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Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Heat Equation on Semi-Infinite Domains

Consider the PDE for the heat equation on a semi-infinite domain:
ou  0%u
ot 0z’

with the BC and IC:

t>0, x>0,

u(0,t) =0 and u(z,0) = f(x),
where we assume f(z) — 0 as © — oo.

We employ the separation of variables, u(x,t) = h(t)¢(x), where
the Sturm-Liouville problem is

¢ + Ao =0, »(0) =0 and li)m |p(2)] < 0.

The solution to the SL-Problem is:

d(x) = ¢1 sin(wx), where w = V.
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Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Heat Equation on Semi-Infinite Domains
The ODE in t is b’ = —kw?h, which has the solution

h(t) =c ekt

Thus, the product solution becomes

uy(x,t) = A(w) sin(wx)e_k‘*’Qt, w > 0.

The superposition principle gives the solution:
o0 2
u(z,t) = / A(w) sin(wz)e ™ " duw,
0

where -
= A i d
f(z) /0 (w) sin(wz) dw,
and

Alw) = 721_/000 f(z) sin(wz)dz.
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Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Fourier Sine Transform

From the Fourier transforms with complex exponentials, we have the Fourier
pair:

f@ = 2 [ Peer s,

=
£
I

v [ ;

o / f(x)e* " du, for any 7.
T J—oo

If f(z) is odd (choose an odd extension),

Flw) = % /jo f(x) (cos(wz) + isin(wz)) dz,

= 227'—7,: /000 f(x) sin(wz) da.

Note F(w) is an odd function of w, so

1 [ -
flz) = " /_oo F(w) (cos(wzx) — isin(wz)) dw,

23 [
= 7—1/ F(w) sin(wz) dw,
7 Jo
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Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Fourier Sine and Cosine Transforms

For convenience, take —=t = 1, so for f(x) odd we obtain the Fourier
sine transform pair:

flx) = /O°° F(w)sin(wz)dw = S™HF(w)],

=
£
[

i/ooo f(z)sin(wz)dx = S[f(x)].

Note that some like to have symmetry and have a coefficient in front
of the integrals as 1/2/m.

If f(x) is even, then we obtain the Fourier cosine transform pair:

=
8

N~—
[

/ F(w)cos(wz)dw = CHF(w)],

3
£
I

/ f(@)cos(wa)dz = Clf()].

Joseph M. Mahaffy, (jmahaffyOmail.sdsu.edu) PDEs - Fourier Transforms C — (6/37)



Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Differentiation Rules for Sine and Cosine Transforms

Assume that both f(z) and 3—f(x) are continuous and both are vanishing for large
T
z, i.e., limg oo f(z) = 0 and limz— oo %(:1:) =0.

Use integration by parts to find the transforms of the first derivatives:

C [%] _ %/OOO %cos(wx) dr = %f(a:) cos(wx) :o + 270-’ /000 f(z) sin(wz) dz,
and
2 [ 2 2 o0
S [%] = ;/0 % sin(wz) dz = ;f(x) sin(wx) . — %/O f(z) cos(wz) dz.

It follows that 9
ClE]=-Zr0) +wslf]

and

S [4£] = -welf.

Note that these formulas imply that if the PDE has any first partial w.r.t. the
potential transformed variable, then Fourier sine or Fourier cosine transformsm
won’t work.
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Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Differentiation Rules for Sine and Cosine Transforms

From the pair, )
C &) = =50 +wslf]

and

s [4] = —wets),
we can readily obtain the transforms of the second derivatives:
O[] = -240) +ws [L] = -2 &) - L)
and . {ﬁ} ol 2 ,
TH = w0 [£] = Zwi o) - S1A)
Note: When solving a PDE (with second partials), then either

£(0) must be known and Fourier sine transforms are used
af . .
or 5-(0) must be known and Fourier cosine transforms are used. sDSO
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

Consider the PDE for the heat equation on a semi-infinite domain:
ou_ ot
ot 0z’

with the BC and IC:

t>0, x>0,

w(0,6)=g(t)  and  u(z,0) = f(x).
Since the BC is nonhomogeneous, the technique of separation of

variables does NOT apply.

Since we know u at z = 0, we want to apply the Fourier sine
transform to the PDE.
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

For the nonhomogeneous equation
ou k82u
ot 0z’

we apply the Fourier sine transform:

t>0, x>0,

U(w,t) = 2 /000 u(z, t) sin(wz) dz,

™

which gives the ODE in U

ou (2 -
N =k (ng(t)—w U).

