
Math 124 Solutions Review Exam 3

1. a. The equilibria are found by letting Pn+1 = Pn = Pe, so

Pe = Pe + 1.14Pe

(
1− Pe

370

)
or 1.14Pe

(
1− Pe

370

)
= 0.

It is easy to see that Pe = 0 and 370.
If we write F (P ) = 2.14P − 1.14

370 P
2, then the derivative is

F ′(P ) = 2.14− 2.28

370
P = 2.14− 0.006162P.

At Pe = 0, we see F ′(0) = 2.14, so it follows that this equilibrium is unstable with solutions
monotonically moving away from Pe = 0. At Pe = 370, we see F ′(370) = −0.14, so it follows that
this equilibrium is stable with solutions oscillating and moving toward Pe = 370.

b. Given the updating function R(P ) = 2.36Pe−P/430, we find the derivative

R ′(P ) = 2.36

(
Pe−P/430

(
− 1

430

)
+ e−P/430

)
= 2.36 e−P/430

(
1− P

430

)
.

The derivative is zero when P = 430. So there is a maximum at Pmax = 430 with R(Pmax) =
2.36(430)e−1 ≈ 373.32. There is a horizontal asymptote to the right with limP→∞R(P ) = 0. The
graph is below. Note the similarity of the logistic model from Part a to the Ricker’s model from
zero to the carrying capacity.
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Problem 1b

c. The equilibria are found by solving Pe = 2.36Pee
−Pe/430. Thus, one equilibrium is Pe = 0. By

dividing out Pe, we find:

1 = 2.36 e−Pe/430 or ePe/430 = 2.36 or Pe = 430 ln(2.36) ≈ 369.224.

At Pe = 0, we see R ′(0) = 2.36, so it follows that this equilibrium is unstable with solutions
monotonically moving away from Pe = 0. At Pe = 369.22, we see R ′(430 ln(2.36)) = 1− ln(2.36) =
0.1413, so it follows that this equilibrium is stable with solutions monotonically approaching Pe =
369.22.



2. a. The equilibria are found by letting Pn+1 = Pn = Pe, so

Pe = 2.54Pe − 0.01P 2
e or 0.01Pe (154− Pe) = 0.

It is easy to see that Pe = 0 and 154.
Since F (P ) = 2.54P − 0.01P 2, then the derivative is

F ′(P ) = 2.54− 0.02P.

At Pe = 0, we see F ′(0) = 2.54, so it follows that this equilibrium is unstable with solutions
monotonically moving away from Pe = 0. At Pe = 154, we see F ′(154) = −0.54, so it follows that
this equilibrium is stable with solutions oscillating and moving toward Pe = 154.

b. Given the updating function B(P ) = 4.1P
1+0.02P , we find the derivative

B ′(P ) = 4.1
((1 + 0.02P ) · 1− 0.02P )

(1 + 0.02P )2
=

4.1

(1 + 0.02P )2
.

The derivative satisfies B ′(P ) > 0 for all P ≥ 0, so this function is always increasing (no maxima or
minima). There is a horizontal asymptote at B = 205. The graph is below. Note that the logistic
model from Part a tracks a similar path to the Beverton-Holt model from zero to the carrying
capacity.
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Problem 2b

c. The equilibria are found by solving Pe =
4.1Pe

1+0.02Pe
. Thus, one equilibrium is Pe = 0. By dividing

out Pe, we find:

1 =
4.1

1 + 0.02Pe
or 1 + 0.02Pe = 4.1 or Pe = 155.

At Pe = 0, we see B ′(0) = 4.1, so it follows that this equilibrium is unstable with solutions
monotonically moving away from Pe = 0. At Pe = 155, we see B ′(155)) = 4.1

(1+0.02(155))2
= 0.2439,

so it follows that this equilibrium is stable with solutions monotonically approaching Pe = 155.

