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Bessel’s Equation can be written:

d2¢:_<1 m2> 1d¢

Small =z

dz?

which can be compared to the damped-spring-mass system:

d*y dy
—5 = —ky—c—.
dt dt Large z, as z = o0
© Bessel’s equation behaves like a time-varying frictional force In(z) =~ 2
(c ~ 1/t) that gets weaker with time (less than exponential d
decay).
Y) Ym( Z) ~ -

© Bessel’s equation behaves like a restoring force (k ~ (1 —m?2/z?))
approaches constant oscillation.
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Asymptotic Behavior of Bessel’s Equation

The zeroes are asymptotically separated by 7.
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Vibrating Circular Membrane Laplace’s Equation - Cylinder

Laplace’s Equation - Cylinder: The PDE satisfies:
Problem 1: Let the Top and Side be homogeneous with only the

V24 = 19 ( ou 1 0% + Pu _ 0. nonhomogeneous condition:
ror \_ or r2 902 = 922
BC: Bottom Uy (7“, 0, O) = OA(T', 6)
u(r, 8,0) = a(r,0),
= 3(r, 0 . .. . . . .
BC: Top N A The boundedness as » — 0 and periodicity in the 0 direction provides
u(r, 0, H) = B(r, 0) the other homogeneous conditions.
BC: Side — Use Separation of Variables in Laplace’s Equation with:
= Viu=0
s s =t V (1.6.2) = G)gOR(2)
I w1 (r,0,2) = o(r z
BC: Implicit (Homogeneous) s b g ’
Periodic in 6 and | SO
Bounded r — 0. ~ gh d do n oh ng L é d2h 0
Break the problem into w=afr,6) dr d 2 462 g dz2
3 problems each with
2 homogeneous conditions. SDSJO SDSJT
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st _ . . . .
Separation of Variables gives 1" Sturm-Liouville Problem is:

Ld (do\, 1dg W _ | 9" +pg=0,  with g(—m)=g(r) and g'(-7)=g'(n).
ro dr "ar r2gdg2 h
As seen before, this problem has eigenvalues, p,, = m?,
which gives the z-equation: m =0,1,2,... and corresponding eigenfunctions:
h" — Xh = 0. go(0) =ag and g, (0) = an, cos(mb) + by, sin(m8).
Multiply by 72 and rearrange to obtain: 274 Sturm-Liouville Problem is:
rd [ do 9 q" y d ( d¢ m? .
M ¥t =2 = = — (7= Ar — — =0 th =0 d 0
Sar <7“ dr) + Ar . i, or  ¢"+ug=0. o\ ) T AT ¢=0, with ¢(a) and [p(0)] < oo,

which is Bessel’s equation of order m.
SDSJ
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The 2"¢ Sturm-Liouville Problem in r has the general solution:

o(r) =c1dm (ﬁr) + Y, (\/XT) .

Since |¢(0)| < oo, we have co = 0. The other homogeneous BC

gives:
¢(a) = c1dpm, (\/)\mna> =0.
As seen before, this has eigenvalues and eigenfunctions;

o = (227,

Gmn (1) = Im(Zmnr/a), m=20,1,2,... n=1,2,...,

where z,,, is the n'? zero satisfying Jp, (2mn) = 0.

With Ap,n > 0, we solve
A’ —Ah =0,

to obtain

h(z) = dy cosh (\/Amn(H - z)) + dy sinh (\//\mn(H - z)) .

However, h(H) =0, so d1 = 0 or h(z) = sinh (v Amn(H — 2)).

We apply the superposition principle to obtain uj:

ui(r,0,z) = i AonJo ( /\Qnr) sinh (JE(H — z))

n=

=

i i ( mn €08(mb) + Bimn sm(me))

m=1n=1

“Jm )\mnr) sinh (M(H — z)) .
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Fourier coefficients are found with the nonhomogeneous BC:
o0
ur(r,0,0) = a(r,6) = > Aondo (\/,\Onr) sinh (\/AOTLH) i

i i (Amn cos(mb) + Bmn sin(m@))
I (VAmar) sinh (Vo H )

With orthogonality, we find

7 Jo elr,0)Jo (VAonT) rdr df

A =
o7 2msinh (Vaon H) J& J2 (Vronr) rdr’
and
u J7 o Jo alr, 0) cos(m) Jm (v Amnr) 7 dr dO
mn — ,

wsinh (VAmnH) [ J2 (VAmar) rdr
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and

I7 Joo(r, 0) sin(m8) Ju (v Amnr) dr df

an =
7 sinh (\/)\mnH) foa J2, (\/)\mnr) rdr

It is easy to see that almost identical computations hold for us where
the nonhomogeneous BC is the top, us(r, 0, H) = [(r,0).