The Fourier sine transform of the initial condition is:

U(w,0) = i/ooo f(z) sin(wzx) dz.
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Heat Equation on Semi-Infinite Domain

Applications Lapla

Heat Equation on Semi-Infinite Domain

The ODE is linear and can be written:
oU P— k
_— = — t
o + kw<U - q(t),

which is readily solved to give:

_ _ 2kw [*
U(w,t) =U(w, O)efk“% + i/ efl“ﬂ(t*s)g(s) ds.
T Jo

This problem is readily solved with programs similar to the ones
shown earlier.

With specific ICs, f(z), and BCs, g(t), the integrals can be formed,
then numerically computed.
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Heat Equation on Semi-Infinite Domain
/= 3 D atic
Applications Wave Equation

Laplace’s Equation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

As a specific example, we choose to numerically show the solution
with

u(z,0) = f(x) =0, and u(0,t) = g(t) = e~

The Fourier sine transform satisfies:

_ _ 2kw [t
Ulw,t) = Ulw,0)e e 4 22 / e =g (s) ds,
T Jo
—kw?t —at
2k‘ e — €
Gy < ()

It follows that

u(z,t) = /000 U(w, t) sin(wr) dw.
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Heat Equation on Semi-Infinite Domain
Wave Equation
Laplace’s Equation on Semi-Infinite Strip

Applications

Heat Equation on Semi-Infinite Domain

Enter the Maple commands for the graph of u(z,t)

u := (x,t) -> (2/Pi)*(int (wk(exp(-w"2*t)-exp(-0.1%t))*sin(wxx)/
(0.1-w"2), w = 0..50));
plot3d(u(x,t), x = 0..10, t = 0 2M-

The IC is

f(z)=0.

The BC is

g(t) — e*O.lt.

This graph shows the
diffusion of the [
heat with time. : ! 5D

-~
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

In both Maple and MatLab, the integral over w is truncated at 50.
The figure below shows that this creates some oscillations.

1 % Solution Heat Equation with FT
2 $ f(x) =0, u(0,t) = e”(-t)
3 N1 = 201; N2 = 201;
4 tv = linspace(0,20,N1);
5 xv = linspace(0,10,N2);
6 [tl,x1] = ndgrid(tv,xv);
7 £ = Q(w,c) (2+xw/pi).*(exp(-c(l)*w."2)—...
8 exp(-0.1xc(1)))./(0.1-w."2);
9 for i = 1:N1
10 for 3 = 1:N2
11 c = [tl(i,]3),x1(i,3)]1;
12 Uu(i,j) =
integral (@ (w) £f(w,c) .*xsin(w*xc(2)),0,50);
13 end

14 end m
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Heat Equation on Semi-Infinite Domain
Wave Equation
Laplace’s Equation on Semi-Infinit

Applications

Heat Equation on Semi-Infinite Domain

16 set (gca, 'FontSize', [12]);
17 surf(tl,x1,0);

18 shading interp

19 colormap (jet)

20 view ([100 15])
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinit

Wave Equation

Consider the wave equation on an infinite domain:

@—02@ —o<r<oo, t>0
o2 9z?’ ’ ’
with the ICs:
ou
u(z,0) = f(z) and a(xvo) =0,

where the latter IC is to simplify the problem.

The Fourier transform pair satisfies:

_ 1 [ .
U(w,t) = o u(z,t)e’™ " dx,
T — 00

0 J— .
u(z,t) = / U(w,t)e™" dw.

Joseph M. Mahaffy, (jmahaffyOmail.sdsu.edu) PDESs - Fourier Transforms C — (16/37)



Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Wave Equation

From the differentiation rules, we have

U 2 277
W = c"w U,
where the ICs give
Uw0) = o [ f@e=a
w, = w ) x)e T,
oU(w,0) 0
ot -

The general solution becomes:

U(w,t) = A(w) cos(cwt) + B(w) sin(cwt).

The IC with the velocity being zero gives B(w) = 0. SDST

Joseph M. Mahaffy, (jmahaffyOmail.sdsu.edu) PDESs - Fourier Transforms C — (17/37)



Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Wave Equation

The #nitial position gives:
— 1 o0 .
AW =T(w,0) = 5 / F@)e da.
T J_—co

The tnverse Fourier transform satisfies:

u(z,t) = /OO U(w,0) cos(cwt)e™ ™" dw.