3. a. Rewrite the second integral as a power, then∫ (
6 cos(3x)− 2

x3

)
dx = 6

∫
cos(3x)dx− 2

∫
x−3dx

= 6
sin(3x)

3
− 2

x−2

−2
+ C = 2 sin(3x) +

1

x2
+ C



b. Let u = x2 + 4x− 5, so du = (2x+ 4) dx = 2(x+ 2) dx.∫ (
x2 + 4x− 5

)3
(x+ 2)dx =

1

2

∫ (
x2 + 4x− 5

)3
2(x+ 2)dx

=
1

2

∫
u3du

=
1

8
u4 + C =

1

8
(x2 + 4x− 5)4 + C

c. The first integral is written as a power, while the second integral uses the substitution u = 3x−2,
so du = 3 dx.∫ (

3x−2 + 3 cos(3x− 2)
)
dx = 3

∫
x−2dx+

∫
cos(u)du

= 3
x−1

−1
+ sin(u) + C = − 3

x
+ sin(3x− 2) + C

d. Let u = −x2, so du = −2x dx.∫ (
2x e−x2 − 4x

)
dx = −

∫
eu du− 4

x2

2

= −eu − 2x2 + C = −e−x2 − 2x2 + C

e. Rewrite the second integral as a power, then∫ (
4e−2x +

3√
x

)
dx = −2e−2x + 3

∫
x−1/2dx

= −2e−2x + 6
√
x+ C

f. Let u = sin(4x), so du = 4 cos(4x), dx.∫ (
7

x
+ 8 sin3(4x) cos(4x)

)
dx = 7 ln(x) + 2

∫
u3 du

= 7 ln(x) +
u4

2
+ C = 7 ln(x) +

sin4(4x)

2
+ C

4. a. Both antiderivatives are standard for this problem

∫ 2π

0
(cos(t/4) + t) dt =

(
4 sin(t/4) +

t2

2

)∣∣∣∣∣
2π

t=0

= 4 sin(π/2) +
4π2

2
− 4 sin(0)− 0 = 4 + 2π2



b. The first integral uses the substitution u = x2 + 1, so du = 2x dx with endpoints u = 2 when
x = 1 and u = 5 when x = 2, while the second antiderivative is the natural logarithm∫ 2

1

(
6x

x2 + 1
+

2

x

)
dx = 3

∫ 5

2

du

u
+ 2 ln |x||2x=1

= 3 ln |u||5u=2 + 2 ln(2)− 2 ln(1)

= 3 ln(5)− 3 ln(2) + 2 ln(2) = 3 ln(5)− ln(2) = ln(62.5) ≈ 4.135

c. Let u = 25− x2, so du = −2x dx with endpoints u = 25 when x = 0 and u = 0 when x = 5.∫ 5

0
x
√
25− x2 dx = − 1

2

∫ 0

25
u

1
2du

= − 1

2

(
u

3
2

3
2

)∣∣∣∣∣
0

u=25

= − 1

3

(
0

3
2 − 25

3
2

)
=

125

3

d. For the first integral, let u = ln(x), so du = dx/x with endpoints u = 0 when x = 1 and u = ln(4)
when x = 4. The second integral is a power rule.∫ 4

1

(
ln(x)

x
+

3√
x

)
dx =

∫ ln(4)

0
u du+ 3

∫ 4

1
x−

1
2dx

=
u2

2

∣∣∣∣∣
ln(4)

u=0

+ 6x
1
2

∣∣∣4
1

=
1

2
(ln(4))2 + 6(2− 1) = 6 + 2 (ln(2))2

5. a. This is a time varying differential equation. It can be written

y(t) =

∫ (
1 + e−t

)
dt = t− e−t + C.

The initial condition y(0) = 3 = −1+C, which implies C = 4. Hence, the solution is y(t) = t− e−t + 4.

b. This is a time varying differential equation. It can be written

y(t) =

∫ (
2− 4

t

)
dt = 2 t− 4 ln(t) + C.

The initial condition y(1) = 5 = 2+C, which implies C = 3. Hence, the solution is y(t) = 2 t− 4 ln(t) + 3.



c. This is a separable differential equation. It can be written∫
2y dy =

∫
3t2 dt or y2 = t3 + C.

It follows that y(t) = ±
√
t3 + C. The initial condition y(0) = 4 =

√
C, which implies C = 16.

