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More on Bessel Functions

Bessel’s Equation can be written:

d2φ

dz2
= −

(
1− m2

z2

)
φ− 1

z

dφ

dz
,

which can be compared to the damped-spring-mass system:

d2y

dt2
= −ky − cdy

dt
.

1 Bessel’s equation behaves like a time-varying frictional force
(c ∼ 1/t) that gets weaker with time (less than exponential
decay).

2 Bessel’s equation behaves like a restoring force (k ∼ (1−m2/z2))
approaches constant oscillation.
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More on Bessel Functions

Asymptotic Behavior of Bessel’s Equation
Small z

J0(z) ≈ 1 Y0(z) ≈ 2
π ln(z)

J1(z) ≈ 1
2z Y1(z) ≈ − 2

π z
−1

J2(z) ≈ 1
8z

2 Y2(z) ≈ − 4
π z
−2

Large z, as z →∞

Jm(z) ≈
√

2

πz
cos
(
z − π

4 −
mπ
2

)
Ym(z) ≈

√
2

πz
sin
(
z − π

4 −
mπ
2

)
The zeroes are asymptotically separated by π.
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Vibrating Circular Membrane

Laplace’s Equation - Cylinder: The PDE satisfies:

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
= 0.

BC: Bottom

u(r, θ, 0) = α(r, θ),

BC: Top

u(r, θ,H) = β(r, θ),

BC: Side

u(a, θ, z) = γ(θ, z).

BC: Implicit (Homogeneous)

Periodic in θ and
Bounded r → 0.

Break the problem into
3 problems each with
2 homogeneous conditions.
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Laplace’s Equation - Cylinder

Problem 1: Let the Top and Side be homogeneous with only the
nonhomogeneous condition:

u1(r, θ, 0) = α(r, θ).

The boundedness as r → 0 and periodicity in the θ direction provides
the other homogeneous conditions.

Use Separation of Variables in Laplace’s Equation with:

u1(r, θ, z) = φ(r)g(θ)h(z),

so
gh

r

d

dr

(
r
dφ

dr

)
+
φh

r2
d2g

dθ2
+ φg

d2h

dz2
= 0.
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Separation of Variables gives

1

rφ

d

dr

(
r
dφ

dr

)
+

1

r2g

d2g

dθ2
= −h

′′

h
= −λ,

which gives the z-equation:

h′′ − λh = 0.

Multiply by r2 and rearrange to obtain:

r

φ

d

dr

(
r
dφ

dr

)
+ λr2 = −g

′′

g
= µ, or g′′ + µg = 0.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 PDEs - Higher Dimensions — (7/41)

More on Bessel Functions
Laplace’s Equation - Cylinder

Spherical Problems and Legendre Polynomials
Laplace in Spherical Cavity

Problem 1 & 2 - Bottom & Top Nonhomogeneous
Problem 3 - Side Nonhomogeneous
Modified Bessel Functions

Laplace’s Equation - Cylinder

1st Sturm-Liouville Problem is:

g′′ + µg = 0, with g(−π) = g(π) and g′(−π) = g′(π).

As seen before, this problem has eigenvalues, µm = m2,
m = 0, 1, 2, ... and corresponding eigenfunctions:

g0(θ) = a0 and gm(θ) = am cos(mθ) + bm sin(mθ).

2nd Sturm-Liouville Problem is:

d

dr

(
r
dφ

dr

)
+

(
λr − m2

r

)
φ = 0, with φ(a) = 0 and |φ(0)| <∞,

which is Bessel’s equation of order m.
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Laplace’s Equation - Cylinder

The 2nd Sturm-Liouville Problem in r has the general solution:

φ(r) = c1Jm

(√
λr
)

+ c2Ym

(√
λr
)
.

Since |φ(0)| <∞, we have c2 = 0. The other homogeneous BC
gives:

φ(a) = c1Jm

(√
λmna

)
= 0.

As seen before, this has eigenvalues and eigenfunctions;

λmn =
( zmn

a

)2
, φmn(r) = Jm(zmnr/a), m = 0, 1, 2, ... n = 1, 2, ...,

where zmn is the nth zero satisfying Jm(zmn) = 0.
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Laplace’s Equation - Cylinder

With λmn > 0, we solve
h′′ − λh = 0,

to obtain

h(z) = d1 cosh
(√

λmn(H − z)
)

+ d2 sinh
(√

λmn(H − z)
)
.