—00

eicwt +e—icwt

Euler’s formula gives cos(cwt) = 5 , SO
oo —iw(z—ct) —iw(z+ct)
u(z,t) = / U(w,0) {e ;re dw.
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Wave Equation

Since ~
f(x) :/ U(w,0)e” ™% dw,
—00
we have
oo —iw(z—ct) —iw(z+ct)
u(z,t) = / U(w,0) {e —;—e dw,

u(z,t) = [f(x —ct)+ f(z + ct)].

1
2
It follows that the #nitial position breaks into 2 traveling waves
with velocity ¢ in opposite directions.

This solution is also obtained using D’Alembert’s method.
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

Consider Laplace’s equation on a semi-infinite strip:
%u  O%u

:ﬁ+87yg:0, O<z<L, y>0.

V3u
with BCs:
u(0,y) =g1(y),  u(L,y)=g2(y),  u(x,0)= f(x).

Divide the problem into
VQ’U,l = O7

Uy Uy )

g1
197
0

with homogeneous BC
on the bottom.

Second problem is

VQ’U,Q = O,

with homogeneous BC's on the sides.
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

Consider Laplace’s equation
Vuy =0, O<z<L, y>0,
with BCs:
u2(0,y) =0, wus(L,y) =0, and wux(z,0)= f(z).

Separation of variables with u(x,y) = ¢(x)h(y) gives

¢// B I B - B
Pl -, #(0)=0 and ¢(L)=0.

The Sturm-Liouville problem is
¢"+Ap=0, ¢(0)=0 and ¢(L)=0,

so the eigenvalues and eigenfunctions are

n?n?

Ap = 72
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

The other ODE is A" — A\,h = 0, which has the solution:

hn(y) = cle*% + CQ@”T

For the h,(y) to be bounded as y — oo, then ¢y = 0.

The superposition principle gives

nmy

oo
us(z,y) = Z apsin (272) e” o
n=1

The lower BC, u(z,0) = f(z) gives

where
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

The second Laplace’s problem is:
Vu; =0, 0O<xz<L, y>0,
with BCs:

u1(0,y) = g1(y), wui(L,y) =ga2(y), and wui(z,0)=0.

Separation of variables for this case gives

h(y) = 1 cos(wy) + c2 sin(wy), for w>0.

The homogeneous BC at y = 0 gives ¢; = 0, suggesting that we use
the Fourier sine transform.

SDSO
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on on Semi-Infinite Domain
Wave Eq ion

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

The Fourier sine transform pair is:

up(z,y) = /000 Uy (z,w) sin(wy) dw,
Ui(z,w) = i/ooo up(x, y) sin(wy) dy.

Recall o2
Ul 2
S {3312} = ;wul(x,()) — w?S[uy].

Laplace’s equation becomes:

0?U,
o2

— w2U1 = O7

which is easily solved. SDST
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

It is convenient to take the solution of the form:

Ui(z,w) = a(w) sinh(wx) + b(w) sinh(w(L — x)).
The BCs give:

— ) I

U1(0,w) = b(w)sinh(wLl) = f/ 91(y) sin(wy) dy,
T Jo

— 2 o0

Ui(L,w) = a(w)sinh(wl) = 7/ 92(y) sin(wy) dy,
T Jo

so we can readily find a(w) and b(w),

2 > .
a(w) = m/{; g2(y)sin(wy)dy and b(w) = sinh( wL) / y) sin(wy) dy.

SDSJT
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Wa “quatio

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

— =0, O<z<2, y>0.

with BCs:

2, y < 5,

u(0,y) = e Ysin(y), u(2,y) = { 0. y>5 u(z,0) = x.

This problem is broken into the 2 problems with either a
homogeneous end condition or homogeneous side conditions, then the
2 solutions are added together.

We provide the details to produce a temperature profile for this
problem, using the previous work.
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on on Semi-Infinite Domain

Te D
Applications Wave Eq ion

Laplace’s Equation on a Semi-Infinite Strip

Laplace’s Equation on Semi-Infinite Strip

When the two sides are homogeneous,
Vuy =0, 0<z<2 y>0,

with BCs:

u2(0,y) =0, wu2(2,y) =0, and ws(z,0)==zx.