Hence, the solution is
y(t) =

√
t3 + 16.

d. This is a linear differential equation, which can be written

dy

dt
= −0.02(y − 100).

With the substitution z(t) = y(t)− 100, we have

dz

dt
= −0.02z, z(0) = y(0)− 100 = −95.

Thus, z(t) = −95 e−0.02 t. It follows that

y(t) = 100− 95 e−0.02 t.

e. This is a separable differential equation. It can be written∫
dy

y
=

∫
2 t dt

t2 + 1
.

The right integral uses the substitution u = t2 + 1, so du = 2 t dt. Hence,

ln |y(t)| =

∫
du

u
= ln |u|+ C = ln(t2 + 1) + C

y(t) = eln(t
2+1)+C = A(t2 + 1),

where A = eC . The initial condition y(0) = 3 = A, which implies A = 3. Hence, the solution is

y(t) = 3(t2 + 1).

f. This is a separable differential equation. It can be written∫
dy

y
=

∫
(2− 0.2t)dt or ln |y| = 2 t− 0.1 t2 + C.

It follows that y(t) = e2 t−0.1 t2+C = Ae2 t−0.1 t2 with A = eC . The initial condition y(0) = 10 = A,
which implies A = 10. Hence, the solution is

y(t) = 10 e2 t−0.1 t2 .



g. This is a time-varying differential equation, so we integrate giving

y(t) =

∫
(4− 2 sin(2(t− 3)))dt = 4 t− 2

∫
sin(2(t− 3))dt.

With the substitution u = 2(t− 3) and du = 2 dt, we have

y(t) = 4 t−
∫

sin(u)du = 4 t+ cos(u) + C = 4 t+ cos(2(t− 3)) + C.

With the initial condition y(3) = 5, 12 + cos(0) + C = 5 or C = −8. It follows that

y(t) = 4 t+ cos(2(t− 3))− 8.

h. This is a separable differential equation. It can be written∫
eydy =

∫
etdt or ey = et + C.

It follows that y(t) = ln(et + C). The initial condition y(0) = 6 = ln(1 + C), which implies
C = e6 − 1. Hence, the solution is

y(t) = ln(et + e6 − 1).

6. a. The solution with the population in millions is given by

P (t) = 50.2ert,

where t is in years after 1880. From the population in 1890, we have 62.9 = 50.2e10r or e10r = 1.2530.
Thus, r = 0.02255. To find the time until the population doubles, we compute 100.4 = 50.2ert or
t = ln(2)/r ≈ 30.7. This suggests that the population of the U.S. doubles from 1880 around 1911,
assuming that the rate of growth stays constant.

b. The model predicts that the population in 1900 is

P (20) = 50.2e20r ≈ 78.8.

The error between the model and the actual population is

100
(P (20)− 76.0)

76.0
= 100

(78.8− 76.0)

76.0
= 3.7%.

7. a. The solution to the radioactive decay problem is

R(t) = 30e−kt.

With the half-life of 8 years, R(8) = 15 = 30e−8k or e8k = 2. Thus,

8k = ln(2) or k =
ln(2)

8
≈ 0.08664.



After 3 days,
R(3) = 30e−3k ≈ 23.13 mCi.

b. The length of time for the original 30 mCi of 131I to decay to 5 mCi of 131I satisfies R(t) = 5 =
30e−kt or ekt = 6. It follows that kt = ln(6) or

t =
ln(6)

k
≈ ln(6)

0.08664
≈ 20.68 days.

c. The (maximum) cumulative exposure with k = ln(2)
8 , which would include the patient and the

waste products, satisfies:

30

∫ 20

0
e−ktdt = −30

k
e−kt

∣∣∣∣20
0

=
240

ln(2)

(
1− e−5 ln(2)/2

)
= 285.04 mCi · day.

