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Introduction

Rectangular Membrane

Vibrating Rectangular Membrane:

We want to consider PDEs in higher dimensions. PDE:
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Rectangular Membrane

Let u(x,y,t) = h(t)p(z)1(y), then the PDE becomes

W't = c (h"p + ho")

This is rearranged to give

h// ¢// ,(/)I/

Zh 6 0
which gives the time dependent ODE:

_)\7

B+ \?h = 0.

The remaining spatial equation is rearranged to:
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The spatial equations form two Sturm-Liouville problems. With
the BCs u(0,y) = 0 = u(L,y), we obtain the 15! Sturm-Liouville

problem:

" + po =0,

#(0)=0 and ¢(L)=0.

From before, this gives the eigenvalues and eigenfunctions:

m2m?

M = 7 and

Gm () = sin (L) .

If A\ — py, = v, then the 2"? Sturm-Liouville problem is:

¥(0)=0 and (H)=0.

From before, this gives the eigenvalues and eigenfunctions:

'+ vy =0,
2,2
U, = nHz and
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Un(y) = sin ("F*) .
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From above we see A\ = b + Vp = mi;ﬁ + ”;’;2 > 0, so the time
equation:
W'+ A?h =0,

has the solution
Romn (t) = ayn cos(cv/ Amnt) + by sin(cy/ Apnt).

The Product solution is

U (t) = <amn cos (c%t) + by SiD <CM7§>> sin (Z12) sin (“FY) .

The Superposition Principle gives

Nodal Curves

u(@,y,t) = i i (amn cos (ev/Amnt) + b sin (ev/Ant) ) sin (Z42) sin (“52)
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Nodal Curves Rectangular Membrane

From the ICs, we have
Nodal Curves

u(z,y,0) = a(z,y) = Z Zamn sin (22 sin (252 .

m=1n=1

Multiply by sin (sz) and integrate = € [0, L] and sin (“7%) and integrate
y € [0, H]. Orthogonality gives:

o= b [ [ ataen o

u(z,y,t)

)sm( ) dx dy.

Similarly,

ui(z,y,0) = Bz,y) = Zmenc Amn sin (™F2) sin (“F%) |

m=1n=1

u(z,y,t)

and orthogonality gives:

bimn = LHCW/ / B(z,y) sm( )Sln( )d:cdy -
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Helmholtz Equation:

Theorem

Vi +Ap=0 inR, : : ,
4. The eigenfunctions form a complete set, so if f(x,y) is
with piecewise smooth

ap+ Ve -n=0 on OR.

Generalizes to

f(Q:?y) ~ Zak(ﬁk(‘rvy)'
A
V- (3V6) + 4é + Ao = 0.

5. Eigenfunctions corresponding to different eigenvalues are

Theorem orthogonal

|

1. All eigenvalues are real. / b5, ba,0dR = 0 i M £ A
R

2. There exists infinitely many etgenvalues with a smallest, but no

l t et lue. : . . . ,
argest ewgenvaiue Different etgenfunctions belonging to the same eigenvalue can be

3. There may be many eigenfunctions corresponding to an made orthogonal by Gram-Schmidt process.
etgenvalue. S5O -
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Theorems for Eigenvalue Problems

Theorem

6. For o =1, an eigenvalue \ can be related to the eigenfunction
by the Rayleigh quotient:

— § ¢Vé-nds+ [[,|Ve]2dR
OR
JIr¢*dR

The boundary conditions often simplify the boundary integral.

A\ =

We use the Example for the vibrating rectangular membrane to
illustrate a number of the Theorem results above.
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Example (cont): We already demonstrated that:
© Real eigenvalues: The eigenvalues are clearly real.

© Ordering the eigenvalues: It is easy to see that there is the

lowest eigenvalue \; = (%)2 + (%)2 and that there is no

largest eigenvalue, as m or n — oo.
© Multiple eigenvalues: Suppose that L = 2H. It follows that

2

)\mn = E (m2 + 4n2) .

It is easy to see for m =4,n=1and m =2,n = 2,

572
Aq1 = Aoz = ﬁ
These solutions will oscillate with the same frequency. sDSO
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Example

Example: The Sturm-Liouville problem for the vibrating

rectangular membrane satisfies:
PDE: V2%¢p+ ¢ =0,

ICs:  ¢(0,y) =0,
é(x,0) =0,

We have already shown that this Helmholtz equation has
etgenvalues:

mi 2 n\ 2
mn — \ 1 - s =1,2,.. =1,2,...
A (L) +<H> m n

¢(L,y) =0,
o(x, H) =0.

with corresponding eigenfunctions:

Gmn(@,y) = sin (272 ) sin (74, m=12,... n=1,2,..
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Example (cont): We have:

@ Series of eigenfunctions: If f(z,y) is piecewise smooth, then

f(z,y) ~ Z Zamnsin (mrz) sin (272 .

m=1n=1

@ Convergence: As before, write the Error using a finite series

E://R (f—z/\:a,@,\)zdl%.

