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Introduction Derivation

An important application of PDEs is the investigation of vibrations Simplify by assuming the displacement is only vertical, y = u(z,t)
of perfectly elastic strings and membranes

Perturbed String

-

P @+ Az

Equilibrium

(highly stretched)

@ Apply Newton’s Law to an infinitesimally small segment of
@ Consider a particle at position « in a highly stretched string string between x and x + Az

@ Assume a small displacement as seen above SDST @ Assume string has mass density po(x), so mass is po(2)Ar spsSO
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Derivation Derivation

Newton’s Law gives F = ma, which is

Newton’s Law acting on string considers all forces 0%u
po(2)Ar—— = T(x+ Az, t)sin(f(z + Az, t))

ot?
—T(x,t)sin(0(x, 1)) + po() AzQ(E, 1),

Forces include gravity, resistance,
and tension - “body” forces
where £ € [z, 2 + Az] and Q(&,t) are any “body” accelerations, such

Assume string is perfectly flexible, as gravity or air resistance

so no bending resistance

This implies primary force is Dividing by Az and taking the limit as Az — 0 gives

tangent to the string at all points 92 9
3 = B2 (T(x,t) sin(@(az,t))) + po(z)Q(z,t).

. : . po(x)
Tension is the tangential force with

Z—i = % = tan(f(z,t)) For 6 “small,” let
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String Equation Vibrating String - Separation of Variables

From previous results, obtain String Equation The vibrating string satisfies the following:

u 0 du Pu _ ,0%
po(x)ﬁ = aix <T(.’E,t :U> +p0(l’)Q($,t) PDE: ﬁ == 62w, BC: U(O,t) = 0,

o : I IC: u(z,0) = f(z),
If the string is perfectly elastic, then T'(x,t) ~ T constant, which is _
equivalent to almost uniform stretching along string
This vibrating string problem or wave equation has fixed ends at

0%u 0%u x =0 and x = L and initial position, f(x), and initial velocity, g(x).
Po(@) g = Tog5 + po(2)Q(,1). P J(@) % 9(@)
As before, we apply our separation of variables technique:

If the body force is small and density is constant, then w(z,t) = ¢(z)h(t),
@ = 02@ SO
at2 8IE27 ¢I/h —_ CQQS]’LH or Lﬂ _ d)i// _ —A
25 :
where ¢? = %. ¢ ¢
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Vibrating String Traveling Wave Vibrating String Traveling Wave
Vibrating String - SL Problem Vibrating String - Superposition
The homogeneous BCs give: The other second order DFE becomes:
d)(o) = 0 and ¢(L) = O h// 271—2 2h — 0

The Sturm-Liouville Problem becomes . .
which has the solution

¢ +Xp=0  with  ¢(0)=0=¢(L).

hn(t) = cy cos (22€) + cpsin (22<L) .

As before, we saw A < 0 results in the trivial solution.

If we take A = a2 > 0, then It follows that

d(x) = ¢; cos(ax) + co sin(ax), un (@, t) = [Ay cos ("7) + By sin (5] sin (*7%)

where the BCs show ¢; = 0 and o = “F for nontrivial solutions. The Superposition principle gives:
The etgenvalues and associated eigenfunctions are

n2n2 o u(z,t) = Z [A, cos ("7) + B, sin (25 )] sin (27%)

Ap = 7 with On () = sin (T) . n—1
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Vibrating String - ICs

The initial position gives: Physical Interpretation: Model for vibrating string

Physical Interpretation

o0 = J(@) = 3 Ansin (%F5), u(@.t) = 3 [Ancos (252) + B, sin (252)] sn (252)

where n=1
i /0 f(@)sin (*F*) da. @ Musical instruments
The velocity satisfies @ Each value of n gives a normal mode of vibration
oo @ Intensity depends on the amplitude

ut(z,t) = Z Apsin (22¢L) 4 By, cos (27L)] (2£€) sin (272 .

— ) . A,
A, cos(wt)+By, sin(wt) = /A2 + B2 sin(wt+0), 6 = arctan (B—n)

The initial velocity gives:

o @ Time dependence is stmple harmonic with circular
ut(z,0) = g(x) = Z (), frequency, 7=, which is the number of oscillations in 27 units
n=t of time
where 2 L P @ The sound produced consists of superposition of the infinite
Bn = nme Jo 9(w)sin (%) da. SDST number of natural frequencies, n =1,2, ... SDST
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Physical Interpretation Traveling Wave

Traveling Wave: Show that the solution to the vibrating string

Physical Interpretation (cont): decomposes into two waves traveling in opposite directions.
@ The normal mode, n = 1, is called the first harmonic or @ At each t, each mode looks like a simple oscillation in x, which is
fundamental mode a standing wave

@ This mode has circular frequency, = @ The amplitude simply varies in time

@ The standing wave satisfies:

sin (22) sin (22¢) = L cos (2% (z — ct)) — % cos (%5 (z + ct))

@ Higher natural frequencies have higher pitch

@ Fundamental frequency varied by changing, ¢ = 4/ %

o Tune by changing tension, Tp ° %cos (’2—”(33 — ct)) produces a traveling wave to the right
e Different pg for different strings (range of notes) with velocity ¢
o Musician varies pitch by varying the length L (clamping ° %cos (“Z(z + ct)) produces a traveling wave to the left
string) with velocity —c
@ Higher harmonics for stringed instruments are all integral @ By superposition (later d’Alembert’s solution)
multiples (pleasing to the ear) u(z,t) = R(z — ct) + S(z + ct)
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