8. a. The solution to the white lead problem is P (t) = 10e−kt, where t = 0 represents 1970. From
the data at 1975, we have 8.5 = 10e−5k or e5k = 10/8.5 = 1.17647. Thus, k = 0.032504 yr−1. To
find the half-life, we compute 5 = 10e−kt, so t = ln(2)/k = 21.33 yr is the half-life of lead-210.

b. The differential equation can be written P ′ = −k(P − r/k), so we make the substitution
z(t) = P (t)− r/k. This leaves the initial value problem

z ′ = −kz, z(0) = P (0)− r/k = 10− r/k,

which has the solution z(t) = (P (0)− r/k)e−kt = P (t)− r/k. Thus, the solution is

P (t) =

(
10− r

k

)
e−kt +

r

k
= 2.3086e−kt + 7.6914,

where k = 0.032504. In the limit,

lim
t→∞

P (t) = 7.6914 disintegrations per minute of 210Pb.

9. a. The differential equation describing the temperature of the tea satisfies

H ′ = −k(H − 21), H(0) = 85 and H(5) = 81.

Make the substitution z(t) = H(t)− 21, which gives the differential equation

z ′ = −kz, z(0) = H(0)− 21 = 64.

The solution becomes z(t) = 64e−kt = H(t)− 21 or

H(t) = 64e−kt + 21.

To find k, we solve H(5) = 81 = 64e−5k + 21 or e5k = 64/60 = 1.0667. Thus, k = 0.012908 min−1.
The water was at boiling point when 64e−kt + 21 = 100 or e−kt = 79/64. It follows that t =
− ln(79/64)/k = −16.3 min. This means that the talk went 16.3 min over its scheduled ending.



b. To obtain a temperature of at least 93◦C, then we need to find the time that satisfies H(t) =
93 = 64e−kt + 21, so e−kt = 72/64 = 1.125. Solving for t gives t = − ln(72/64)/k = −9.125 min. It
follows that you must arrive at the hot water within 16.3− 9.1 = 7.2 min of the scheduled end of
the talks.

10. a. Substituting the parameters into the differential equation gives

c ′ =
1

106
(22000− 2000c) = −0.002(c− 11).

We make the substitution z(t) = c(t)−11, which gives the initial value problem z ′ = −0.002z with
z(0) = c(0)− 11 = −11. The solution of this differential equation is z(t) = −11e−0.002t = c(t)− 11,
so

c(t) = 11− 11e−0.002t.

b. Solve the equation c(t) = 11 − 11e−0.002t = 5, so e0.002t = 11/6 or t = 500 ln(11/6) =
303.1 days. The limiting concentration

lim
t→∞

c(t) = 11.

The graph is below.
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Problem 10

11. Integrating the acceleration due to gravity, we see that the velocity is given by v(t) = v0 − 32 t.
Similarly, the height is the integral of the velocity, so h(t) =

∫
(v0 − 32 t)dt = −16 t2 + v0t, where

the integration constant is zero, since the initial height is zero. The maximum height occurs when
the velocity is zero, so tmax = v0/32. But

h(v0/32) =
v20
32

− v20
64

=
v20
64

= 8.

It follows that v20 = 512 or v0 = 16
√
2, which is the initial upward velocity. The length of time

that the kangaroo stays in the air is twice the length of time to reach the maximum, so it stays in
the air for thang =

√
2 sec.



12. The differential equation is separable, so write∫
T− 1

2dT = k

∫
dt or 2T

1
2 (t) = kt+ C.

It follows that

T (t) =

(
kt+ C

2

)2

.

The initial condition T (0) = 1 implies C = 2, so T (t) =
(
kt
2 + 1

)2
. Since T (4) =

(
4 k
2 + 1

)2
= 25,

2 k + 1 = 5 or k = 2. Thus, the solution for the spread of the disease in this orchard is

T (t) = (t+ 1)2.

When t = 10, T (10) = 121.

13. a. The solution of the Malthusian growth equation for Japan is J(t) = 116.8ert (in millions)
from the differential equation and the population in 1980 with t = 0 corresponding to 1980. Since
the population in 1990 is 123.5 (million), we have J(10) = 123.5 = 116.8e10r. Thus,

e10r =
123.5

116.8
≈ 1.0574 or 10 r = ln(1.0574) ≈ 0.055778 or r = 0.005578.

The doubling time is computed by solving J(t) = 233.6 = 116.8ert, so

ert = 2 or rt = ln(2) ≈ 0.69315 or t =
ln(2)

r
≈ 124.3 yr

b. The differential equation for Bangladesh is given by

dB

dt
= kB, B(0) = 88.1.

