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More on Bessel Functions

More on Bessel Functions

Bessel’s Equation can be written:

d2¢__<1 m2>¢ 1d¢

dz2
which can be compared to the damped-spring-mass system:

d?y L dy
— = —ky —c—.
e Y=

@ Bessel’s equation behaves like a time-varying frictional force
(c ~ 1/t) that gets weaker with time (less than exponential
decay).

© Bessel’s equation behaves like a restoring force (k ~ (1 —m?/z?))

approaches constant oscillation.
SDSO
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More on Bessel Functions

More on Bessel Functions

Asymptotic Behavior of Bessel’s Equation

Small z
Jo(z) ~ 1 Yo(2) = 21In(2)
Ji(z) = 32 Yi(z) = =221
Jo(z) ~ §22 Ya(z) ~ —2272

2
In(2) = Ecos(z—%—%)
2 ™ mm
Yi(2) = —Wzsm(z—z— 1)

The zeroes are asymptotically separated by .
PDESs - Higher Dimensions
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Laplace’s Equation - Cylinder Pr(:)blt:anl l & 2 - BO“,:O!“,& Top lr\lronholnogeneou
Problem 3 - e Nonhomogeneous

Modified Bessel Functions

Vibrating Circular Membrane

Laplace’s Equation - Cylinder: The PDE satisfies:

V2 19 ( 8u) 1 0%u  0%u
u

=== (r= —Z 4+ "0
ror \ or r2 862 + 022
BC: Bottom
u(r,0,0) = a(r,0), P
BC: Top
u(r,0, H) = B(r,0),
BC: Side = o
; 2u=0
u(a,0,2) = (6, 2). < !
Il
BC: Implicit (Homogeneous) =
Periodic in 6 and |
Bounded r — 0. ~—
Break the problem into u=alr,0)

3 problems each with

2 homogeneous conditions.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) PDESs - Higher Dimensions

— (5/41)



Problem 1 & 2 - Bottom & Top Nonhomogeneous
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

Problem 1: Let the Top and Side be homogeneous with only the
nonhomogeneous condition:

u1(r,6,0) = a(r,0).

The boundedness as r — 0 and periodicity in the 6 direction provides
the other homogeneous conditions.

Use Separation of Variables in Laplace’s Equation with:

ui(r,0,2) = ¢(r)g(0)h(z),

SO
ghd [ do\ ohdg  dh
(rdr T T2 =0
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Problem 1 & 2 - Bottom & Top Nonhomogeneous
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

Separation of Variables gives

1 d do 1 d?g n"
——(r—= )+ - =—==-\,
r¢ dr \_ dr r2g d6>? h
which gives the z-equation:
h'—Xh=0.

Multiply by 72 and rearrange to obtain:

d d 1
e (7“¢> +)\r2:—g—:u, or g" +ng=0.
dr g
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Problem 1 & 2 - Bottom & Top Nonhomogeneous
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

1%t Sturm-Liouville Problem is:
9" +ng=0,  with g(—m)=g(r) and g'(-7)=g'(n).

As seen before, this problem has eigenvalues, i, = m?,

m =0,1,2,... and corresponding eigenfunctions:

go(0) = ap and ¢, (0) = am, cos(mb) + by, sin(ma).
27d Sturm-Liouville Problem is:

d [ d 2
dr <7"df> + <Ar - T:) ¢ =0, with ¢(a) =0 and [p(0)] < oo,

which is Bessel’s equation of order m.
SDSO
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Problem 1 & 2 - Bottom & Top Nonhomogeneous
Problem 3 - e Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

The 2% Sturm-Liouville Problem in r has the general solution:

o(r)=c1dm (ﬁr) 4+ oY (ﬁr) )

Since |¢(0)] < oo, we have ¢z = 0. The other homogeneous BC

gives:
ola) = c1dm <Ma> =0.