However, h(H) = 0, so d1 = 0 or h(z) = sinh
(√
λmn(H − z)

)
.

We apply the superposition principle to obtain u1:

u1(r, θ, z) =

∞∑
n=1

A0nJ0
(√

λ0nr
)

sinh
(√

λ0n(H − z)
)

+

∞∑
m=1

∞∑
n=1

(
Amn cos(mθ) +Bmn sin(mθ)

)
·Jm

(√
λmnr

)
sinh

(√
λmn(H − z)

)
.
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Laplace’s Equation - Cylinder

Fourier coefficients are found with the nonhomogeneous BC:

u1(r, θ, 0) = α(r, θ) =
∞∑
n=1

A0nJ0
(√

λ0nr
)

sinh
(√

λ0nH
)

+

∞∑
m=1

∞∑
n=1

(
Amn cos(mθ) +Bmn sin(mθ)

)
·Jm

(√
λmnr

)
sinh

(√
λmnH

)
.

With orthogonality, we find

A0n =

∫ π
−π
∫ a
0 α(r, θ)J0

(√
λ0nr

)
r dr dθ

2π sinh
(√
λ0nH

) ∫ a
0 J

2
0

(√
λ0nr

)
r dr

,

and

Amn =

∫ π
−π
∫ a
0 α(r, θ) cos(mθ)Jm

(√
λmnr

)
r dr dθ

π sinh
(√
λmnH

) ∫ a
0 J

2
m

(√
λmnr

)
r dr

,
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Laplace’s Equation - Cylinder

and

Bmn =

∫ π
−π
∫ a
0 α(r, θ) sin(mθ)Jm

(√
λmnr

)
r dr dθ

π sinh
(√
λmnH

) ∫ a
0 J

2
m

(√
λmnr

)
r dr

.

It is easy to see that almost identical computations hold for u2 where
the nonhomogeneous BC is the top, u2(r, θ,H) = β(r, θ).

The 2 Sturm-Liouville problems are identical to the ones for u1,
so the only difference is solving the z-dependent equation:

h′′ − λmnh = 0, with h(0) = 0.

This has the solution:

h(z) = c1 sinh
(√

λmnz
)
.
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Laplace’s Equation - Cylinder

It follows that

u2(r, θ, z) =

∞∑
n=1

C0nJ0
(√

λ0nr
)

sinh
(√

λ0nz
)

+

∞∑
m=1

∞∑
n=1

(
Cmn cos(mθ) +Dmn sin(mθ)

)
Jm
(√

λmnr
)

sinh
(√

λmnz
)
.

The Fourier coefficients from the condition β(r, θ) are:

C0n =

∫ π
−π
∫ a
0 β(r, θ)J0

(√
λ0nr

)
r dr dθ

2π sinh
(√
λ0nH

) ∫ a
0 J

2
0

(√
λ0nr

)
r dr

,

and

Cmn =

∫ π
−π
∫ a
0 β(r, θ) cos(mθ)Jm

(√
λmnr

)
r dr dθ

π sinh
(√
λmnH

) ∫ a
0 J

2
m

(√
λmnr

)
r dr

,

and

Dmn =

∫ π
−π
∫ a
0 β(r, θ) sin(mθ)Jm

(√
λmnr

)
r dr dθ

π sinh
(√
λmnH

) ∫ a
0 J

2
m

(√
λmnr

)
r dr

.
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Laplace’s Equation - Cylinder

The cylinder problem for u3, where the nonhomogeneous BC is
the side, u3(a, θ, z) = γ(θ, z), must be handled differently.

With the side nonhomogeneous, the r-dependent equation can no
longer be one of the 2 Sturm-Liouville problems.

The separation of variables for u3(r, θ, z) = φ(r)g(θ)h(z) gives:

1

rφ

d

dr

(
r
dφ

dr

)
+

1

r2g

d2g

dθ2
= −h

′′

h
= λ.

Now the 1st Sturm-Liouville problem is:

h′′ + λh = 0, with h(0) = 0 and h(H) = 0.

From before, this has the eigenvalues and eigenfunctions:

λn =
n2π2

H2
with hn(z) = sin

(nπz
H

)
.
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Laplace’s Equation - Cylinder

Multiplying by r2 and rearranging the separation equation gives:

r

φ

d

dr

(
r
dφ

dr

)
− λnr2 = −g

′′

g
= µ, or g′′ + µg = 0.