A similar calculation is used for Bangladesh, so B(t) = 88.1ekt with B(10) = 110.1 = 88.1ekt.
Solving for the growth constant k as above, we find

k =
1

10
ln

(
110.1

88.1

)
≈ 0.02229.

The population in 2000 is found by evaluating

B(20) = 88.1e20k ≈ 137.6 million.

c. The populations of Japan and Bangladesh are equal when B(t) = J(t), so

88.1ekt = 116.8ert or
ekt

ert
=

116.8

88.1
≈ 1.3258 or e(k−r)t = e0.016714t = 1.3258

0.016714t = ln(1.3258) ≈ 0.28199 or t =
0.28199

0.016714
≈ 16.87 years

It follows that these models predict that the population of Bangladesh exceeded the population of
Japan in 1997.



14. The differential equation with the information in the problem is given by:

dH

dt
= −k(H − 25), H(0) = 35,

where t = 0 is 7 AM. We make the change of variables z(t) = H(t)−25, so z(0) = 10. The problem
now becomes

dz

dt
= −kz, z(0) = 10,

which has the solution
z(t) = 10 e−kt or H(t) = 25 + 10 e−kt.

From the information at 9 AM, we see

H(2) = 33.5 = 25 + 10 e−2k or e2k =
10

8.5
or k =

ln
(

10
8.5

)
2

= 0.081259.

It follows that
H(t) = 25 + 10 e−0.081259t.

The time of death is found by solving

H(td) = 39 = 25 + 10 e−0.081259td or e−0.081259td =
14

10
or td = − ln(1.4)

0.081259
= −4.1407.

It follows that the time of death is 4 hours and 8.4 min before the body is found, which gives the
time of death around 2:52 AM.

15. a. Let A(t) be the amount of drug in the body, then the concentration of the drug is given by
c(t) = A(t)/10. We first write the differential equation for the change in amount of drug in the
body

dA

dt
= amt entering − amt leaving = 1(0.2)− 1 · c.

The differential equation for the concentration of drug satisfies

dc

dt
= 0.02− 0.1c = −0.1(c− 0.2), c(0) = 0.

Let z(t) = c(t)− 0.2, then we transform the linear differential equation above into

dz

dt
= −0.1z, z(0) = −0.2.

which has the solution

z(t) = −0.2 e−0.1t or c(t) = 0.2− 0.2 e−0.1t.

b. The tumor responds when c(t) = 0.1, solving c(t) = 0.1 = 0.2 − 0.2 e−0.1t or e0.1t = 2. It easily
follows that the time for a response to begin is t = 10 ln(2) = 6.9315 days.

c. If the body metabolizes 0.05 µg/day, then the new equation for the amount of drug in the body
is

dA

dt
= 1(0.2)− 0.05− 1 · c = 0.15− c.



The differential equation for the concentration of drug satisfies

dc

dt
= 0.015− 0.1c = −0.1(c− 0.15), c(0) = 0.

The limiting concentration is reached when dc
dt = 0. Substituting this in the differential equation

above, we see
0 = −0.1(c− 0.15) or c = 0.15.

It follows that
lim
t→∞

c(t) = 0.15 µg/l.

16. a. The solution of the Malthusian growth model is B(t) = 1000 e0.01 t. The population doubles
when the bacteria reaches 2000, so 1000 e0.01 t = 2000 or e0.01 t = 2. Thus, 0.01 t = ln(2) or
t = 100 ln(2) ≈ 69.3 min for the population to double.

b. The model with time-varying growth is a separable differential equation, so

dB

dt
= 0.01(1− e−t)B or

∫
dB

B
= 0.01

∫
(1− e−t)dt

ln |B(t)| = 0.01(t+ e−t) + C or B(t) = Ae0.01(t+e−t),

where A = eC . With the initial condition, B(0) = 1000 = Ae0.01 or A = 1000 e−0.01. Thus, the
solution to this time-varying growth model is

B(t) = 1000 e0.01(t+e−t−1).

c. The Malthusian growth model gives B(5) = 1051 and B(60) = 1822, while the modified growth
model gives B(5) = 1041 and B(60) = 1804.