From before, the solution is:

nwy

oo
’U/Q('ra y) = Z Qn sin (%) € Ta
n=1
where using Maple, we find:

2
an :/ T sin (%) dr =
0

4(71)n+1
nw
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Heat Eqt on on Semi-Infinite Domain
Wave Eq ion
Laplace’s Equation on Semi-Infinite Strip

Applications

Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for us(z,y)
using 100 terms in the series is shown below.
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Equation on Semi-Infinite Domain
> Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

1 % Solution Laplace's equation - semi-infinite strip
2 N1 = 201; N2 = 201; M = 100;
3 xv = linspace(0,2,N1);
4 yv = linspace(0,10,N2);
5 [x1,yl] = ndgrid(xv,yv);
6 for i = 1:N1
7 for 3 = 1:N2
8 c = [x1(i,3),y1(i,3)1;
9 U2(i,3) = 0;
10 for k = 1:M
11 U2(i,3) = U2(i,3) +
(4% (=1) " (k+1) / (k*pi)) ...
12 *sin(kxpixc (1) /2) «exp (-k*xpixc(2)/2);
13 end
14 end
15 end
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Applications Laplace’s E

Laplace’s Equation on a Semi-Infinite Strip

Laplace’s problem for uj(x,y) is:
Vu; =0, 0<z<2 y>0,
with BCs:

2, y < 5,

u1(0,y) = e Ysin(y), ui(2,y) = { 0 y>5 up(x,0) = 0.

From before, the Fourier transform solution satisfies:

ui(z,y) = /000 Uy (z,w) sin(wy) dw,

where

Ui(z,w) = a(w) sinh(wz) + b(w) sinh(w(2 — x)).
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Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

Once again Maple is used to find the coefficients a(w) and b(w):

2 o
alw) = W/o 2sin(wy) dy,

7 sinh
4(1 — cos(5w))
7w sinh(2w)

)

and

2

blw) = WT(QW) /000 e Y sin(y) sin(wy) dy,

4w
(w2 — 2w + 2)(w? + 2w + 2) sinh(2w)
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Heat Equation on Semi-Infinite Domain
Wave Equation
Laplace’s Equation on Semi-Infinite Strip

Applications

Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for uy,(z,y)
integrating on w € [0, 100], where this only accounts for the BC at
z =2 (b(w) = 0), is shown below.
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Semi-Infinite Domain

Jave E
Applications Wave Equation

Laplace’s Equation on a Semi-Infinite Strip

Below is the MatLab for the first part of uy(z,y)

Laplace’s Equation on Semi-Infinite Strip

32 wmax = 100;
33 £ =0(w,c)

34 ./ (pi*w.*sinh (2*w));

35 for i = 1:N1

36 for 3 = 1:N2

37 c = [x1(i,3),y1(i,3)1;

38 Ula(i, j) = integral(@(w)f (w,c),0,wmax);
39 end

40 end

41 surf (x1l,y1l,Ula);
42 shading interp
43 colormap (jet)

4x (1l-cos (5*w)) .*xsinh (c (1) *w) .*sin(c(2) *w) ...
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Heat Equation on Semi-Infinite Domain
Wave Equation
Laplace’s Equation on Semi-Infinite Strip

Applications

Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for ui(z,y)
integrating on w € [0, 100], where this only accounts for the BC at
2z =0 (a(w) = 0), is shown below.

0.3

uip(,y)
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Laplace’s Equation on a Semi-Infinite Strip

Below is the MatLab for the second part of u;(x,y)

55 wmax = 100;

56 f = @(w,c) 4*w.*sinh ((2-c(1l))*w) .*sin(c(2)*w) ...
57 L (plx(w. " 2-2%w+2) . x (W. " 242*w+2) .xsinh (2xw) ) ;
58 for i = 1:N1

59 for j = 1:N2

60 c = [x1(i,3),y1(i,3)];

61 Ulb (i, j) = integral (@ (w)f(w,c),0,wmnax);
62 end

63 end

64 surf(xl,yl,Ulb);

65 shading interp

66 colormap (Jjet)
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Applications

Laplace’s Equation on a Semi-Infinite Strip

Combining all the results above, the steady-state temperature
temperature profile for u(z,y) with the limits on number of terms in
the series and the wave numbers w in the integral is shown below.
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Heat Equation on Semi-Infinite Domain

Jave E -
Applications Wave Equation

Laplace’s Equation on a Semi-Infinite Strip

Laplace’s Equation on Semi-Infinite Strip

Below is the MatLab for the complete steady-state temperature
profile u(x,y)

79
80
81
82
83
84
85

for i = 1:N1
for 3 = 1:N2
U(i,j) = U2(i,j)+Ula(i, j)+Ulb(i, J);
end
end
surf(x1l,y1l,U0);
shading interp
colormap (jet)

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) PDESs - Fourier Transforms C

— (87/37)



	
	Fourier Sine and Cosine Transforms
	Definitions
	Differentiation Rules

	Applications
	Heat Equation on Semi-Infinite Domain
	Wave Equation
	Laplace's Equation on Semi-Infinite Strip