The 2 Sturm-Liouville problems are identical to the ones for uq,
so the only difference is solving the z-dependent equation:

B — Amph =0,  with h(0) =

This has the solution:

h(z) = ¢; sinh (Mz) .
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It follows that

ua(r,0,z) = i ConJo ( )\onr) sinh (\/Ez) +

=1

i i (Cmn cos(m) + Dmn, sm(m@)) Im (\/Er) sinh (\/m,z) .

m=1n=1

3

The Fourier coefficients from the condition S(r,0) are:

f fo (r,0)Jo (\//\Onr) rdrdf

Con = ’
" 7 2msinh (Vaon H) [ JZ (VAonr) rdr

and

ST Jo B(r,0) cos(mb)Jm (v Amnr) 7 dr do

Cmn = )
7 sinh (\/)\mnH) f(;l J2, (\/)\mm‘) rdr

and

ST IS B(r,0) sin(m8) Ju (VAmnr) 7 dr df
sinh (VAo ) I3 T2 (o) e -

Dipn =
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Multiplying by 72 and rearranging the separation equation gives:

d d "
o (Td)) =L = o ¢ ug=0.
g

The 2"¢ Sturm-Liouville Problem is now:
"+pg=0,  with g(-7)=g(7) and g'(-7)=g'(n),

which as before has eigenvalues, ji,, = m?, m =0,1,2, ... and
corresponding eigenfunctions:

go(0) =ap and g, (0) = a, cos(mb) + by, sin(m8).
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Laplace’s Equation - Cylinder

The cylinder problem for uz, where the nonhomogeneous BC is
the side, ug(a, 0, z) = (0, z), must be handled differently.

With the side nonhomogeneous, the r-dependent equation can no
longer be one of the 2 Sturm-Liouville problems.

The separation of variables for uz(r,0,z) = ¢(r)g(0)h(z) gives:

L (d6), Ly
ro dr r2gdf2 h
Now the 1% Sturm-Liouville problem is:

W'+ Ah=0, with h(0)=0 and h(H)=0.

From before, this has the eigenvalues and eigenfunctions:

n27r2 nmwz

Ap = e with hn(z) = sin (?) .

SDSJT
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Returning to the separation equation, we obtain the 3" ODE,
which is given by:

2,2 2
dr ( lef> (nHZ 7“+W;> ¢ =0, with [$(0)] < oo,

which because of the sign is not Bessel’s equation.

Let z = 577, then the 374 ODE can be written:

d2¢ d¢

22 2 2
TZQ_FZ?_(Z +m )(1)_0,
which is known as modified Bessel’s equation.

This has the solution:
¢(r) = c1 Ky (577) + 2l (577) -

The condition that |¢(0)| < oo implies that ¢; = 0, as K,
z — 0. (In(2) behaves as 2™ as z — 0.)

m(z) = o0 as

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)
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Laplace’s Equation - Cylinder Modified Bessel Functions

The superposition principle gives Modified Bessel’s functions satisfy:
- nr Y i (2 d? d
u3(r,0,2) = Y Eonlo (%Fr)sin (%52) + —d) + z—d) — (22 4+m*)¢p =0,
n=1 * a2 dz

We could write this equation:

Z Z (Emn cos(mb) + Fn sin(m@))]m (%r) sin (%z) .