The approximation improves with increasing A, and we found
that the series ), ax¢ converges in the mean to f.
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Orthogonality Fourier Coefficients

Fourier Coefficients: Assume that f is piecewise smooth, so
Orthogonality: Assume A\ # Ao with eigenfunctions ¢, and ¢,,

and insert these into the equation: f(z,y) ~ Z axPa.-
A

V- (pVe) + a6 + rop = 0. Use the orthogonality relationship with respect to the weighting

Multiplying by the other eigenfunction and subtracting, we can write function o:
/ Dx, Pr,0dR =0, if A # Ao,
a, (V- (pVOr,)) — dr, (V- (V) = (A2 — A1)odx, P, - (5
then the Fourier coefficients satisfy
Use integration by parts over the entire region R and the [f for.0dR
homogeneous boundary conditions to give (more details next section): n Ai
ay, = ——5——=.
[f #3,0dR
/ (f))\lqﬁ)QUdR:O, if )\1 75/\2 R
R Note: If there is more than one eigenfunction associated with an
etgenvalue, then assume the eigenfunctions have been made
orthogonal by Gram-Schmidt. S0sa
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Green’s Formula Green’s Formula

Consider the PDE:
V2% + Ap =0 in R The previous result is integrated to give:
with BCs: // (uV?v —vV?u) dR = // V- (uVv —vVu)dR.
B1¢p+ B2Ve-n =0, on OR, R R

where £, and f3; are real functions in R. Apply the Divergence Theorem and obtain:

Basic product rule gives: Green’s Formula: Also, Green’s second identity:
2
V- (uVy) = uViv+Vu- Vo, // (uV?0 — vV2u) dR:jf (uVv — vVu) - 1 dS.
V-(wVu) = oViu+ Vo Vu. R OR

This identity is important in showing an operator is self-adjoint if

Subtracting gives: there are homogeneous BCs.

uVZiv — oV =V - (uVo — vVu).
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Self-Adjoint Operator Orthogonality

Orthogonality of Eigenfunctions: We use Green’s formula to
show orthogonality of eigenfunctions, ¢; and ¢s, corresponding to
Theorem (Self-Adjoint) different eigenvalues, \; and \s.

Let L = V2 be a linear operator:

If u and v are two functions such that Suppose with L = V?

]{ (uVv —vVu) -ndS =0, L] + M1 =0  and  L[g] + Xag2 = 0.
OR

If ¢1 and ¢ satisfy the same homogeneous BCss,

//R (uV?v —vV?u) dR = //R (uL[v] — vL[u]) dR = 0. | }gR(qslvqu — $2Vey) -0 dS =0,

then by Green’s formula:

then

Note: The above theorem is stated in 2D, but it equally applies to

3D by substituting double integrals with triple integrals and line / / I oL dR =0
integrals with surface integrals. R (91L10a] = 92L16n]) '
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Orthogonality Gram-Schmidt Process

Gram-Schmidt Process: Suppose that ¢1, ¢2, ..., ¢, are
independent eigenfunctions all corresponding to the eigenvalue, A
(a single e.v.).

// (Aod1bo — A1d1¢2) dR Let ¥1 = ¢1 be an eigenfunction.
" Any linear combination of etgenfunctions is also an eigenfunction,

()\2 —)q)//R ¢1¢2dR = 0. so take

However,

//R (¢1L]p2] — p2L[¢1]) dR

o = ¢ + 1.
So for As # A1, the eigenfunctions are orthogonal: We want
zpz/JdR:O://dJ P2 + c1 )dR,
// b1 adR = 0. //R e V102 edn)
R

so choose

_ ffR ¢27/JldR

JIgvidR
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Gram-Schmidt Process Gram-Schmidt Process

Gram-Schmidt Process: Continuing take

3 = ¢3 + c191 + catha.

Gram-Schmidt Process: In general,
AR
[l (i )om = o = ;- Z fﬁjﬁw .
//R(¢3 + 191 + cath) ( Z; )dR = 0

It follows that

‘We want

Thus, we can always obtain an orthogonal set of eigenfunctions.

ffR ¢3¢1dR
JIpvidR

ffR ¢3¢2dR

d c=-— .
e [ v3dR

Cl1 = —
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