
Fall 2021 Math 537 HW 4 – Method of Frobenius

1. (8pts) Consider the initial-value problem

y′′ + p(x)y′ + q(x)y = 0, y(0) = y0, y′(0) = v0.

We assume a transformation of the form y = vY , so

y′ = vY ′ + v′Y and y′′ = vY ′′ + 2v′Y ′ + v′′Y,

which is substituted into the original equation. This gives

vY ′′ + 2v′Y ′ + v′′Y + p(x)
(
vY ′ + v′Y

)
+ q(x)vY = 0,

Y ′′ +

(
2v′

v
+ p

)
Y ′ +

(
v′′

v
+
pv′

v
+ q

)
Y = 0.

To eliminate the Y ′ term, we must have:

2v′

v
+ p(x) = 0 or

v′

v
= −1

2p(x).

Integrating both sides and exponentiating gives:

v(x) = e−
1
2

∫ x
0 p(s)ds.

It follows that

v′(x) = −p(x)

2
e−

1
2

∫ x
0 p(s)ds and v′′(x) =

(
−p
′(x)

2
+

(
p(x)

2

)2
)
e−

1
2

∫ x
0 p(s)ds.

To obtain the form Y ′′ +Q(x)Y = 0, we need:

Q(x) =
v′′

v
+ p(x)

v′

v
+ q(x),

Q(x) = −p
′(x)

2
+

(
p(x)

2

)2

+ p(x)

(
−p(x)

2

)
+ q(x),

Q(x) = −p
′(x)

2
− p2(x)

4
+ q(x).

From above we see

Y (0) =
y(0)

v(0)
= y0, since v(0) = e0 = 1,

and

y′(0) = v′(0)Y (0) + v(0)Y ′(0) = −p(0)y0
2

+ Y ′(0), since v′(0) = −p(0)

2
.

It follows that Y ′(0) = v0 + p(0)y0
2 .



2. a. (10pts) Consider the singular second order ODE given by:

2x2y ′′ + xy ′ + x2y = 0.

With P (x) = 2x2, Q(x) = x, and R(x) = x2, we see that

lim
x→0

xQ(x)

P (x)
= lim

x→0

x2

2x2
= 1

2 = p0,

and

lim
x→0

x2R(x)

P (x)
= lim

x→0

x4

2x2
= 0 = q0.

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

y(x) =
∞∑
n=0

anx
n+r, y ′ =

∞∑
n=0

an(n+ r)xn+r−1, y ′′ =
∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.

This also gives the indicial equation:

r(r − 1) + p0r + q0 = r2 − r + 1
2r = r

(
r − 1

2

)
= 0.

It follows that r = 0, 12 .

We substitute our power series into the ODE and obtain:

2
∞∑
n=0

an(n+ r)(n+ r − 1)xn+r +
∞∑
n=0

an(n+ r)xn+r +
∞∑
n=0

anx
n+r+2 = 0,

which shifting indices gives:

2
∞∑
n=0

an(n+ r)(n+ r − 1)xn+r +
∞∑
n=0

an(n+ r)xn+r +
∞∑
n=2

an−2x
n+r = 0.

When n = 0, we also obtain the indicial equation, a0
(
2r(r− 1) + r

)
= a0

(
r(2r− 1)

)
= 0. Note

that when n = 1, we have a1
(
2r(r + 1) + r + 1

)
= a1

(
2r2 + 3r + 1

)
= 0, which implies a1 = 0

for solutions of the indicial equation. For n ≥ 2, we obtain the recurrence relation:

an = − an−2
(n+ r)(2n+ 2r − 1)

.

The first solution satisfies r1 = 1
2 with a0 arbitrary and the recurrence relation, an = − an−2

n(2n+1) ,
so

y1(x) =
√
x
∞∑
n=0

anx
n,

where
a2 = − a0

2·5 , a4 = − a2
4·9 = a0

2·5·4·9 , a6 = − a4
6·13 = − a0

2·5·4·9·6·13 . . .

The second solution satisfies r2 = 0 with b0 arbitrary and the recurrence relation, bn = − bn−2

n(2n−1) ,
so

y2(x) =

∞∑
n=0

bnx
n,



where
b2 = − a0

2·3 , b4 = − b2
4·7 = b0

2·3·4·7 , b6 = − b4
6·11 = − b0

2·3·4·7·6·11 . . .

The complete solution satisfies:

y(x) = a0
√
x
(
1− 1

10x
2 + 1

360x
4 − 1

28080x
6 + 1

3818880x
8 +O

(
x10
))

+b0
(
1− 1

6x
2 + 1

168x
4 − 1

11088x
6 + 1

1330560x
8 +O

(
x10
))
.

b. (10pts) Consider the singular second order ODE given by:

x2y ′′ + 3xy ′ + (1 + x)y = 0.