m=1n=1 d%¢ 1d¢ m?
@2 rds T <1+z2) @

The Fourier coefficients from the condition (0, z) are:

which for large z gives:
Jr fo (6, 2) sm( z) dz do d2¢
E'()n = , —_— ) ¢
nHIo (?a) dz2
and . . . . . . = —
27 fo (6, 2) cos(mb) sin (" =) dz db This differential equation has solutions, like e” and e™*.
Emn = THIy (%Ea) J In fact, it can be shown that only one linearly independent
and " solution decays as z — oo, and we define this solution:
2" fo ¥(8, z) sin(m#) sin (%X z) dz df T e
wH Iy (%Fa) SDST 2 z1/2 SDSJO
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Modified Bessel Functions Modified Bessel Functions

However, K,,(z) is singular as z — 0, and it can be shown that So significantly, Iu(2) grows ezponentially as z — 0o, but is

In(z), m =0, well-behaved at z = 0. Below is the graph of some of the modified
K (2) ~ 1 1 \—m Bessel functions.

fm—1!(32) ", m # 0. 3 ‘ ‘ ‘ ‘ ‘
So significantly, K,,(z) decays exponentially as z — oo, but is
singular as z — 0. 23 . ]

Iy(z
The Modified Bessel Function is uniquely defined such that 2t i 1
Lo ym n(2)

Im(Z) ~ % (§Z> s 150 1
as z — 0. L |
However, as z — oo, it is a linear combination of the independent Ko(2)
solutions, which behave like 0.5 . 1
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Spherical Problems Spherical Problems

The Heat or Wave equations: In spherical coordinates the spatial problem is

ou 0%u
— = kv2u or - = C2V2U, 10 5 0w 1 4] ow 1 02w _
o o 705 (75 )+ g6 (955 ) g o+ 0 =0
can use the separation of variables u(p,0,¢,t) = w(p, 0, p)h(t) to
obtain either Once again we separate variables with w(p,0,¢) = f(p)q(0)g(¢)
B V2w B V2w and multiply p?/(fqg), then the spatial equation becomes:
— = = -\ or —_— = = —\.
kh w c2h w 1d(p2df)+>\2_ 1 d ( ¢dg) 1 d2q_u
fdp \" dp T gsing de dp) qsin2¢doz "
Thus, we have the time-equation: fdp r gsing d¢ ¢ gsin”¢
The p- tion i
W+Ah=0 or h"+A*h=0. ¢ preduation s
d d
- <p2df) +(M® —p) f=0,
The space-equation is: p p
V2w + w = 0. which is almost Bessel’s equation.
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Spherical Problems Associated Legendre Polynomials

The 2"¢ Sturm-Liouville problem in ¢ is:
After removing the p-equation, the 6§ and ¢ parts are separated to

give: 4 smgzbd sin ¢ — m’ =0 0<o<m
Sln¢ d d q” B d¢ dd) H sin¢ g=y, >9 >,
s ¢>¢ — psin® qb—q——'y.
with the singular BCs g(0) and g(7) bounded.
The 1°* Sturm-Liouville problem in 6 is: This SL-problem is related to associated Legendre polynomials.
" 4 vg =0, with BCs q(—7) = g(7) and ¢ (-7) = (n), We make the change of variables x = cos(¢), —1<ax <1, so0
d drd
hich h ; l d et ti — = = —5i —.
which has eigenvalues and eigenfunctions 06~ o sin(¢) T

Y% =0 and go(f) = ao, ) . . .
In the associated Legendre equation with the change of variables,
and the first term is

2

Ym =m~ and ¢, (0) = an, cos(mb) + by, sin(m@). 5. dg

., d . dg .o.d 2\ dg .. d
—sin¢p— (f sin? d)—) =singp— ((1 — cos (;5)—) =singp— ((1 —z2) =2 )
dx dx dx dx dx dx
SDSJO
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Associated Legendre Polynomials

We divide the associated Legendre equation by sin(¢) and obtain

d 9 dg) ( m? )
— (- — - — =0,
dx (( v )dm G sin? ¢ g

which becomes
d 2, dg m?2 _
dx <(1—x )d:c> + <M_ (lfxz))g_O.

This is a Sturm-Liouville problem with regular singular points
at © = £1 (or ¢ = 0,7) the poles.

By writing the equation

"o 2z
(z+1)(z—-1)

L (=1 —m?\
g+((x+1)2(x_1)2)g,o,

SDSJO
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it is easy to see that x = 1 and —1 are regular singular points.
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Associated Legendre Polynomials

The associated Legendre equation is often written:

2 (a=AE) + (stns - T )=

and its linearly independent solutions (associated Legendre
functions) are written:

9(x) = e P (x) + Q' ().