The 2nd Sturm-Liouville Problem is now:

g′′ + µg = 0, with g(−π) = g(π) and g′(−π) = g′(π),

which as before has eigenvalues, µm = m2, m = 0, 1, 2, ... and
corresponding eigenfunctions:

g0(θ) = a0 and gm(θ) = am cos(mθ) + bm sin(mθ).
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Laplace’s Equation - Cylinder

Returning to the separation equation, we obtain the 3rd ODE,
which is given by:

d

dr

(
r
dφ

dr

)
−
(
n2π2

H2
r +

m2

r

)
φ = 0, with |φ(0)| <∞,

which because of the sign is not Bessel’s equation.

Let z = nπ
H r, then the 3rd ODE can be written:

z2
d2φ

dz2
+ z

dφ

dz
− (z2 +m2)φ = 0,

which is known as modified Bessel’s equation.

This has the solution:

φ(r) = c1Km

(
nπ
H r
)

+ c2Im
(
nπ
H r
)
.

The condition that |φ(0)| <∞ implies that c1 = 0, as Km(z)→∞ as
z → 0. (Im(z) behaves as zm as z → 0.)
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Laplace’s Equation - Cylinder

The superposition principle gives

u3(r, θ, z) =

∞∑
n=1

E0nI0
(
nπ
H
r
)

sin
(
nπ
H
z
)

+

∞∑
m=1

∞∑
n=1

(
Emn cos(mθ) + Fmn sin(mθ)

)
Im
(
nπ
H
r
)

sin
(
nπ
H
z
)
.

The Fourier coefficients from the condition γ(θ, z) are:

E0n =

∫ π
−π
∫H
0 γ(θ, z) sin

(
nπ
H
z
)
dz dθ

πHI0
(
nπ
H
a
) ,

and

Emn =
2
∫ π
−π
∫H
0 γ(θ, z) cos(mθ) sin

(
nπ
H
z
)
dz dθ

πHIm
(
nπ
H
a
) ,

and

Fmn =
2
∫ π
−π
∫H
0 γ(θ, z) sin(mθ) sin

(
nπ
H
z
)
dz dθ

πHIm
(
nπ
H
a
) .
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Modified Bessel Functions

Modified Bessel’s functions satisfy:

z2
d2φ

dz2
+ z

dφ

dz
− (z2 +m2)φ = 0,

We could write this equation:

d2φ

dz2
= −1

z

dφ

dz
+

(
1 +

m2

z2

)
φ,

which for large z gives:
d2φ

dz2
≈ φ.

This differential equation has solutions, like ex and e−x.

In fact, it can be shown that only one linearly independent
solution decays as z →∞, and we define this solution:

Km(z) ∼
√
π

2

e−z

z1/2
.
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Modified Bessel Functions

However, Km(z) is singular as z → 0, and it can be shown that

Km(z) ∼

{
ln(z), m = 0,

1
2 (m− 1)!

(
1
2z
)−m

, m 6= 0.

So significantly, Km(z) decays exponentially as z →∞, but is
singular as z → 0.

The Modified Bessel Function is uniquely defined such that

Im(z) ∼ 1

m!

(
1
2z
)m

,

as z → 0.

However, as z →∞, it is a linear combination of the independent
solutions, which behave like

Im(z) ∼
√

1

2πz
ez.
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Modified Bessel Functions

So significantly, Im(z) grows exponentially as z →∞, but is
well-behaved at z = 0. Below is the graph of some of the modified
Bessel functions.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

I0(z)

K0(z)

I1(z)

K1(z)

z
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Spherical Problems

The Heat or Wave equations:

∂u

∂t
= k∇2u or

∂2u

∂t2
= c2∇2u,

can use the separation of variables u(ρ, θ, φ, t) = w(ρ, θ, φ)h(t) to
obtain either

h′

kh
=
∇2w

w
= −λ or

h′′

c2h
=
∇2w

w
= −λ.

Thus, we have the time-equation:

h′ + λkh = 0 or h′′ + λc2h = 0.

The space-equation is:

∇2w + λw = 0.
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Spherical Problems

In spherical coordinates the spatial problem is

1

ρ2
∂

∂ρ

(
ρ2
∂w

∂ρ

)
+

1

ρ2 sinφ

∂

∂φ

(
sinφ

∂w

∂φ

)
+

1

ρ2 sin2 φ

∂2w

∂θ2
+ λw = 0.

