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Heat Equation Derivation
Temperature and Heat Equation

Heat Conduction in a One-Dimensional Rod

Heat in a Rod: Consider a rod of length L with cross-sectional area
A, which is perfectly insulated on its lateral surface.

Below is a diagram of this rod
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We examine the heat transfer through a small slice of the rod
@ Define e(x,t) = thermal energy density
@ Heat energy in the small slice = e(z,t)AAx

@ Define ¢(z,t) = heat fluxz (amount of thermal energy per unit
time flowing to the right per unit surface area)
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Heat Equation Derivation
Temperature and Heat Equation

Heat Conduction in a One-Dimensional Rod

Conservation of Heat Energy: With insulated lateral edges, the
basic conservation equation for heat in our small slice satisfies

Rate of change Heat energy flowing Heat energy
of heat energy = across boundaries +  generated inside
in time per unit time per unit time

The rate of change of heat energy satisfies

5}
e (e(z,t)AAx)

The heat flux across the boundaries satisfies
Oz, t)A — p(z + Ax,t)A

(heat entering on left and leaving on right)
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Heat Equation Derivation
Temperature and Heat Equation

Heat Conduction in a One-Dimensional Rod

Heat sources/sinks: Define Q(z,t) = heat energy per unit
volume generated per unit time, accounting for any sources or
sinks of heat inside the thin rod

Conservation of heat energy (thin slice) combining elements
above:

2 (e(€1,)AAT) = 6(a, DA — 6(z + Az, ) A + Q6. D AAT,

where by the Intermediate Value Theorem assuming continuity of
both e(x,t) and Q(x,t), there are &1, &2 € (x,x + Az) providing
equality above.

Rearranging we have

de(1,t)  o(w,t) — dp(x + A, t)
ot o Az + Q(§27 t)u
which by taking the limit as Az — 0 gives
de(x,t) _ 0¢(z,t)
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Heat Equation Derivation
Temperature and Heat Equation

Alternate Integral Derivation

Alternate Integral Derivation: Use the conservation of heat
energy on any interval [a, b], then

d

b b
a/a e(z, t)dx = ¢(a,t) — ¢(b,t) —|—/a Q(z, t)dt.

However, by Leibnitz’s rule of differentiation of an integral and
the Fundamental Theorem of Calculus, we have

d [ o )
g/a e(x,t)da::/a % and (b(a,t)—qb(b,t):—/a %dx

It follows that for any interval [a, b]

/ab <ae(awt, t) n 8¢éz, t) Q(f”vt)> dr— 0,

so the integrand is zero, giving the same equation as before. SDSO
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Heat Equation Derivation
Temperature and Heat Equation

Heat and Temperature

Temperature and Specific heat: Define u(x,t) as the temperature
of a material and ¢(z) as the specific heat of a material (the heat
energy required to raise a unit mass of a material a unit of
temperature)

Mass density: Define p(x) as the mass density (per unit volume)

Thermal energy: From the definitions above, we have

e(a,t) = efa)p(x)ule, 1)

Fourier’s Law: Heat flows proportional to the negative gradient of
the temperature (hot to cold) or

ou(zx,t)

Bl 1) = —Kola) =5
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Heat Equation Derivation
Temperature and Heat Equation

Heat Equation

From the heat conduction equation

de(x,t)  0¢(x,t)
o  ox

+ Q(z, 1),
we obtain the heat equation

oot = 2 ((Ka() 2520 ) 4 Qo)

If the material in the rod is consistent, ¢(z), p(z), and Ky(x) are
constant. Also, if there are no sources or sinks, Q(z,t) = 0. Then the
heat equation has the form:

ou _
ot ox2’

where k = Ko/ (cp) is the thermal diffusivity.
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Heat Equation Derivation
Temperature and Heat Equation

Heat Equation

The first PDE that we’ll solve is the heat equation

ou_ o
ot ox2’

This linear PDE has a domain ¢ > 0 and = € (0, L).
In order to solve, we need initial conditions

u(z,0) = f(z),
and boundary conditions (linear)
@ Dirichlet or prescribed: e.g., u(0,t) = uo(t)
@ Neumann: Insulated: e.g., u,(0,t) =0

@ Neumann: Prescribed flux: e.g., —Kou,(0,t) = ¢(t)

Robin or mixed: e.g., Newton’s cooling:
Koug(0,1) = H(u(0,t) — up(t)) SDSU
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Dirichlet
Heat Equation Equilibrium Insulated

Heat Equation Equilibrium

Consider the heat equation:

o _ o
ot ox2’

with the initial condition and Dirichlet boundary conditions

u(z,0) = f(z), u(0,t) =T1(t) and wu(L,t) =Ta(t).

Suppose that the boundary conditions (BCs) are constant, T3 (t) = Ty
and T2 (t) = TQ.

Examine the steady-state or equilibrium solution, which implies
that
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Dirichlet
Heat Equation Equilibrium Insulated

Heat Equation Equilibrium

The equilibrium heat equation (ODE) problem reduces to

di“—o ith u(0) =T d w(l)=T
dl‘2_ W U =11 an U = 19.

The solution of the ODE is
u(z) = 12 + co.

Since u(0) = Ty, we have ¢y = T7.

Also, u(L) = Ty implies To = ¢y L + T} or ¢; = %, giving the
solution 7T
u(z) = =2 z Lo+ Ty
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Dirichlet
Heat Equation Equilibrium Insulated

Heat Equation Equilibrium

The equilibrium solution for the heat equation with fixed
temperatures at each end is
T —T

u(z) = —7 +T.

Thus, the temperature equilibrates to a linear function connecting the
two end temperatures

T,

T
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Dirichlet
Heat Equation Equilibrium Insulated

Heat Equation Equilibrium — Insulated

Consider the heat equation with the initial condition and
Neumann boundary conditions:

ou 0*u
i k@, u(z,0) = f(x), ug(0,2) =0 and wy(L,t) =0.

As before, the equilibrium problem is

d?u

== 0 with »'(0)=0 and u'(L)=0.

The general solution of the ODE is

u(z) = c1x + co.

But u’(z) = ¢1, so either BC implies ¢; = 0.

The BC gives no information about ¢y SDST

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) Heat Conduction — (13/14)



Dirichlet
Heat Equation Equilibrium Insulated

Heat Equation Equilibrium — Insulated

From above the ODE has the solution
u(x) = co.

So what is ¢3?

Since the lateral sides and the ends are tnsulated, then the thermal
energy is conserved

d [* o du
a/o cpu(x)dx __K08 (0, t)—i—Ko8 (L,t) = 0.

The initial thermal energy is

L L L
cp/ f(z)dx = cp/ u(z)dx = cp/ codx = cpLcy.
0 0 0

It follows that
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