17. a. The solution to the Malthusian growth model is given by P (t) = 100 e0.2 t. This population
doubles when 100 e0.2 t = 200 or e0.2 t = 2, so t = 5 ln(2) ≈ 3.466 yrs.

b. This model, including the modification for habitat encroachment, is a separable differential
equation. It can be written∫

dP

P
=

∫
(0.2− 0.02t)dt or ln |P | = 0.2 t− 0.01 t2 + C.

It follows that P (t) = e0.2 t−0.01 t2+C = Ae0.2 t−0.01 t2 , where A = eC . The initial condition P (0) =
100 = A, which implies A = 100. Hence, the solution satisfies

P (t) = 100 e0.2 t−0.01 t2 .

c. We examine the differential equation in Part b and see that dP
dt = 0 when 0.2 − 0.02t = 0,

which implies that t = 10. Thus, the maximum of population is P (10) = 100 e ≈ 271.8. If we
solve P (t) = 100 e0.2 t−0.01 t2 = 100, then this is equivalent to e0.2 t−0.01 t2 = 1 or 0.2 t − 0.01 t2 =
−0.01 t(t − 20) = 0. Thus, either t = 20 (or 0), so the population returns to 100 after 20 years.
The graph of the population can be seen below.
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Problem 17 Problem 18

18. a. This population of cells in a declining medium satisfies a separable differential equation,
which can be written∫

P−2/3dP =

∫
0.3 e−0.01tdt or 3P 1/3(t) = −30 e−0.01t + 3C.

It follows that P 1/3(t) = −10 e−0.01t +C, so P (t) =
(
C − 10 e−0.01t

)3
. The initial condition P (0) =

1000 = (C − 10)3, which implies C = 20. The solution is given by

P (t) =
(
20− 10e−0.01 t

)3
.

b. This population doubles when P (t) =
(
20− 10e−0.01 t

)3
= 2000, so 20 − 10e−0.01 t = 10 3

√
2 or

e−0.01 t = 2− 3
√
2. It follows that t = 100 ln

(
1

2− 3√2

)
≈ 30.1 hr. For large t, limt→∞ e−0.01 t = 0, so

limt→∞ P (t) = 203 = 8000. Thus, there is a horizontal asymptote at P = 8000, so the population
tends towards this value. The graph of the population can be seen above.

19. a. The change in amount of phosphate, P (t), is found by adding the amount entering and
subtracting the amount leaving.

dP

dt
= 200 · 10− 200 · c(t),

where c(t) is the concentration in the lake with c(t) = P (t)/10, 000. By dividing the equation by
the volume, the concentration equation is given by

dc

dt
= 0.2− 0.02c = −0.02(c− 10), c(0) = 0.

With the substitution z(t) = c(t)− 10, the equation above reduces to the problem

dz

dt
= −0.02z, z(0) = −10,

which has the solution z(t) = −10 e−0.02 t. Thus, the concentration is given by

c(t) = 10− 10 e−0.02 t.

b. The differential equation describing the growth of the algae is given by

dA

dt
= 0.5(1− e−0.02 t)A2/3.



By separating variables, we see∫
A−2/3dA = 0.5

∫
(1− e−0.02 t)dt

3A1/3(t) = 0.5(t+ 50 e−0.02 t) + C

A(t) =

(
0.5(t+ 50 e−0.02 t) + C

3

)3

From the initial condition A(0) = 1000, we have 1000 =
(
25+C

3

)3
. It follows that C = 5, so

A(t) =

(
t+ 50 e−0.02 t + 10

6

)3

.

20. a. The equation for the weight of the swordfish is a linear differential equation, so we first write

dw

dt
= 0.015(1000− w) = −0.015(w − 1000).

We make the substitution z(t) = w(t) − 1000, giving the differential equation dz
dt = −0.015z with

the initial condition z(0) = w(0)− 1000 = −1000. Thus, z(t) = −1000 e−0.015 t. It follows that

w(t) = 1000− 1000 e−0.015 t.

