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Introduction Derivation
St g Equation

Introduction

An important application of PDEs is the investigation of vibrations
of perfectly elastic strings and membranes

Perturbed String

Equilibrium

(highly stretched)

@ Consider a particle at position « in a highly stretched string

@ Assume a small displacement as seen above SDSO
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Introduction Derivation
String Equation

Derivation

Simplify by assuming the displacement is only vertical, y = u(x,t)

T(x+ Aw,t)

0 + A1)

T(x,t)

K z+ A

@ Apply Newton’s Law to an infinitesimally small segment of
string between x and = + Ax

@ Assume string has mass density po(z), so mass is po(z)Ar spsg
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Introduction Derivation
String Eq

Derivation

Newton’s Law acting on string considers all forces

Forces include gravity, resistance, Tt ary
and tension - “body” forces ‘

0(x + Aa,t)

Assume string is perfectly flexible,
so no bending resistance

This implies primary force is T
tangent to the string at all points

x r+Ax

Tension is the tangential force with
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Introduction Derivation
String Equation

Derivation

Newton’s Law gives F = ma, which is

2
po(x)Axa—u = T(x+ Az, t)sin(6(x + Az,t))

ot?
—T(z,t)sin(0(x,t)) + po(z)AzQ(E, 1),

where £ € [z,2 + Az] and Q(&,t) are any “body” accelerations, such
as gravity or air resistance.

Dividing by Az and taking the limit as Az — 0 gives

2'LL
()5t = 5 (T ) sin(0(.0)) + (o)1)

For 6 “small,” let
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Introduction Derivation
String Equation

String Equation

From previous results, obtain String Equation

2U
i) 5 = 5 (T 052 ) + w0

If the string is perfectly elastic, then T'(z,t) & Ty constant, which is
equivalent to almost uniform stretching along string

0%u 0%u

po(a) 5 = To s + po(@)Qa, ).

If the body force is small and density is constant, then
Pu 2 0%u
a2 o 9a2

where ¢2 = T—(‘)’
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Physical Interpretation
Vibrating String Traveling Wave

Vibrating String - Separation of Variables

The vibrating string satisfies the following:
Pu 0%

PDE: 2% - 224
o2~ o2

IC: u(z,0) = f(x),
u(z,0) = g(z).

This vibrating string problem or wave equation has fixed ends at
z =0 and z = L and initial position, f(z), and initial velocity, g(x).

As before, we apply our separation of variables technique:
u(x,t) = ¢(x)h(t),

SO
¢"h=c*¢h”  or
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Physical Interpretation

Vibrating String Traveling Wave

Vibrating String - SL. Problem

The homogeneous BCs give:

»(0)=0 and ¢(L) =0.

The Sturm-Liouville Problem becomes
" +Xp=0  with  ¢(0)=0=¢(L).
As before, we saw A < 0 results in the trivial solution.
If we take A = a? > 0, then
o(x) = ¢ cos(ax) + co sin(azx),

where the BCs show ¢; = 0 and o = %+ for nontrivial solutions.

The eigenvalues and associated eigenfunctions are

An =

with ¢n(x) = sin (@)

L? L
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Physical Interpretation
Vibrating String Traveling Wave

Vibrating String - Superposition

The other second order DFE becomes:

// 222_
h 72 h =0,

which has the solution

hn(t) = c1 cos (””d) + ¢o sin (”’Ft) .

It follows that

U (,t) = [Ay cos (%5<L) + By, sin (25<) ] sin (22£)

The Superposition principle gives:

u(z,t) = Z [A,, cos (22<L) + By, sin (27<)] sin (272)
n=1
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Vibrating String

Vibrating String - ICs

The initial position gives:

u(z,0) Z Ay sin "7””)

where
2 L
Ap = Z/o f(x)sin (%) dz.

The velocity satisfies

Z Ay, sin "”Ct) + Bp, cos(””t)] ("Ec)sin ("—zz)

The initial velocity gives:

ut(z,0) = g(z) = ZB” DR sin (27L)

n=1

where
2 L
By = e Jo g(x) sin (272) dz.
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Physical Interpretation
Vibrating String Traveling Wave

Physical Interpretation

Physical Interpretation: Model for vibrating string
oo
u(z,t) = Z [Ay cos (%5L) + By, sin (25<) ] sin (72)

@ Musical instruments
@ Each value of n gives a normal mode of vibration

@ Intensity depends on the amplitude
. . An
A,, cos(wt)+B, sin(wt) = /A2 + B2 sin(wt+0), 6 = arctan (B—n)

@ Time dependence is stmple harmonic with circular
frequency, 7=, which is the number of oscillations in 27 units
of time

@ The sound produced consists of superposition of the infinite
number of natural frequencies, n =1,2, ... SDSO
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Physical Interpretation
Vibrating String Traveling Wave

Physical Interpretation

Physical Interpretation (cont):

@ The normal mode, n =1, is called the first harmonic or
fundamental mode

@ This mode has circular frequency, -

@ Higher natural frequencies have higher pitch

@ Fundamental frequency varied by changing, ¢ = / %

e Tune by changing tension, Ty

e Different py for different strings (range of notes)

o Musician varies pitch by varying the length L (clamping
string)

@ Higher harmonics for stringed instruments are all integral
multiples (pleasing to the ear)
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Physical Interpretation

Vibrating String Traveling Wave

Traveling Wave

Traveling Wave: Show that the solution to the vibrating string
decomposes into two waves traveling in opposite directions.

@ At each t, each mode looks like a simple oscillation in x, which is

a standing wave

@ The amplitude simply varies in time

@ The standing wave satisfies:
sin (222) sin (22<) = L cos (25 (z — ct)) — 4 cos (2E(z + ct))

° é cos ( T (r — ct)) produces a traveling wave to the right

with velocity ¢
o 1cos (ZE(z + ct)) produces a traveling wave to the left
with velocity —c

@ By superposition (later d’Alembert’s solution)
u(z,t) = R(x — ct) + S(z + ct)
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