Fall 2021 Math 537 Lecture Activity Cauchy Solutions

1. (4pts) In lecture we showed that a 27 order Cauchy-Euler problem with repeated roots, r = 7
had the general solution:

y(t) = t" (c1 + c2In(?)).

Now consider the 3"¢ order differential operator L by

Lly] = t*y" + at’y” + Bty + vy = 0, (1)
where the auwiliary equation has three equal roots, so F(r) = (r — r1)3. Following the same
operation as seen in the lecture notes, we have

gL[t’"] = 2[t"F(r)] = (r—r)3" In(t) + 3(r — r)%t"
or or ’
which is clearly zero when r = r;. However,

;L[tr] =L [;T(t’“)] = L[t" In(t)],

which must be zero when r = 71, showing that y»(t) = ¢} In(¢) is a second linearly independent
solution. Taking a second partial derivative gives:

o " i " 3y 2 2,7 r
%L[t | = W[t F(r)=(r—r1)’t (ln(t)) +6(r —r1) %" In(t) + 6(r — r)t",
which again must be zero when r = r;. Since

gﬂL[t’"] = ;L[t’" In(t)] = L {;(t’“) ln(t)] — " (In(t))?,

which must be zero when r = r1, showing that y3(¢) = t{(ln(t))2 is a third linearly independent
solution. It follows that the general solution to (1) is given by:

y(t) = " <c1 + oo In(t) + Cg(ln(t))2).

2. (4pts) With the Cauchy-Euler method of taking y(t) = ¢", the 3"¢ order linear homogeneous
ODE given by:
3y +9t%y" + 19ty + 8y = 0,

has the auzxiliary equation given by:
Fry=r(r—=1)0F—=2)+90@ —1)+19r +8 =73 +6r> +12r + 8 = (r + 2)> = 0.

It follows that ;1 = —2 is a triple root of the auxiliary equation. From Problem 1, it follows that
the general solution to this problem is given by:

y(t) = t%(cl + coln(t) + 03(ln(t))2).



3. (4pts) Reduction of Order (Jean D’Alembert (1717-1783)): If y1(z) is known for the linear
ODE:
y" +p)y’ +qlz)y =0,

then attempt a solution of the form y(x) = v(x)y; () with y1 (z) # 0. Since y;1(x) is a known solution
to the original equation, it follows that y1” + p(z)y1’ + ¢(x)y1 = 0. With y(x) = v(x)y1(z), then

y'() =v'(@)yi(z) +v(@)yi(z) and y"(z) =20"(2)y1(2) +v"(@)yi(2) +v(@)y](2).
These are substituted into the original equation, so
20" (2)y () + 0" (2)y1(2) + v(@)y (@) + pl)v(@)yi(2) + p(2)v(2)y 1 (2) + a(@)v(z)y1(2) =

This reduces to
o @)y (@) + v’ [ple)y () + 294 ()] = 0.

Now if we let w(xz) = v'(x), then:

/ o or w' = (ofa) 1 291@)Y
yi(x)w’(z) +w(z) (p(z)y(x) + 2y 7 (x)) =0 <p( )+ 2y1(96)> '

which is a linear 1% order ODE in w. Separate w and take the integral of both sides

In(w) = In(v) = —21In(y1) — /p(az) dx.
Exponentiating we have:
e~ [ p(@)da
dx HC)
It follows by integrating both sides of the equation that:

e—fp(:c) dx
v(z) = /de

Thus, the second linearly independent solution satisfies:

v 2y~ [ p)dr _

e—fp(a:)d$
() = y(w) = @) 1 (e) = (@) [ i
4. (4pts) a. Consider the following ODE:
zy" + (1 —=22)y" + (x — 1)y = 0. (2)

Show that y;(z) = e” is a solution to this differential equation.

T =y (x). Substituting into the original equation:

For yi(z) = €, we have y(z) = e
e + (1 —-2x)e* + (z—1)e* =e*(r+ox—-20+1—-1)=0,

so y1(x) is a solution.



b. Since y;(z) = e* is one solution to (2), we use the Reduction of Order method to find ya(z)
for (2). It follows that:

f(—%-i—?)da: -1 2z
y2(x) :ex/edx :ex/x ¢ dr = ¢ In|z|.

€2m €2m

We can show that these solutions make a fundamental set of solutions by showing that the Wron-
skian of the two are nonzero.

e’ e’ In(x) e
+< T
-~ x

W[yl 7y2] =

e’ €elIn(x)

We can see that W, .1 # 0 for all z, thus making y1,y2 a fundamental set of solutions.

Y1,Y2