The swordfish reaches 70 kg when 1000 − 1000 e−0.015 t = 70 or e0.015 t = 1000
930 . Thus, it takes

t = 200
3 ln

(
100
93

)
≈ 4.838 yrs to reach maturity.

b. The mercury (Hg) accumulates in swordfish according to the differential equation, which is a
time varying equation. It follows that upon integration that

H(t) = 0.01

∫
(1000− 1000 e−0.015 t)dt = 10t+

2000

3
e−0.015 t + C.

With the initial condition H(0) = 0, the solution becomes

H(t) = 10t+
2000

3
e−0.015 t − 2000

3
.

From this equation, it follows that H(3) = 0.665 and H(20) = 27.2 mg of Hg.

c. The formula for the concentration of Hg, c(t) (in µg/g) in swordfish satisfies

c(t) = H(t)/w(t) =
10t+ 2000

3 e−0.015 t − 2000
3

1000− 1000 e−0.015 t
.

It follows that c(3) = 0.0151 and c(20) = 0.105 µg/g.

21. a. Write the differential equation dw
dt = −0.2(w − 80), then z(t) = w(t)− 80. It follows that

dz

dt
= −0.2z, z(0) = −80,



with the solution z(t) = −80e−0.2t = w(t)− 80. Thus,

w(t) = 80
(
1− e−0.2t

)
.

For a 40 kg alligator, w(t) = 40 = 80
(
1− e−0.2t

)
or 40 = 80e−0.2t, so e0.2t = 2 or 0.2t = ln(2).

Thus, t = 5 ln(2) ≈ 3.47 years. b. The pesticide accumulation is given by

dP

dt
= 600

(
80
(
1− e−0.2t

))
, P (0) = 0.

The solution is given by

P (t) = 48, 000

∫ (
1− e−0.2t

)
dt = 48, 000

(
t+ 5e−0.2t

)
+ C.

The initial condition gives P (0) = 0 = 240, 000 + C, so C = −240, 000. Hence,

P (t) = 48, 000
(
t+ 5e−0.2t

)
− 240, 000.

The amount of pesticide in the alligator at age 5 is P (5) = 48, 000
(
5 + 5e−1

)
− 240, 000 =

240, 000e−1 ≈ 88291 µg.

c. The pesticide concentration for a 5 year old alligator is

c(5) =
P (5)

1000w(5)
=

88, 291

80, 000 (1− e−1)
≈ 1.75 ppm.

22. a. The differential equation can be written:

dc

dt
= −0.004(c− 15),

so we make the substitution z(t) = c(t) − 15. Since c(0) = 0, it follows that z(0) = −15. The
solution of the substituted equation is given by:

z(t) = −15e−0.004t = c(t)− 15

c(t) = 15− 15e−0.004t.

The limiting concentration satisfies:

lim
t→∞

c(t) = 15 mg/m3.

b. We begin by separating variables, which gives:∫
dc

c− 15
= −0.001

∫
(4− cos(0.0172t)) dt

ln(c(t)− 15) = −0.001

(
4t− sin(0.0172t)

0.0172

)
+ C

c(t) = 15 +Ae−0.001
(
4t− sin(0.0172t)

0.0172

)



It is easy to see that the initial condition c(0) = 0 implies that A = −15. Thus, the solution to this
problem is given by:

c(t) = 15− 15 e−0.001(4t−58.14 sin(0.0172t))

23. a. We separate variables, so∫
M−3/4dM = −k

∫
dt or 4M1/4 = −kt+ 4C

M(t) =

(
C − k

4
t

)4

From the initial condition, M(0) = 16 = C4, it follows that C = 2. From the information that
M(10) = 1 = (2− 10k/4)4, we have k = 0.4, so

M(t) = (2− 0.1t)4.

The fruit vanishes in 20 days.

b. We separate variables again to find:∫
M−3/4dM = −0.8

∫
e−0.02tdt or 4M1/4 =

0.8

0.02
e−0.02t + 4C

M(t) =
(
10e−0.02t + C

)4
.

From the initial condition, M(0) = 16 = (10 + C)4, it follows that C = −8, so

M(t) =
(
10e−0.02t − 8

)4
.