Once again we separate variables with w(ρ, θ, φ) = f(ρ)q(θ)g(φ)
and multiply ρ2/(fqg), then the spatial equation becomes:

1

f

d

dρ

(
ρ2
df

dρ

)
+ λρ2 = −

1

g sinφ

d

dφ

(
sinφ

dg

dφ

)
−

1

q sin2 φ

d2q

dθ2
= µ.

The ρ-equation is

d

dρ

(
ρ2
df

dρ

)
+
(
λρ2 − µ

)
f = 0,

which is almost Bessel’s equation.
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Spherical Problems

After removing the ρ-equation, the θ and φ parts are separated to
give:

− sinφ

g

d

dφ

(
sinφ

dg

dφ

)
− µ sin2 φ =

q′′

q
= −γ.

The 1st Sturm-Liouville problem in θ is:

q′′ + γq = 0, with BCs q(−π) = q(π) and q′(−π) = q′(π),

which has eigenvalues and eigenfunctions

γ0 = 0 and q0(θ) = a0,

and
γm = m2 and qm(θ) = am cos(mθ) + bm sin(mθ).
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Associated Legendre Polynomials

The 2nd Sturm-Liouville problem in φ is:

d

dφ

(
sinφ

dg

dφ

)
+

(
µ sinφ− m2

sinφ

)
g = 0, 0 ≤ φ ≤ π,

with the singular BCs g(0) and g(π) bounded.

This SL-problem is related to associated Legendre polynomials.

We make the change of variables x = cos(φ), −1 ≤ x ≤ 1, so

d

dφ
=
dx

dφ

d

dx
= − sin(φ)

d

dx
.

In the associated Legendre equation with the change of variables,
the first term is

− sinφ
d

dx

(
− sin2 φ

dg

dx

)
= sinφ

d

dx

(
(1− cos2 φ)

dg

dx

)
= sinφ

d

dx

(
(1− x2)

dg

dx

)
.
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Associated Legendre Polynomials

We divide the associated Legendre equation by sin(φ) and obtain

d

dx

(
(1− x2)

dg

dx

)
+

(
µ−

m2

sin2 φ

)
g = 0,

which becomes

d

dx

(
(1− x2)

dg

dx

)
+

(
µ−

m2

(1− x2)

)
g = 0.

This is a Sturm-Liouville problem with regular singular points
at x = ±1 (or φ = 0, π) the poles.

By writing the equation

g′′ −
2x

(x+ 1)(x− 1)
g′ +

(
µ(x2 − 1)−m2

(x+ 1)2(x− 1)2

)
g = 0,

it is easy to see that x = 1 and −1 are regular singular points.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 PDEs - Higher Dimensions — (25/41)

More on Bessel Functions
Laplace’s Equation - Cylinder

Spherical Problems and Legendre Polynomials
Laplace in Spherical Cavity

Associated Legendre Polynomials
Legendre Polynomials
Radial Eigenvalue Problem

Associated Legendre Polynomials

The associated Legendre equation is often written:

d

dx

(
(1− x2)

dg

dx

)
+

(
n(n+ 1)−

m2

(1− x2)

)
g = 0,

and its linearly independent solutions (associated Legendre
functions) are written:

g(x) = c1P
m
n (x) + c2Q

m
n (x).

It can be shown that when n is not an integer, then both solutions are
unbounded at either x = 1 or x = −1.

When n is an integer, then Pmn (x) is a polynomial, while Qmn (x) is
unbounded at both x = 1 and x = −1.

Thus, we concentrate our studies on the associated Legendre
polynomials, Pmn (x), for our physical problem.
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Legendre Polynomials

If m = 0 (no θ dependence), cylindrically symmetric, Legendre
equation is given by:

d

dx

(
(1− x2)

dg

dx

)
+ n(n+ 1)g = 0.

Let g(x) =
∑∞
k=0 akx

k, then

d

dx

(
(1− x2)

∞∑
k=1

akkx
k−1

)
+ n(n+ 1)

∞∑
k=0

akx
k = 0.

or
∞∑
k=2

akk(k − 1)xk−2 −
∞∑
k=0

akk(k + 1)xk + n(n+ 1)

∞∑
k=0

akx
k = 0.

or
∞∑
k=0

ak+2(k + 2)(k + 1)xk −
∞∑
k=0

ak(k(k + 1)− n(n+ 1))xk = 0.
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Legendre Polynomials

The power series given by

∞∑
k=0

(
ak+2(k + 2)(k + 1)− ak(k(k + 1)− n(n+ 1))

)
xk = 0,

has the recurrence relation:

ak+2 =
k(k + 1)− n(n+ 1)

(k + 2)(k + 1)
ak = − (n− k)(1 + n+ k)

(k + 2)(k + 1)
ak,

where a0 and a1 are arbitrary.