As seen before, this has eigenvalues and eigenfunctions;

Zmn>2
b
a

Mo = ( Srn () = Jm(zmnr/a), m=0,1,2,... n=1,2,..,

where 2,,,, is the n'" zero satisfying J,,, (2mn) = 0.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) PDESs - Higher Dimensions — (9/41)



Problem 1 & 2 - Bottom & Top Nonhomogeneous
Problem 3 de Nonhomogeneous
Modified B 1 Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

With A\, > 0, we solve
A’ —Ah =0,

to obtain

h(z) = di cosh (M(H - z)) + do sinh (M(H - z)) .

However, h(H) = 0, so di = 0 or h(z) = sinh (v Amn(H — 2)).

We apply the superposition principle to obtain wuy:

Ul(rvevz) =

M3

AonJo (\/ET) sinh (\/E(H — z)) +

3
Il
-

i ( ymn c0s(m0) + Bmn sm(m9)>

=1

( /\mnr) sinh (\/E(H — z)) .

NE

m=1

5
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e . . R Problem 1 & 2 - Bottom & Top Nonhomogeneous
Laplace’s Equation - Cylinder Problem 3 de Nonhomogeneous
Modified B 1 Functions

Laplace’s Equation - Cylinder

Fourier coefficients are found with the nonhomogeneous BC:

>

AonJo (\/ET) sinh (mH) +

ui(r,0,0) = a(r,8) =

3
Il
—

i ( mn c0s(mB) + Bmn sm(m9)>

1n=1

( )\mnr) sinh (MH) .

Mz

m

)

With orthogonality, we find

N ST o a(r,0)Jo (VAonT) v dr df
on = oot (VAonH) [&I2 (VXonr) rdr’

and
" fﬂ Jo! a(r, 0) cos(m) Jm (v Amnr) v dr do
mn 7 sinh (\/ mnH) fo J2, (\/)\mnr) rdr SDST
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Problem 1 & 2 - Bottom & Top Nonhomogeneous
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

and

f’r fo a(r, 0) sin(m0)Jm, (\/)\mnr) rdrdf
7 sinh (\/)\mnH) fo J2, (\/)\mnr) rdr

an

It is easy to see that almost identical computations hold for us where
the nonhomogeneous BC is the top, us(r,0, H) = B(r,0).

The 2 Sturm-Liouville problems are identical to the ones for uq,
so the only difference is solving the z-dependent equation:

W' = Amnh =0,  with h(0) =

This has the solution:

h(z) = ¢ sinh (m,z) .
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Problem 1 & 2 - Bottom & Top Nonhomogeneous
Problem 3 de Nonhomogeneous
Modified B 1 Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

It follows that

NE

u2(T7972) =

ConJo (\/E’I‘) sinh (\/Ez) +

')

3
I
b

8

(C’mn cos(m@) + Dmn sin(m@)) Jm (\/Er) sinh (MZ) .

m=1n=1

The Fourier coefficients from the condition 3(r, 0) are:

S22 Jo B(r,0)Jo (VAonr) v drdf

Con = ,
0 2r sinh (VAon H) [y J§ (VXonr) 7 dr
and
o f7r fO (r 9 cos(m@)Jm ( )\mnT) rdrdf
o 7 sinh (\/ H) fO m (mr) rdr
and
D 7 S B(r,0) sin(m8) Jr (VAmnar) T dr df

msinh (VAmn H) [3 J2, (VAmnr) Tdr SDST
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Problem 1 & 2 - Bottom & Top Nonhomogeneou
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

The cylinder problem for us, where the nonhomogeneous BC is
the side, us(a, 8, z) = v(0, z), must be handled differently.

With the side nonhomogeneous, the r-dependent equation can no
longer be one of the 2 Sturm-Liouville problems.

The separation of variables for uz(r,0,z) = ¢(r)g(0)h(z) gives:

1 d [ do 1 d?%g h"
— [ r— + —_—— = —— = )\
r¢dr \ dr r2g df? h

Now the 1*% Sturm-Liouville problem is:

B'4+Ah=0, with h(0)=0 and A(H)=0.

From before, this has the eigenvalues and eigenfunctions:

n2772 77,71'23)

A=l with  hn(z) =sin (7

H? SDSO
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Problem 1 & 2 - Bottom & Top Nonhomogeneou
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

Multiplying by r? and rearranging the separation equation gives:
d /!
- <Tdi)> —)\n’/‘2=—%=,u, or g’ +pg=0.