It can be shown that when n is not an integer, then both solutions are
unbounded at either x =1 or z = —1.

When n is an integer, then P"(x) is a polynomial, while QI""(x) is
unbounded at both z =1 and x = —1.

Thus, we concentrate our studies on the associated Legendre
polynomials, P!™(x), for our physical problem.
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Legendre Polynomials

If m =0 (no 0 dependence), cylindrically symmetric, Legendre
equation is given by:

d

- ((1 - xQ)Z—i) +n(n+1)g=0.

Let g(z) = Y32, arx”, then

d oo oo
. <(1 —z%) Z akkxk_1> +n(n+1) Z apz® = 0.
k=1 k=0
or
[e o] oo [e o]
> agk(k = )22 = > " apk(k + D)a” + n(n+1) > apa® =0.
k=2 k=0 k=0
or

> apga(k+2)(k+ Db = D ap(k(k+ 1) = n(n + 1))z = 0.
k=0 k=0

Associated Legendre Polynomials
Legendre Polynomials
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Legendre Polynomials

The power series given by

o0

> (onsal+ D0+ 1) = anlb(k + 1) = o+ 1) )a* =0,

k=0

has the recurrence relation:

kE(k+1)—n(n+1)
(k+2)(k+1)

(n—k)(1+n+k)
k+2)(k+ 1)

ag+2 = ag = — ag,

where ag and a; are arbitrary.

It is easy to see by the ratio test that the series above converges for
lz| < 1.

When |z| = £1, this series diverges unless n is an integer, then one
solution of the power series is a polynomial, so converges.
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Legendre Polynomials Legendre Polynomials
It follows that we can write One method of generating Legendre polynomials is Rodriguez
formula:
_ _n+l) 5 (n=2)n+3)n+Dn 4 ) 1 dn n
g = ao(l 21 z° + o T P"(x)zgnn[dmin(lﬂ_l) )
(n-1n+2) 3 @=3)n+t4)(n-1n+2) 5
ta (@ - 3.9 &=t 4 e ) Since z = cos(¢), the first three Legendre polynomials in ¢ are:
The first 6 Legendre polynomials are: Bo(z) = 1,
0 P ) Pi(x) = x = cos(¢),
n= o(z) =1, Py(z) = 1322 —1) = 1 (3cos(2¢) +1).
n=1 Py (z) = =z,
n=2 Py(z) = (322 - 1), The orthogonality has a weighting function o(x) =1
2 (o(¢) = sin(¢)) and satisfies:
n=3 Ps(z) = 1(52® — 3x),
1
n=4 Py(z) = £(352* — 3022 + 3), / P () P (%) do = { > Z f z
-1 n+1° =m.
n=>5 Ps(z) = £(632° — 702° + 15z). sDsT J—

Uses the recurrence relation and integration by parts.
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Legendre Polynomials Associated Legendre Polynomials

Graphs of the first 3 Legendre polynomials.

If m > 0, then the associated Legendre polynomials can be found

o with the formula:
: 1 0 m 2 m/2 dm
: - o) = PP(a) = (2 — )2 p (o),
od N g dz™
N - . where n > m to avoid g(z) = 0 and P, (z) is the Legendre
I e s — polynomial of order n.
P : oo With these formulas, we have solved for ¢(#) and g(¢) for the
” o Pomt9) = ) N spherical problem.
o4 o i Remains to solve the radial part of this problem.
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Radial Eigenvalue Problem

If the original spherical problem has homogeneous BCs,
u(a,B,¢,t) = 0, then the 3" Sturm-Liouville problem is

CZ) (’OZZJ,;> + <>\p2 —n(n+ 1)>f =0,  f(a)=0,

which is restricted to n > m for fixed m.

