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Principle of Superposition

Linearity

Homogeneous

Heat Equation: Assume a uniform rod of length L, so that the
diffusivity, specific heat, and density do not vary in x

The general heat equation satisfies the partial differential equation
(PDE):
ou Pu Qw,t)

JU_ U WYy 0<a<l,
ot 8x2+ cp .

with initial conditions (ICs):

u(z,0) = f(z),

and Dirichlet boundary conditions (BCs):

0<z <L,

w(0,8) = Ty(t) and wu(L,t) =Ta(t), t>0.

If Q(x,t) =0, then the PDE is homogeneous.

If T1(t) = T»(t) = 0, then the BCs are homogeneous. SDSO

Definition (Linearity)

An operator L is linear if and only if

E[clul + CQUQ] = clﬁ[ul] ol CQE[UQ]

for any two functions uw; and us and constants ¢; and cso.

Define the Heat Operator

0 0?

ot T T E
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Principle of Superposition Homogeneous Heat Equation

The following shows linearity of the Heat Operator: . . .
The Heat Equation with Homogeneous Boundary Conditions:

0 0?
Llciur + coug) = — —k— ) (cqu1 + cou 2
[crur + caus] <8t 83:2)(11 2u2) @:ka—z, t>0, 0<z<lL,
X ) ot ox
8u1 8uz k 0 U1 L 0 U2
Clgp T TRaG e TR with initial conditions (ICs) and Dirichlet boundary conditions
= 1 Lug] + caL]us] (BCs):

u(z,0) = f(z), 0<xz<L, with u(0,t)=0 and wu(L,t)=0.

Theorem (Principle of Superposition)

Separation of Variables: Developed by Daniel Bernoulli in the
1700’s, we separate the temperature u(x,t) into a product of a
function of & and a function of ¢

u(z,t) = ¢()G(1)
Note: Concepts of linearity and homogeneity also apply to
boundary conditions. SDST SDST

If uy and usy satisfy a linear homogeneous equation (L(u) =0),
then any arbitrary linear combination, ciuy + cous, also satisfies the
linear homogeneous equation.
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Separation of Variables Two ODEs
Separation of Variables: With u(z,t) = ¢(z)G(t), we use the heat Thus, the Separation of Variables results in the two ODEs:
ti d obtain:
equation and obtain e e - 2o v
o 4G _ k:dQ—gﬁG(t) dt da? ‘
dt dx?

The boundary conditions with the separation assumption give:

Separating the variables we have u(0,8) = G()$(0) = 0 or $(0) = 0
1dG = E@ or 1 dG - l@ since we don’t want G(t) = 0. Also,
G dt ¢ dz? kG dt ¢ d2x

u(L,t) = G(t)p(L) =0 or ¢(L) = 0.
Since the left hand side depends only on the independent variable ¢
and the right hand side depends only on the independent variable z, The Time-dependent ODE is readily solved:

these must equal a constant

dG
1dG 1 a T M
kG dt ¢ d%x sDST G(t) = ce . sDST
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Sturm-Liouville Problems Sturm-Liouville Problem Cases

The second ODE is a BVP and is in a class we’ll be calling

Sturm-Liouville problems: Consider Case 1: A =0, so
O \6=0 with 6(0)=0 and 6(L)=0 PO _ 0 with $(0)=0 and é(L)=0
— =0 wi =0 an =0. — =0 wi =0 an =0.
dz? dz?

Note: The trivial solution ¢(x) = 0 always satisfies this BVP. The general solution to this BVP is

If we want to satisfy a nonzero initial condition, then we need to find é(z) = c12 + ca.

nontrivial solutions to this BVP.

From our experience in ODEs, we can readily see there are 4 cases: We have ¢(0) = ¢ =0, and (L) =c1L=0 or ¢ =0.

L.A=0 2.A<0 3.A>0 4. Ais complex It follows that when A = 0, the unique solution to the BVP is the

We'll ignore Case 4 and later prove that Sturm-Liouville problems trivial solution.

only have real A

SDSJO SDSJT
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Sturm-Liouville Problem Cases Sturm-Liouville Problem Cases

Consider Case 3: A = a? > 0 with a > 0, so

Consider Case 2: A = —a? < 0 with a > 0, so d?¢

=+ a’p=0 with #(0)=0 and ¢(L)=0.
o, :
—— —a*¢=0 with ¢(0)=0 and ¢(L)=0.
dx The general solution to this BVP is
The general solution to this BVP is ¢(x) = c1 cos(ax) + cz sin(aw).