The 2% Sturm-Liouville Problem is now:

g +pg=0,  with g(—m)=g(r) and g¢'(—m)=g'(r),

which as before has eigenvalues, ji,,, = m?, m =0,1,2,... and
corresponding etgenfunctions:

go(0) = a9 and g, (0) = a,, cos(mb) + by, sin(m8).
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Problem 1 & 2 - Bottom & Top Nonhomogeneou
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

Returning to the separation equation, we obtain the 3" ODE,
which is given by:

2,2 2
dr<(cil(f> <nH7; +m>¢’—07 with  |¢(0)] < oo,

which because of the sign is not Bessel’s equation.

Let z = 2Zr, then the 3" ODE can be written:

d2¢ d(b 2, 2
which is known as Inodlfied Bessel’s equation.

This has the solution:
¢(r) = c1 K (F7) + el (577) -

The condition that |¢(0)| < co implies that ¢; = 0, as K,,(z) — oo as
z — 0. (I (z) behaves as 2™ as z — 0.)
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Problem 1 & 2 - Bottom & Top Nonhomogeneou
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder

The superposition principle gives

us(r,0,z) = ZEonlo )s1n(’}}'z)+

Z Z (Emn cos(mB) + Fmn sin(mG)) I (%) sin (%7 2) .

m=1n=1
The Fourier coefficients from the condition (6, z) are:

f fo 7(0, z) sin (47 2) dz do

Eon = )
0 wHIo (%% a)
and
= 27 fo (0, ) cos(m0) sin (%F z) dz df
e THIm (%Ea) ’
and
" 2" fo (6, z) sin(m0) sin (ZF z) dz df

mHIm (" a) ' SDSU
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Problem 1 & 2 - Bottom & Top Nonhomogeneou
Problem 3 - Side Nonhomogeneous

Modified Bessel Functions

Laplace’s Equation - Cylinder

Modified Bessel Functions

Modified Bessel’s functions satisfy:

72 1

2 d°¢ ¢ 2 2
etz — (2" +m)p =0,
We could write this equation:

d?¢ 1d¢ m?
oYy __-Z¥ 14
dz? zdz+(+z2>¢’
which for large z gives:
d*¢
a2~
This differential equation has solutions, like e and e™".

In fact, it can be shown that only one linearly independent
solution decays as z — oo, and we define this solution:

mTe *
Km(2) ~ \/;z1/2' SDSO
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Laplace’s Equatio Cvylinder Problem 1 & 2 - Bottom & Top Nonhomogeneou
P S mquatlion - LyHnder Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Modified Bessel Functions

However, K,,(z) is singular as z — 0, and it can be shown that

In(z), m =0,
Sm—-1)1(32)"", m # 0.

So significantly, K,,(z) decays exponentially as z — oo, but is

singular as z — 0.

The Modified Bessel Function is uniquely defined such that
1

Im(2) ~ — (32",

m\Z) ~

as z — 0.
However, as z — oo, it is a linear combination of the independent
solutions, which behave like

PDESs - Higher Dimensions — (19/41)
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Problem 1 & 2 - Bottom & Top Nonhomogeneou
Problem 3 - Side Nonhomo ous
Modified Bessel Functions

Laplace’s Equation - Cylinder

Modified Bessel Functions

So significantly, I,,,(z) grows exponentially as z — oo, but is
well-behaved at z = 0. Below is the graph of some of the modified
Bessel functions.

2
3

Iy(2)

Ii(z)
1.5- B
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ociated Legendre Polynomials
. . Polynomials
Spherical Problems and Legendre Polynomials 1l DigmmelEe P

Spherical Problems

The Heat or Wave equations:

8u_ 2 _ 292
a—kVu or at2—cVu,

can use the separation of variables u(p,0,¢,t) = w(p, 0, d)h(t) to
obtain either

W_NVw Ve
kh  w 2h w7

Thus, we have the time-equation:

K +Xkh=0 or B+ M?h = 0.