With P (x) = x2, Q(x) = 3x, and R(x) = 1 + x, we see that

lim
x→0

xQ(x)

P (x)
= lim

x→0

3x2

x2
= 3 = p0,

and

lim
x→0

x2R(x)

P (x)
= lim

x→0

x2 + x3

x2
= 1 = q0.

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

y(x) =

∞∑
n=0

anx
n+r, y ′ =

∞∑
n=0

an(n+ r)xn+r−1, y ′′ =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.

This also gives the indicial equation:

r(r − 1) + p0r + q0 = r2 − r + 3r + 1 = (r + 1)2 = 0.

It follows that r = −1 is a double root.

We substitute our power series into the ODE and obtain:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r + 3

∞∑
n=0

an(n+ r)xn+r +

∞∑
n=0

anx
n+r +

∞∑
n=0

anx
n+r+1 = 0,

which shifting indices gives:

∞∑
n=0

an

(
(n+ r)(n+ r − 1) + 3(n+ r) + 1

)
xn+r +

∞∑
n=1

an−1x
n+r = 0.

When n = 0, we also obtain the indicial equation, a0(r + 1)2 = 0. For n ≥ 1, we obtain the
recurrence relation:

an = − an−1
(n+ r)(n+ r + 2) + 1

= − an−1
(n+ r + 1)2

, n = 1, 2, ...

The first solution satisfies r1 = −1 with a0 arbitrary and the recurrence relation, an = −an−1

n2 ,
so

y1(x) =
1

x

∞∑
n=0

anx
n,



where

a1 = −a0
1 , a2 = −a1

22
= a0

(2!)2
, a3 = −a2

32
= − a0

(3!)2
, . . . , an = (−1)n a0

(n!)2
, . . .

Thus, the first solution is given by:

y1(x) =
a0
x

∞∑
n=0

(−1)n

(n!)2
xn =

a0
x

(
1− x+

x2

(2!)2
− x3

(3!)2
+ ...

)
.

Since r = −1 is a repeated root, if we take y1(x) above with a0 = 1, then the second solution
has the form:

y2(x) = y1(x) ln(x) + xr
∞∑
n=1

bn(r)xn,

where bn(r) = a′n(r) and

a′n(−1) =
d

dr

[
(−1)n

((n+ r + 1)!)2

]∣∣∣∣
r=−1

.

From the lecture notes, we saw that if f(x) = (x− α1)
β1 · · · · · (x− αn)βn , then:

f ′(x)

f(x)
=

β1
x− α1

+ ...+
βn

x− αn
, for x 6= α1, α2, ..., αn.

Therefore,

a′n(−1) =

[(
−2

r + 2
+
−2

r + 3
+ ...+

−2

n+ r + 1

)
·
(

(−1)n

((n+ r + 1)!)2

)]∣∣∣∣
r=−1

=

(
−2

n∑
m=1

1

m

)(
(−1)n

(n!)2

)
= −2

(−1)n

(n!)2
·Hn,

where Hn =
∑n

m=1
1
m = 1 + 1

2 + 1
3 + 1

4 + ...+ 1
n . It follows that:

y2(x) = y1(x) ln(x)− 2

x

∞∑
n=1

(−1)nHnx
n

(n!)2

= y1(x) ln(x)− 2

x

[
−x+

x2

(2!)2

(
1 +

1

2

)
− x3

(3!)2

(
1 +

1

2
+

1

3

)
+

x4

(4!)2

(
1 +

1

2
+

1

3
+

1

4

)
+ ...

]

Alternately, one could take the form of y2(x) and insert that into the original ODE. The result
is:

∞∑
k=2

k(k − 1)bk+1x
k +

∞∑
k=1

3kbk+1x
k +

∞∑
k=0

bk+1x
k +

∞∑
k=1

bkx
k = −2xy′1 − 2y1.

Carefully matching the same powers of x gives the same coefficients bk listed above and below.

Combining these results give:

y(x) = a0
1
x

(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 − 1

14400x
5 + 1

518400x
6 +O

(
x7
))

+b0

(
ln(x)
x

(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 − 1

14400x
5 + 1

518400x
6 +O

(
x7
))

+ 1
x

(
2x− 3

4x
2 + 11

108x
3 − 25

3456x
4 + 137

432000x
5 − 49

5184000x
6 +O

(
x7
)) )

.



c. (10pts) Consider the singular second order ODE given by:

x2y ′′ + 4xy ′ + (2 + x)y = 0.