é(z) = ¢1 cosh(az) + ¢z sinh(az). We have ¢(0) = ¢; =0, and ¢(L) = cosin(al) = 0.
It follows that either c; = 0, leading to the trivial solution, or
We have ¢(0) = ¢; =0, and ¢(L) = casinh(al) =0 or ¢y =0, sin(aL) = 0.
since sinh(aL) > 0. o )
We are interested in nontrivial solutions, so we solve sin(aL) = 0,
It follows that when A < 0, the unique solution to the BVP is the which occurs when oL = nm,n =1,2,... or

trivial solution.

nm TL27T2

o= —, or A= —, n=12,..
L? SDSO
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Eigenfunctions Eigenfunctions

The Sturm-Liouville problem from the heat equation with

ey 2 )
We saw that if A = a” > 0, then the BVP: Dirichlet BCs generates a set of eigenfunctions, ¢,(z),n =1,2,...

d%¢ ) Below is a graph of the first 3 eigenfunctions.
ﬁ+a ¢p=0 with ¢(0)=0 and ¢(L)=0,
x
has the nontrivial solution,
¢1(x)
On(z) = sin (ﬂ) , n=12,..,
L
which are called eigenfunctions and their associated eigenvalues -
are given by o L
n?n?
A= —— n=12 ..
L2 ) ) ) ¢3(1‘)
2 ()
Note: ¢, (z) has n — 1 zeroes in 0 < z < L, which later we’ll prove is
a general property
SDSO x SDSJ
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From above, the Sturm-Liouville problem from the heat Example: Consider the heat equation:
equation gave the eigenfunctions: ou 0%u
9 sV & PDE: — = k——, BC: u(0,t) = 0,
. /nTT ot Ox?
¢n(x) = sin (T) , n=1,2,.., u(10,t) = 0.
IC: u(z,0) = 4sin (22),

with associated eigenvalues ) i )
) s From our separation of variables results, we obtain the product

nem solution
)\:?, TL:1,2,...

’712’"2
Un(x,t) = Bpe~ 0 sin <%> , n=1,2,..
This can be inserted into the t-equation to give:
which satisfies the BVP

Gn(t) = Bnei k"Lg : . . . .
By inspection, we solve the IC’s by taking n = 3 and B,, = 4. This

gives the solution to this example as:
From our separation assumption, we obtain the product solution

kn272t nmwx u(z,t) = 4e” %5 sin sm .
un(x,t) = Gp(x,t)pp(x) = Bye” 2 sin (T) , n=1,2,.. ’ 10
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Example Extended Superposition Principle

Extended Superposition Principle: The superposition principle

Example 2: Vary the IC and consider the heat equation: can be extended to show that if uy, us, ..., ups, are solutions of a
! o2 linear homogeneous problem, then any linear combination
PDE: 871:—/{8 =, BC: u(0,t) = 0, 8 P Y
u(b,t) = 0. c1uq + Cog + ... + cprunyg,

IC: u(z,0) = 3sin (3F2) + 7sin(rx),
is also a solution.
With the Principle of Superposition, we can add our product
solutions, us(z,t) + us(z,1). It follows for the homogeneous heat problem

By inspection, we satisfy the IC’s by taking B; = 3 and Bs = 7. This up = kg, w(0,t) =0 and wu(L,t) =0,
gives the solution to this example as:
that we can write a solution of the form

2t 3Tx
u(z,t) = 3e” U5 sin ( 75r ) + Te” sm(7rx) M

n2r2¢
u(z,t) = Z Bne 2 sin <$) .

n=1
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Heat Problem with ICs Arbitrary ICs

What if f(x) is NOT a finite linear combination of appropriate sine

The complete homogeneous heat problem includes an IC. functions?
Again the solution has the form: Soon we’ll learn about Fourier series
n2 2, i @ Any function with reasonable restrictions can be approximated
Z B,e™ L2 sin (T) , by a linear combination of sin ("zx)

© The approximation improves with M increasing
and will satisfy any IC, where © If we consider the limit as M — oo, then with some restrictions

the eigenfunctions, sin ("ZI) in the right combination converges

M
0) = Z B, sin (?) = f(x), to f(x)
n=1 © It remains to find the constants, B,,, such that:

i.e., any IC that is a finite sum of sine functions.

- . /nTT
What can we do about solving an arbitrary f(x)? f(x) = Z B, sin (T)
n=1
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Orthogonality

Orthogonality of Sines

Assume m # n, integers and with some trig identities consider

/L " (mﬂx) " ( nre ) o /L cos (W) — cos (%) . Definition (Orthogonality - Function Inner Product)
0 L L Jo 2 Whenever .
L
B 1 sin (%) B sin (W) / A(:E)B(:E)dw =0,
T2 (n—m)m/L (n+m)r/L 0
— 0 we say that the functions, A(x) and B(x) are orthogonal over the
B interval [0, L].
When m =, then Previous slide shows that the set of functions, sin (27%) ,n =1,2,...,
/L win? (@) i — /L 1 — cos (2212) s are orthogonal to each other
0 L 0 2

This orthogonal set of functions arise from the eigenvalue BVP:
"+ Xp =0, #(0)=0 and ¢(L)=0.