The space-equation is:

V2w 4+ \w = 0. SDST
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Associated Legendre Polynomials
Polynomials

Spherical Problems and Legendre Polynomials el DimEmrEe el

Spherical Problems

In spherical coordinates the spatial problem is

1 0 ([ ,0w 1 0 1 9%w
——(p =+ — 51nq5 —_— + Aw = 0.
p2 Op ap p?sing 9¢ 8(;5 p sin? ¢ 902

Once again we separate variables with w(p,0,¢) = f(p)q(0)g(¢)
and multiply p?/(fqg), then the spatial equation becomes:

1d [ df 5 1 d(, dg) 1 d%g
— Ap° = — —_ - ——— = U.
Fdp (p dp>+ P genods a5 ) T Zemzgaee M

The p-equation is

d [ ,d
P (,02dj:)> + (X =) f=0,

which is almost Bessel’s equation.
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Associated Legendre Polynomials
) . > Polynomials
Spherical Problems and Legendre Polynomials el DimEmrEe el

Spherical Problems

After removing the p-equation, the 6 and ¢ parts are separated to

give:
_sing d (. dg 9
i (smogg ) —wsnt o= ==

The 1%¢ Sturm-Liouville problem in 6 is:
"+7¢=0, withBCs ¢(-7)=¢q(m) and q'(-7)=q'(7),
which has etgenvalues and eigenfunctions
Y% =0 and qo(f) = ao,

and

Y =m?* and g (0) = a,, cos(mf) + by, sin(mo).
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Associated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials kel Bielie Drelkien

Associated Legendre Polynomials

The 2"¢ Sturm-Liouville problem in ¢ is:

d d 2
i (siwd;) + (usiw S$¢) g=0, 0<¢<m,

with the singular BCs g(0) and g(7) bounded.

This SL-problem is related to associated Legendre polynomials.

We make the change of variables x = cos(¢), —1<z <1, so
d dr d . d
16 dodr —sm(¢)%.

In the associated Legendre equation with the change of variables,
the first term is

—sin (j)di <7 sin? d)j—g) = sin gbdi ((1 — cos? d));l—g) = sind)di ((1 — x2)@
x x x x x
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Associated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials kel Bielie Drelkien

Associated Legendre Polynomials

We divide the associated Legendre equation by sin(¢) and obtain

d dg m?
1—a2?)—= - ——]g=0,
dx (( v )dz)+(“ sin2¢)g

This is a Sturm-Liouville problem with regular singular points
at © = £1 (or ¢ = 0,7) the poles.

By writing the equation

"o 2z ’ p(@? — 1) — m? _
S T ernE@-n? " ((m+1)2(x—1)2)g’0’

which becomes

it is easy to see that x = 1 and —1 are regular singular points. SDSO
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Associated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials kel Bielie Drelkien

Associated Legendre Polynomials

The associated Legendre equation is often written:

- ((1-&)%) + (n(n+1>— (l%g))gﬂ’

and its linearly independent solutions (associated Legendre
functions) are written:

9(x) = er P () + 2Q7 (2).

It can be shown that when n is not an integer, then both solutions are
unbounded at either x =1 or x = —1.

When n is an integer, then P (x) is a polynomial, while Q' (z) is
unbounded at both x =1 and x = —1.

Thus, we concentrate our studies on the associated Legendre
polynomials, P™(x), for our physical problem. SDSO
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iated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials Rl DimEmee Prelkenm

Legendre Polynomials

If m = 0 (no 6 dependence), cylindrically symmetric, Legendre
equation is given by:

% ((1 - x%j—i) +n(n+1)g =0.

Let g(z) = > p , axz®, then

d o0 oo
o <(1 —z?) Z akkxk_1> +n(n+1) Z apz® = 0.
k=0

k=1
or
oo oo oo}
Z apk(k — 1)zF~2 — Z apk(k + Da® 4 n(n4+1) Z apz® = 0.
k=2 k=0 k=0
or
oo oo
> apga(k+2)(k+ Da* = > ap(k(k + 1) — n(n+ 1))z* = 0.
k=0 k=0
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Associated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials Rl DimEmee Prelkenm

Legendre Polynomials

The power series given by

(oo}

> (ansalh+ D+ 1) = anlhte+ 1) = n(n+ 1) )t =0,
k=0
has the recurrence relation:
" _k(k—l—l)—n(n—l—l)a __(n—k)(l—i—n—i—k)a
PR T k) k+ 1) T k+2)k+1) P

where ag and ay are arbitrary.