This is almost Bessel’s equation, and it has the solution Spherical

Bessel’s function:

£(0) = o7 212 (V)
which are bounded at p = 0.
The eigenvalues satisty J,, 12 (\/XCL) =0, so the k" zero is

Rk,n+1/2 = V )\k,na-

Associated Legendre Polynomials
Legendre Polynomials

Spherical Problems and Legendre Polynomials Radial Eigenvalue Problem

Radial Eigenvalue Problem

Spherical Bessel functions satisfy

eV T o) = o (-”)n (Sm(x)> |

x dx T

The superposition principle gives:

u(p70a¢7 t) = Z Z Z f(p)Q(e)g(d))h’(t)

k=1 m=0n=m

= 3HSDI o8 (C\/mt) _é 1 COSlm ™ (cos
k;rnz:o;n{ sin (cy/A,nt) }p Tuvy ( A’“’"p){ Smgmg; }Pn( (®))-
SDSJO
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Laplace in Spherical Cavity

Consider Laplace’s equation in a spherical cavity:
Vu =0, with wu(a,0,¢) = F(0, ).

In spherical coordinates the spatial problem is

1 0 ( Qau) n 1 0 (S,nd)au) n 1 852y 0
- — - — [ sing— ———— =0.
p? Op P op p?sin ¢ O¢ o p2sin? ¢ 062

Once again we separate variables with u(p, 8, ¢) = f(p)q(0)g(o)
and multiply p?/(fqg), then the spatial equation becomes:

1d ( 2olf) 1 d ( dg) 1 d3q
|\ ) =———F|sino— | - ——— - =
fdp dp gsin ¢ d¢ do gsin? ¢ do?

The p-equation is
d ( odf _
GIRCAL

PDEs - Higher Dimensions
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Laplace in Spherical Cavity

The Sturm-Liouville problems are in 6 and ¢.

The 6 and ¢ parts are separated to give:

sing d ( . dg) . 9 q’
— e SIin o — — I/ S1n = — = —U.
g 6 "4 o=y =

The 1°¢ Sturm-Liouville problem in @ is:

J'4pg—0,  with BCs q(—r) — q(r)

which has eigenvalues and eigenfunctions
po=0 and qo(f) = ao,

and

pm =m? and g (0) = a,, cos(mb) + by, sin(m#).
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Laplace in Spherical Cavity

The 2"¢ Sturm-Liouville problem in ¢ is:

d d 2
dqs<sin¢dg>+<usin¢s7$¢>gzo, 0<o¢p<m,

with the singular BCs g(0) and g(7) bounded.

As seen before, this SL-problem is related to associated Legendre
polynomials.

The solution to this etgenvalue problem is eigenvalues,
v =n(n+ 1) and associated eigenfunctions:

9(¢) = P (cos(e)).
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The above equation is factored to give

Prr—nn+1)=r—-—n)(r+n+1)=0, or r=n,—(n+1).

It follows that

F(p) = c1p™ + cop " HY.

Since the solution is bounded at p = 0, it follows that co = 0.

The superposition principle gives:

oo

u(p705¢) = Z AOnpnPn(COS(d)))
n=0

[o <IN <}

+ Z Z P (Amn cos(mb) + Bpp sin(mb)) P, (cos(¢)).

m=1n=m

Laplace in Spherical Cavity

The radial equation satisfies:
d ([ ,df
— — | - 1)f=0.
i (p dp) n(n+1)f

This is an equidimensional or Euler problem, so attempt solutions
of the form:

The result is:
This gives

p’"(r(r+1)—n(n+1)> = (T2+r—n(n+1)>p7":0.
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The BC at p = a gives:

o0

Z Aona”™ Py (cos(¢))

(0, 9)

+ Z Z a”™ (Amn cos(mb) + Bpp sin(mb)) P, (cos(¢)).

m=1n=m

Recall that the Sturm-Liouville problem in ¢ was

so the weighting function is o(¢) = sin(¢).
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The Fourier coefficients are readily found using orthogonality, so

I J (0, 0)Pa(cos(@)) sin(¢)dé df

AOn = p 3 s
2ma”™ [ (Pn(cos(¢)))* sin(¢)de do
and
_ ffﬂ fOTr F (0, ¢) cos(mO) P (cos(¢)) sin(¢)d¢ do
" man 7 (P (cos(9)))? sin(@)dpd)
nd
B B ffw fOTr F(6, ¢) sin(m8) P (cos(¢)) sin(¢)deo do

man [ (P (cos(¢)))? sin(¢)de do
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