It is easy to see by the ratio test that the series above converges for
|x| < 1.

When |x| = ±1, this series diverges unless n is an integer, then one
solution of the power series is a polynomial, so converges.
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Legendre Polynomials

It follows that we can write

g = a0

(
1−

n(n+ 1)

2 · 1
x2 +

(n− 2)(n+ 3)(n+ 1)n

4!
x4 − . . .

)
+a1

(
x−

(n− 1)(n+ 2)

3 · 2
x3 +

(n− 3)(n+ 4)(n− 1)(n+ 2)

4!
x5 − . . .

)
.

The first 6 Legendre polynomials are:

n = 0 P0(x) = 1,

n = 1 P1(x) = x,

n = 2 P2(x) = 1
2 (3x2 − 1),

n = 3 P3(x) = 1
2 (5x3 − 3x),

n = 4 P4(x) = 1
8 (35x4 − 30x2 + 3),

n = 5 P5(x) = 1
8 (63x5 − 70x3 + 15x).
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Legendre Polynomials

One method of generating Legendre polynomials is Rodriguez
formula:

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
.

Since x = cos(φ), the first three Legendre polynomials in φ are:

P0(x) = 1,

P1(x) = x = cos(φ),

P2(x) = 1
2 (3x2 − 1) = 1

4 (3 cos(2φ) + 1) .

The orthogonality has a weighting function σ(x) = 1
(σ(φ) = sin(φ)) and satisfies:∫ 1

−1
Pn(x)Pm(x) dx =

{
0, n 6= m,
2

2n+1 , n = m.

Uses the recurrence relation and integration by parts.
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Graphs of the first 3 Legendre polynomials.
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Associated Legendre Polynomials

If m > 0, then the associated Legendre polynomials can be found
with the formula:

g(x) = Pmn (x) = (x2 − 1)m/2
dm

dxm
Pn(x),

where n ≥ m to avoid g(x) = 0 and Pn(x) is the Legendre
polynomial of order n.

With these formulas, we have solved for q(θ) and g(φ) for the
spherical problem.

Remains to solve the radial part of this problem.
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Radial Eigenvalue Problem

If the original spherical problem has homogeneous BCs,
u(a, θ, φ, t) = 0, then the 3rd Sturm-Liouville problem is

d

dρ

(
ρ2
df

dρ

)
+

(
λρ2 − n(n+ 1)

)
f = 0, f(a) = 0,

which is restricted to n ≥ m for fixed m.

This is almost Bessel’s equation, and it has the solution Spherical
Bessel’s function:

f(ρ) = ρ−1/2Jn+1/2

(√
λρ
)
,

which are bounded at ρ = 0.

The eigenvalues satisfy Jn+1/2

(√
λa
)

= 0, so the kth zero is

zk,n+1/2 =
√
λk,na.
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Radial Eigenvalue Problem

Spherical Bessel functions satisfy

x−1/2Jn+1/2(x) = xn
(
− 1

x

d

dx

)n(
sin(x)

x

)
.

The superposition principle gives:

u(ρ, θ, φ, t) =

∞∑
k=1

∞∑
m=0

∞∑
n=m

f(ρ)q(θ)g(φ)h(t)

=

∞∑
k=1

∞∑
m=0

∞∑
n=m

{
cos
(
c
√
λk,nt

)
sin
(
c
√
λk,nt

) } ρ− 1
2 Jn+ 1

2

(√
λk,nρ

) 1
cos(mθ)
sin(mθ)

Pmn (cos(φ)).

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 PDEs - Higher Dimensions — (34/41)

More on Bessel Functions
Laplace’s Equation - Cylinder

Spherical Problems and Legendre Polynomials
Laplace in Spherical Cavity

Laplace in Spherical Cavity

Consider Laplace’s equation in a spherical cavity:

∇2u = 0, with u(a, θ, φ) = F (θ, φ).

In spherical coordinates the spatial problem is

1

ρ2
∂

∂ρ

(
ρ2
∂u

∂ρ

)
+

1

ρ2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

ρ2 sin2 φ

∂2u

∂θ2
= 0.