It is easy to see by the ratio test that the series above converges for
|z| < 1.

When |z| = £1, this series diverges unless n is an integer, then one
solution of the power series is a polynomzial, so converges.
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Associated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials Rl DimEmee Prelkenm

Legendre Polynomials

It follows that we can write

g = a (1_n<;.+11>x2+(n—z)(n:!3)<n+1>nw4_._.)
(n—-1)(n+2) (n=3)n+4)(n-1)(n+2)
—+aq (:pf 3.2 x3+ 1 x 7>

The first 6 Legendre polynomials are:

n=0 Py(z) =1,

n=1 P (z) =z,

n=2 Py(z) = 5(322 — 1),

n=3 Ps(z) = +(523 — 3a),

n=4 Py(x) = £(35a* — 3027 + 3),

n=>5 P5(x) = £(632° — 702° + 152). p—
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Associated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials kel Bielie Drelien

Legendre Polynomials

One method of generating Legendre polynomials is Rodriguez
formula:

R T P

= Sl & D

P, (z)

Since z = cos(¢), the first three Legendre polynomials in ¢ are:

() = 1,
(1) = = = cos(9).
(x) = 3(32%-1) = (3cos(2¢) +1).

I3 Z

The orthogonality has a weighting function o(z) =1
(o(¢) = sin(¢)) and satisfies:

1
0 n#m
P, (z)Py(x)dx = { 9’ ’
/_1 " " Int1’ n=m.
Uses the recurrence relation and integration by parts. S0SO
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gendre Polynomials
Legendre Polynomials
Radial Eigenvalue Problem

Spherical Problems and Legendre Polynomials

0d
Rla) =1 o9
og 04 o4
04
o4l o
.
02 o
o4
04
Pie) = Y322 - 1)
0 o
-0,
-9
° 5 9 05 e 5 g 3 E E 9 3
Pi(cos(g]) = H(3eos(26) +1)
Rcos(e)) =
08 04
05
04 o
03
-0
o5 1 15z 25 3
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Associated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials Rl DimEmee Prelkenm

Associated Legendre Polynomials

If m > 0, then the associated Legendre polynomials can be found
with the formula:

o) = P (a) = (2~ )2 2P (),

where n > m to avoid g(z) = 0 and P, (z) is the Legendre
polynomzial of order n.

With these formulas, we have solved for ¢(f) and g(¢) for the
spherical problem.

Remains to solve the radial part of this problem.
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Associated Legendre Polynomials
Le ire Polynomials

Spherical Problems and Legendre Polynomials Radial Eigenvalue Problem

Radial Eigenvalue Problem

If the original spherical problem has homogeneous BCs,
u(a,0,¢,t) = 0, then the 3"? Sturm-Liouville problem is

(L) + (Wm0} =0 sl =0,

which is restricted to n > m for fixed m.

This is almost Bessel’s equation, and it has the solution Spherical
Bessel’s function:

f(p) = P_l/QJn+1/2 (\/X,O) ;

which are bounded at p = 0.

The eigenvalues satisfy J,,11/2 (\F)\a) =0, so the k' zero is

Zk,’I’LJrl/Q = V )\’C,Tba“ m
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ed Legendre Polynomials
ndre Polynomials

Spherical Problems and Legendre Polynomials Radial Eigenvalue Problem

Radial Eigenvalue Problem

Spherical Bessel functions satisfy

_ n 1d\" [sin(x)
x 1/2(7n+1/2(93):JIC <_a:d:r> ( - )

The superposition principle gives:

u(p,0,6,t) = > > > f(p)al0)g(d)h(t)

k=1m=0n=m

) 1

= i i Z { :i)j z i:::)) }p’%JnJr% ( )\k,np){ cos(m@) }Pﬁ"(cos(d))).