With P (x) = x2, Q(x) = 4x, and R(x) = 2 + x, we see that

lim
x→0

xQ(x)

P (x)
= lim

x→0

4x2

x2
= 4 = p0,

and

lim
x→0

x2R(x)

P (x)
= lim

x→0

2x2 + x3

x2
= 2 = q0.

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

y(x) =
∞∑
n=0

anx
n+r, y ′ =

∞∑
n=0

an(n+ r)xn+r−1, y ′′ =
∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.

This also gives the indicial equation:

r(r − 1) + p0r + q0 = r2 − r + 4r + 2 = (r + 1)(r + 2) = 0.

It follows that r1 = −1 and r2 = −2.

We substitute our power series into the ODE and obtain:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r + 4
∞∑
n=0

an(n+ r)xn+r + 2
∞∑
n=0

anx
n+r +

∞∑
n=0

anx
n+r+1 = 0,

which shifting indices gives:

∞∑
n=0

an

(
(n+ r)(n+ r − 1) + 4(n+ r) + 2

)
xn+r +

∞∑
n=1

an−1x
n+r = 0.

When n = 0, we also obtain the indicial equation, a0(r
2 + 3r + 2) = a0(r + 1)(r + 2) = 0. For

n ≥ 1, we obtain the recurrence relation:

an = − an−1
(n+ r)(n+ r + 3) + 2

= − an−1
(n+ r + 1)(n+ r + 2)

, n = 1, 2, ...

The first solution satisfies r1 = −1 with a0 arbitrary and the recurrence relation, an = − an−1

n(n+1) ,
so

y1(x) =
1

x

∞∑
n=0

anx
n,

where

a1 = −a0
2 , a2 = − a1

2·3 = a0
2!3! , a3 = − a2

3·4 = − a0
3!4! , . . . , an = (−1)n a0

n!(n+1)! , . . .

Thus, the first solution is given by:

y1(x) =
a0
x

∞∑
n=0

(−1)n

n!((n+ 1)!
xn =

a0
x

(
1− x

2!
+

x2

2!3!
− x3

3!4!
+ ...

)
.



Since r2 = −2 and r1 − r2 = 1 is an integer, we evaluate:

lim
r→r2

aN (r) = lim
r→−2

a1(r) =
−a0(r)

(r + 2)(r + 3)
.

Since a0 is an arbitrary, the limit is undefined, so a second series solution requires the logarithmic
term. We take y1(x) above with a0 = 1, then the second solution has the form:

y2(x) = y1(x) ln(x) + x−2
∞∑
n=0

bn(r)xn.

This is readily substituted into the original ODE giving:

2kxy′1 − ky1 +
∞∑
n=0

(n− 2)(n− 3)bnx
n−2 + 4ky1 +

∞∑
n=0

4(n− 2)bnx
n−2+

∞∑
n=0

2bnx
n−2 +

∞∑
n=0

bnx
n−1 = 0,

which is readily transformed into the equation:

∞∑
n=2

n(n− 1)bnx
n−2 +

∞∑
n=1

bn−1x
n−2 = −k(3y1 + 2xy′1)

= −k
(

3

x
− 3

2
+
x

4
− x2

48
+ · · · − 2

x
+
x

6
− x2

36
+ . . .

)
.

When n = 1, we have b0x
−1 = −kx−1 or k = −b0, where b0 is arbitrary. The series produced

from b1 reproduces the solution y1(x), so we take b1 = 0. The next few coefficients are readily
found:

n = 2 : 2b2 + b1 = −3b0
2

or b2 = −3b0
4
,

n = 3 : 6b3 + b2 =
b0
4

+
b0
6
, or b3 =

7b0
36
,

n = 4 : 12b4 + b3 = − 3b0
144
− b0

36
, or b4 = − 35b0

1728
.

Alternately, from the lecture notes, we compute k from:

k = lim
r→−2

(r + 2)a1(r) = lim
r→−2

(r + 2)(−1)

(r + 2)(r + 3)
= −1,

and calculate bn(r2) from:

bn(−2) =
d

dr
[(r + 2)an(r)]r=−2 .

Following the techniques similar to those in 2(b) are used to derive the coefficients bn.
Combining these results give:

y(x) = a0
1
x

(
1− 1

2x+ 1
12x

2 − 1
144x

3 + 1
2880x

4 − 1
86400x

5 + 1
3628800x

6 +O
(
x7
))

+b0

(
− ln(x)

x

(
1− 1

2x+ 1
12x

2 − 1
144x

3 + 1
2880x

4 − 1
86400x

5 + 1
3628800x

6 +O
(
x7
))

+ 1
x2

(
1− 3

4x
2 + 7

36x
3 − 35

1728x
4 + 101

86400x
5 − 7

162000x
6 +O

(
x7
)) )

.



