCs* give both sine and cosine *eigenfunctions*, so this case does **NOT** produce *unique eigenfunctions* for a given *eigenvalue*.

Without **homogeneous** BCs, the **eigenvalue**, λ may not have a **unique eigenfunction**.

Non-uniqueness can create problems with orthogonality for a given *eigenvalue*.

The Gram-Schmidt process can be applied to create an *orthogonal* set of eigenfunctions.

Recall that $\lambda_m \neq \lambda_n$ always produces *orthogonal eigenfunctions*.