Later generalize this property to any Sturm-Liouville Problem
SDSJ
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Finding B,

Orthogonality of Sines
Heat Equation Example
Orthogonality and Computer Approximation Maple and MatLab

Finding B,

Assuming we can interchange the integration and summation,

= L nmwx mmx

Z Bn/ (sin (—) sin ( )) dx
—~ 0 L L

L
= B, ,
Use the orthogonality of these sine functions, so multiply both (2)

sides by sin (™22) and integrate x € [0, L]

Consider the expression

> L mmx
flz) = E B,, sin (?) /0 f(z)sin (T) dx
n=1

by the orthogonality of the sine functions

represent an arbitrary function f(x),

L L [ o . . . .
/ f(z)sin (m;m:) do — / Z B, sin (nzx) sin <m2x> da If follows that we can obtain the appropriate coefficients (Fourier) to
0 0 n=1

2 [t . [/nTT
To use orthogonality requires some analysis to allow the interchange B, = 7 / f(z)sin <T> dx.
of the integration and summation 0
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Orthogonality and Computer Approximation Maple and MatLab

Heat Equation Example

Orthogonality and Computer Approximation

Heat Equation Example

Expanding the Fourier coefficients:

Example: Consider the equation:

L
PDE: u; = kug,, t>0, O<zx<L, B — 2/L 100 sin (@) dr = @ —LCOS (@)
" L/ L L \nr L/)|,
BC: u(0,t) =0, w(L,t)=0, >0, )
200 %, n odd,
IC: u(z,0) =100, O0<z <L R (1 = cos(nm)) = 0, n even.

From before, the solution satisfies:
Thus, the solution satisfies:

oo
_kn2x% | /MTT
u(w,t) =Y Bne  £F sin (T) : .0 200 i (1= (=1)") —mn2g2e (nm:)
u(z,t) = — ————¢ 12 gn|—]).
n=1 ’ T n L
n=1
The Fouri ffici i
¢ Fourier coefficients are given by Because of the coefficient on the exponential decay term, this solution
9 L rapidly approaches
B, = / 100sin (“7° ) do.
L J, L 400 _ ka2t | /T
u(z,t) &~ —e” 17 sin (—) .
m L SDSO

— (26/32)
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Heat Equation with Maple

Orthogonality of Sines
Heat Equation Example
Orthogonality and Computer Approximation Maple and MatLab

Heat Equation with Maple
Heat Equation with Maple: Show commands and plots. Heat Equation with Maple: Increase the sum to 60 (30 nonzero

>u := (x,t) > (200/Pi)*sum(((1-(-1)"n)/n)*sin(n*Pi*x/10)
xexp (- (n*¥Pi/10) "2%t) ,n=1..20);
> plot3d(u(x,t),x=0..10,t=0..20);

— (28/32)
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Heat Equation Example
Orthogonality and Computer Approximation Maple and MatLab

Heat Equation with MatLab Heat Equation with MatLab

MatLab Program for Heat equation solution u(x, t)
15 for n=1:Nf
16 b(n)=(2*Temp/ (nxpi) )+ (1-(-1) "n); % Fourier
1 % Solutions to heat flow in 1-D rod length L coefficients
2 format compact; 17 Un=b (n) *exp (- (nxpixk/L) "2%T) .*sin (n*pi*X/L);
3 L = 10; % length of rod $ Temperature (n)
4 Temp = 100; % Constant initial temperature 18 U=U+Un;
5 tfin = 20; % final time 19 end
6 k =1; % heat coef of the medium 20 set (gca, 'FontSize', [14]);
7 NptsX=151; % number of x pts 21 surf(X,T,U);
8 NptsT=151; % number of t pts 22 shading interp
9 Nf=200; % number of Fourier terms 23 colormap (jet)
10 x=linspace (0, L,NptsX); 24 xlabel ('$x$', 'Fontsize',14, "interpreter', 'latex');
11 t=linspace(0,tfin,NptsT); 25 ylabel ('St$', 'Fontsize', 14, 'interpreter', 'latex');
12 [X,T]l=meshgrid(x,t); 26 zlabel('Su(x,t)$', 'Fontsize',14, 'interpreter','latex')}
13 b=zeros (1,Nf); 27 axis tight;
14 U=zeros (NptsT,NptsX); 28 view ([120 107]);
29 print -depsc heat_surf.eps $DST
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Heat Equation Example
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Heat Equation with MatLab

Graph of Heat Equation Solution using 200 terms with MatLab Changing the view to view ([0 90]) ;, obtain a heat map

u(z, t)

SDSJT
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