Once again we separate variables with u(ρ, θ, φ) = f(ρ)q(θ)g(φ)
and multiply ρ2/(fqg), then the spatial equation becomes:

1

f

d

dρ

(
ρ2
df

dρ

)
= −

1

g sinφ

d

dφ

(
sinφ

dg

dφ

)
−

1

q sin2 φ

d2q

dθ2
= ν.

The ρ-equation is
d

dρ

(
ρ2
df

dρ

)
− νf = 0.
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Laplace in Spherical Cavity

The Sturm-Liouville problems are in θ and φ.

The θ and φ parts are separated to give:

− sinφ

g

d

dφ

(
sinφ

dg

dφ

)
− ν sin2 φ =

q′′

q
= −µ.

The 1st Sturm-Liouville problem in θ is:

q′′ + µq = 0, with BCs q(−π) = q(π) and q′(−π) = q′(π),

which has eigenvalues and eigenfunctions

µ0 = 0 and q0(θ) = a0,

and
µm = m2 and qm(θ) = am cos(mθ) + bm sin(mθ).
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Laplace in Spherical Cavity

The 2nd Sturm-Liouville problem in φ is:

d

dφ

(
sinφ

dg

dφ

)
+

(
ν sinφ− m2

sinφ

)
g = 0, 0 ≤ φ ≤ π,

with the singular BCs g(0) and g(π) bounded.

As seen before, this SL-problem is related to associated Legendre
polynomials.

The solution to this eigenvalue problem is eigenvalues,
ν = n(n+ 1) and associated eigenfunctions:

g(φ) = Pmn (cos(φ)).

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 PDEs - Higher Dimensions — (37/41)

More on Bessel Functions
Laplace’s Equation - Cylinder

Spherical Problems and Legendre Polynomials
Laplace in Spherical Cavity

Laplace in Spherical Cavity

The radial equation satisfies:

d

dρ

(
ρ2
df

dρ

)
− n(n+ 1)f = 0.

This is an equidimensional or Euler problem, so attempt solutions
of the form:

f(ρ) = ρr.

The result is:
d

dρ

(
ρ2rρr−1

)
− n(n+ 1)ρr = 0.

This gives

ρr
(
r(r + 1)− n(n+ 1)

)
=

(
r2 + r − n(n+ 1)

)
ρr = 0.
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Laplace in Spherical Cavity

The above equation is factored to give

r2 + r − n(n+ 1) = (r − n)(r + n+ 1) = 0, or r = n,−(n+ 1).

It follows that
f(ρ) = c1ρ

n + c2ρ
−(n+1).

Since the solution is bounded at ρ = 0, it follows that c2 = 0.

The superposition principle gives:

u(ρ, θ, φ) =

∞∑
n=0

A0nρ
nPn(cos(φ))

+

∞∑
m=1

∞∑
n=m

ρn (Amn cos(mθ) +Bmn sin(mθ))Pmn (cos(φ)).
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Laplace in Spherical Cavity

The BC at ρ = a gives:

F (θ, φ) =

∞∑
n=0

A0na
nPn(cos(φ))

+

∞∑
m=1

∞∑
n=m

an (Amn cos(mθ) +Bmn sin(mθ))Pmn (cos(φ)).

Recall that the Sturm-Liouville problem in φ was

d

dφ

(
sin(φ)

dg

dφ

)
+

(
n(n+ 1) sin(φ)− m2

sin(φ)

)
g = 0,

so the weighting function is σ(φ) = sin(φ).
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Laplace in Spherical Cavity

The Fourier coefficients are readily found using orthogonality, so

A0n =

∫ π
−π
∫ π
0 F (θ, φ)Pn(cos(φ)) sin(φ)dφ dθ

2πan
∫ π
0 (Pn(cos(φ)))2 sin(φ)dφ dθ

,

and

Amn =

∫ π
−π
∫ π
0 F (θ, φ) cos(mθ)Pmn (cos(φ)) sin(φ)dφ dθ

πan
∫ π
0 (Pmn (cos(φ)))2 sin(φ)dφ dθ

,

and

Bmn =

∫ π
−π
∫ π
0 F (θ, φ) sin(mθ)Pmn (cos(φ)) sin(φ)dφ dθ

πan
∫ π
0 (Pmn (cos(φ)))2 sin(φ)dφ dθ

.
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