Solving 10e−0.02t = 8, which is when the fruit vanishes, we find t = 50 ln(5/4). Thus, the fruit
vanishes in 11.157 days.

24. a. The general solution to the Malthusian growth problem with the initial condition P (0) = 60
is

P (t) = 60 ert.

We are given that 2 weeks later P (2) = 80 = 60 e2r, so it follows that r = 1
2 ln

(
4
3

)
= 0.14384. This

gives the solution:
P (t) = 60 e0.14384 t.

It is easy to see that the population doubles when 120 = 60 e0.14384 t, so 0.14384 td = ln(2) or the
doubling time is

td =
ln(2)

r
= 4.819 weeks.

b. We begin by separating variables, so the general solution satisfies:∫
dP

P
=

∫
(a− b t) dt or ln(P (t)) = a t− bt2

2
+ C or P (t) = eCea t−

bt2

2 .



Since the initial value is P (0) = 60, it follows that eC = 60. Thus,

P (t) = 60 ea t−
bt2

2 .

We now use the data at t = 2 and 4 weeks. It follows from the solution above that

80 = 60 e2 a−2 b

90 = 60 e4 a−8 b.

We rearrange the terms and take logarithms of both sides to get

2 a− 2 b = ln

(
4

3

)
4 a− 8 b = ln

(
3

2

)
.

We solve these equations simultaneously to obtain

2 b = ln

(
4

3

)
− 1

2
ln

(
3

2

)
,

so b = 0.042475. But a = b+ 1
2 ln(4/3) or a = 0.1863. It follows that the solution is

P (t) = 60 e0.1863 t−0.021237 t2 .

The population reaches a maximum when the derivative is zero, which occurs when tmax = a
b =

4.3865, so the maximum population is P (tmax) = 90.286.

25. a. From the equation of the line, y = 3 − x, the x and y-intercepts are easily seen to be (3, 0)
and (0, 3), respectively. Also, the slope of the line is m = −1. The equation for the parabola is
y = 6 + x − x2 = −(x + 2)(x − 3). From this it is easy to see that the x-intercepts are (−2, 0)
and (3, 0), while the y-intercept is (0, 6). The vertex of the parabola has its x-coordinate halfway

between the x-intercepts, thus the vertex is
(
1
2 , 6

1
4

)
.

Setting the two equations equal to each other, 3−x = 6+x−x2 or x2−2x−3 = (x+1)(x−3) = 0.
We find that the points of intersection are (−1, 4) and (3, 0). The graph can be seen below. The
area of interest is enclosed in the solid lines.

b. The area between the two curves is given by∫ 3

−1

(
6 + x− x2 − (3− x)

)
dx =

∫ 3

−1
3 + 2x− x2dx

=

(
3x+ x2 − x3

3

)∣∣∣∣∣
3

x=−1

= 9 + 9− 9 + 3− 1− 1

3
=

32

3
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Problem 25 Problem 26

26. a. The maximum population for P (t) = 54+24 t− 4 t 2 is found by differentiating with P ′(t) =
24− 8 t, which is zero at t = 3. This gives a maximum population of P (3) = 90.

b. The maximum population for Q(t) = 54 + 34 sin
(
π
6 t
)
occurs when t = 3, which is when the

argument of the sine function is at π/2. This gives a maximum of Q(3) = 88. A graph of the
function (along with the other model and the data) is above.

c. The average of the data is 54+73+85+89+86+75+53
7 = 73.57. The averages from the integrals are

Pave =
1

6

∫ 6

0
P (t)dt =

1

6

∫ 6

0
(54 + 24 t− 4 t2)dt

=
1

6

(
54 t+ 12 t2 − 4

3
t3
)∣∣∣∣6

x=0

=
1

6
(54(6) + 72(6)− 48(6)) = 78

and

Qave =
1

6

∫ 6

0
Q(t)dt =

1

6

∫ 6

0
(54 + 34 sin(1/6π t))dt

=
1

6

(
54 t− 204

π
cos(1/6π t)

)∣∣∣∣6
x=0

=
1

6

(
54(6)− 204

π
(cos(π)− cos(0))

)
= 54 +

68

π
= 75.65.


