
Spring 2004 Math 336 Take Home Exam 1

1. Below are data on the population of a species of moth that inhabits an island and breeds
annually (then dies). If its offspring have a survival rate r, and there is a net (constant) influx
of new moths from surrounding islands entering at a rate µ, then the population model has the
form

Pn+1 = rPn + µ.

a. From the data below determine the updating function for this population, i.e., find r and
µ. Then use this updating function to find the population of moths in 1993, 1994, and 1995.
Write a closed form solution to this problem, i.e., a solution Pn that depends only on P0, r, µ,
and n.

b. Find all equilibria for this model. Based on your iterations in Part a, what is the stability
of the equilibria? What does this model predict will ultimately happen to the population of
moths?

c. Graph the updating function along with the identity map, Pn+1 = Pn. Determine all
points of intersection.

Year Moths

1990 6000

1991 5500

1992 5100

2. a. Hassell’s model is often used to study populations of insects. The genereal model is given
by

Pn+1 = H(Pn) =
aPn

(1 + bPn)c
,

where a > 1, b, and c are positive parameters. Find all equilibria for this general model.

b. Compute H ′(P ), then evaluate this derivative at the equilibria. What is the stability
of the smallest equilibrium? (Recall a > 1.) Describe the possible qualitative behaviors of the
largest equilibrium when c = 1, 2, and 4.

3. In 1946, A. C. Crombie studied a number of populations of insects with the amount of food
supplied strictly regulated. One study examined Oryzaephilus surinamensis, the saw-tooth
grain beetle. The population data are given in the table below:



Week Population

0 2

2 2

4 4

5 33

6 41

7 53

9 74

11 127

13 190

15 203

17 305

19 385

21 480

23 405

25 425

27 425

29 450

33 415

37 425

39 415

41 420

a. The experiments were designed to satisfy the conditions for logistic growth. The discrete
logistic growth equation is given by

Pn+1 = F (Pn) = Pn + rPn

(

1− Pn
M

)

,

where n is in weeks. From the data above, find the best values of the parameters P0, M , and r,
using the least squares best fit to the data. Write the values of these parameters and the formula
for the discrete logistic growth model that best fits the saw-tooth grain beetle population in the
study above. Also, give the value of the sum of square error between the data and the model
with the best fitting parameters. Use Excel to create a graph that shows the data (as points
only) and the best fitting model (as straight lines connecting each week of simulated data).
Record the simulated populations for weeks 5, 10, 15, 20, 25, and 35.

b. For the discrete logistic growth model found above, determine all equilibria. Use the
techniques from class to determine the stability of these equilibria, giving the values of the
derivatives at each of the equilibria.

c. Above we noted that Hassell’s model is usually applied to insect populations. Apply
Hassell’s model in the form:

Pn+1 = H(Pn) =
aPn

(1 + bPn)c
,

where n is in weeks. From the data above, find the best values of the parameters P0, a, b, and
c, using the least squares best fit to the data. Write the values of these parameters and the
formula for Hassell’s growth model that best fits the saw-tooth grain beetle population in the
study above. Again, give the value of the sum of square error between the data and the model



with the best fitting parameters. (Note that you may want to use the option on Excel’s solver
that forces the parameters to be positive.) Which model better fits the data according to the
sum of square error? Use Excel to create another graph that shows the data (as points only)
and the best fitting Hassell’s model (as straight lines connecting each week of simulated data).
Record the simulated populations from Hassell’s model for weeks 5, 10, 15, 20, 25, and 35.

d. For Hassell’s growth model, determine all equilibria. Use the techniques from class to
determine the stability of these equilibria, giving the values of the derivatives at each of the
equilibria.

e. Take the data for Oryzaephilus surinamensis, the saw-tooth grain beetle, and plot Pn+1

vs. Pn. To this graph add the identity map and the updating functions F (Pn) (logistic growth
function) and H(Pn) (Hassell’s growth function). Graph the functions for 0 ≤ Pn ≤ 1000 with
range 0 ≤ Pn+1 ≤ 500. How do these functions compare, especially near the data? Find the
Pn-intercepts for both F (Pn) and H(Pn). Find the maximum for both F (Pn) and H(Pn). Do
either of these functions have vertical or horizontal asymptotes? List the asymptotes.

4. The populations of 12 groups of birds were surveyed over 5 years. The researchers measured
the birth rates, death rates, and recruitment rates for each of the 12 survey groups. The bird
population is assumed to follow the model

Pn+1 = (1 + bi − di)Pn + ri.

Below is a table summarizing their results (and these data can be acquired from a hyperlink
on the webpage).

a. Compute the mean, median, and variance for the parameters bi, di, and ri. Create a
histogram of the death rate, di, data making the bins a width of 0.05. What distribution best
matches these data? Also, create a box-plot for the data on the recruitment values, ri.

b. Starting with P0 = 200, use the mean values of bi, di, and ri to simulate the bird
population for 5 years. Find the equilibria for this model and determine their stability. Repeat
the simulation and qualitative analysis (equilibria and stability) using the median values of bi,
di, and ri instead.

c. Starting with P0 = 200, use the data in the table below to find the population for each
of the 5 years for Group 5 and Group 10.



Year Group 1 Group 2 Group 3

bi di ri bi di ri bi di ri
1 0.18 0.34 46 0.10 0.35 58 0.22 0.41 37

2 0.30 0.26 55 0.30 0.31 35 0.34 0.02 54

3 0.03 0.36 40 0.18 0.24 55 0.29 0.53 40

4 0.11 0.36 49 0.14 0.44 44 0.06 0.33 47

5 0.05 0.26 62 0.12 0.18 62 0.14 0.52 53

Group 4 Group 5 Group 6

bi di ri bi di ri bi di ri
1 0.03 0.28 37 0.15 0.64 36 0.17 0.07 36

2 0.21 0.38 39 0.17 0.15 41 0.17 0.07 51

3 0.17 0.21 37 0.31 0.18 47 0.19 0.46 45

4 0.19 0.23 32 0.16 0.10 50 0.36 0.56 32

5 0.27 0.17 44 0.39 0.40 34 0.15 0.47 62

Group 7 Group 8 Group 9

bi di ri bi di ri bi di ri
1 0.33 0.26 60 0.07 0.30 42 0.24 0.51 50

2 0.27 0.47 48 0.35 0.34 40 0.19 0.08 46

3 0.16 0.37 43 0.25 0.46 42 0.17 0.40 36

4 0.26 0.43 51 0.08 0.56 37 0.13 0.26 51

5 0.08 0.53 37 0.17 0.31 47 0.20 0.68 52

Group 10 Group 11 Group 12

bi di ri bi di ri bi di ri
1 0.20 0.38 36 0.17 0.42 42 0.38 0.45 38

2 0.06 0.20 42 0.14 0.22 49 0.01 0.58 51

3 0.32 0.45 42 0.10 0.40 44 0.15 0.58 41

4 0.26 0.49 35 0.24 0.15 40 0.27 0.43 43

5 0.25 0.40 43 0.09 0.43 34 0.11 0.19 46