k=1m=0n=m sin(m@)

SDSO

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) PDESs - Higher Dimensions — (34/41)



Laplace in Spherical Cavity

Laplace in Spherical Cavity

Consider Laplace’s equation in a spherical cavity:
Viu =0, with  u(a,8,¢) = F(0,¢).
In spherical coordinates the spatial problem is
LE(Q@)_A'_ L g(sin¢%)+ L @_0
0% Op p dp p? sin ¢ O¢ O¢ p?sin? ¢ 902~

Once again we separate variables with u(p,0,¢) = f(p)q(0)g(d)
and multiply p?/(fqg), then the spatial equation becomes:

1d ( 2df) 1 d ( dg) 1 d%q
-\ = |sino— | - ———— =v
fdp dp gsin¢ do do gsin? ¢ df?

The p-equation is

d ( odf B
dp<p dp>‘”f—"'
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Laplace in Spherical Cavity

Laplace in Spherical Cavity

The Sturm-Liouville problems are in 6 and ¢.
The 6 and ¢ parts are separated to give:

sin¢d<
g do

d 1/
Sin¢(ljﬁ> —vsin? ¢ = % = —U.

The 1% Sturm-Liouville problem in 0 is:
¢'+pg=0, withBCs q(—m)=q(r) and ¢(—)=q'(r),
which has eigenvalues and eigenfunctions
po =0 and qo(0) = ao,

and

pm =m? and ¢ (0) = ap, cos(mb) + by, sin(m#). sDST
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Laplace in Spherical Cavity

Laplace in Spherical Cavity

The 2"¢ Sturm-Liouville problem in ¢ is:

d dg 2
s <s1n¢d¢) (usinqb—s?;(b)g:O, 0<o¢p<m,

with the singular BCs g(0) and g(7) bounded.

As seen before, this SL-problem is related to associated Legendre
polynomials.

The solution to this eigenvalue problem is eigenvalues,
v =n(n+ 1) and associated eigenfunctions:

9(9) = P} (cos()).
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Laplace in Spherical Cavity

Laplace in Spherical Cavity

The radial equation satisfies:
d ([ odf

— — | = 1)f=0.
a0 <p dp) n(n+1)f

This is an equidimensional or Fuler problem, so attempt solutions
of the form:

The result is:

This gives

pr(r(r—&-l)—n(n—l—l)) = (r2+r—n(n+l)>pT:O.
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Laplace in Spherical Cavity

Laplace in Spherical Cavity

The above equation is factored to give

P4r—nn+1l)=@F—-n)(r+n+1)=0, or r=n,—(n+1).

It follows that

f(p) = c1p™ + cap™ ",

Since the solution is bounded at p = 0, it follows that co = 0.

The superposition principle gives:

u(p,0,¢) = ZAOnPnPn(COS(¢))
0

+ Z Z p" (Amn cos(mb) + Bmn sin(m@)) P (cos(¢)).

m=1n=m
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Laplace in Spherical Cavity

Laplace in Spherical Cavity

The BC at p = a gives:

F(0,9)

Z Aona™ Pp(cos(¢))
=0

+ Z Z a"™ (Amn cos(m@) + Bpmn sin(m@)) P (cos(¢)).

m=1n=m

Recall that the Sturm-Liouville problem in ¢ was

qu) <ﬂ(n + 1) sin() — Si;ﬂ(r;)) I

so the weighting function is o(¢) = sin(¢).

4 <sm<¢>
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Laplace in Spherical Cavity

Laplace in Spherical Cavity

The Fourier coefficients are readily found using orthogonality, so

JZ. Jo F(9,¢)Pr(cos(¢)) sin(¢)de do

Aon = )
2ma™ [ (Pn(cos(¢ )))? sin(¢)d¢ db
and
P f Jo F(0,) cos(mB) P (cos(¢)) sin(¢p)de db
m Tan fo (P (cos()))? sin(¢)dep do ’
and

7[5 F(0, ¢) sin(m8) P (cos(¢)) sin(¢)de df

Bmn =
ma” [ (P (cos(6)))? sin(¢)dep db
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