3. a. (10pts) Bessel’s equation of order 1
2 satisfies:

x2y ′′ + xy ′ +
(
x2 − 1

4

)
y = 0,

and is important in solving PDEs with spherical geometry. With P (x) = x2, Q(x) = x, and
R(x) = x2 − 1

4 , we see that

lim
x→0

xQ(x)

P (x)
= lim

x→0

x2

x2
= 1 = p0, and lim

x→0

x2R(x)

P (x)
= lim

x→0

x4 − 1
4x

2

x2
= −1

4
= q0.

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

y(x) =
∞∑
n=0

anx
n+r, y ′ =

∞∑
n=0

an(n+ r)xn+r−1, y ′′ =
∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.

These are substituted into Bessel’s equation, giving:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r +

∞∑
n=0

an(n+ r)xn+r +

∞∑
n=0

anx
n+r+2 − 1

4

∞∑
n=0

anx
n+r = 0.

This becomes:

∞∑
n=0

(
(n+ r)(n+ r − 1) + (n+ r)− 1

4

)
anx

n+r +
∞∑
n=2

an−2x
n+r = 0,

or
∞∑
n=0

(
(n+ r)2 − 1

4

)
anx

n+r +

∞∑
n=2

an−2x
n+r = 0,

For n = 0 and n = 1, we see(
r2 − 1

4

)
a0 = 0 and

(
(r + 1)2 − 1

4

)
a1 = 0.

The first gives the indicial equation and is satisfied by r = ±1
2 . With either value of r, the

second equation implies that a1 = 0. For n ≥ 2, we have:(
(n+ r)2 − 1

4

)
an + an−2 = 0 or an = − an−2

(n+ r)2 − 1
4

,

which is the recurrence relation.

The first root, r1 = 1
2 , is inserted into the recurrence relation to give:

an = − an−2(
n+ 1

2

)2 − 1
4

= − an−2
n(n+ 1)

, n ≥ 2.

Since a1 = 0, it follows that a3 = a5 = · · · = a2m+1 = 0, m ≥ 0. Continuing we see that:

a2 = − a0
2 · 3

= −a0
3!
, a4 = − a2

4 · 5
=
a0
5!
, . . . a2m = (−1)m

a0
(2m+ 1)!

, m ≥ 1.



It follows that the first solution to this Bessel’s equation is:

y1(x) = a0x
1
2

(
1 +

∞∑
m=1

(−1)mx2m

(2m+ 1)!

)
= a0x

− 1
2

∞∑
m=0

(−1)m · x2m+1

(2m+ 1)!
= a0x

− 1
2 sin(x).

Since r1 − r2 = 1, we investigate:

lim
r→r2

aN (r) = lim
r→− 1

2

a1(r) = 0.

This limit exists, so the logarithmic form of y2(x) is unnecessary. It follows that the recurrence
relation for r2 satisfies:

bn(r2) = − bn−2(
n− 1

2

)2 − 1
4

= − bn−2
n(n− 1)

, n ≥ 2.

We note that b0 is arbitrary and b1 generates the same series as y1(x), so take b1 = 0. Thus,
b3 = b5 = · · · = b2m+1 = 0, m ≥ 0. It follows that:

b2 = −b0
2!
, b4 = − b2

3 · 4
=
b0
4!
, . . . b2m = (−1)m

b0
(2m)!

, m ≥ 1.

The second linearly independent solution is:

y2(x) = b0x
− 1

2

∞∑
m=0

(−1)mx2m

(2m)!
= b0x

− 1
2 cos(x).

The general solution to Bessel’s equation of order 1
2 is:

y(x) = x−
1
2

(
a0

∞∑
m=0

(−1)m · x2m+1

(2m+ 1)!
+ b0

∞∑
m=0

(−1)mx2m

(2m)!

)
= x−

1
2

(
a0 sin(x) + b0 cos(x)

)
.

b. (7pts) Consider the change of variables, y(x) = x−
1
2 v(x). It follows that

y ′(x) = x−
1
2 v ′(x)− 1

2x
− 3

2 v(x),

and
y ′′(x) = x−

1
2 v ′′(x)− x−

3
2 v ′(x) + 3

4x
− 5

2 v(x).

Substituting this into Bessel’s equation gives:

x
3
2 v ′′ − x

1
2 v′ + 3

4x
− 1

2 v + x
1
2 v′ − 1

2x
− 1

2 v + x
3
2 v − 1

4x
− 1

2 v = 0,

which reduces to
x

3
2

(
v ′′ + v

)
= 0 or v ′′ + v = 0.

The characteristic equation for this equation in v is λ2 + 1 = 0, so λ = ±i, giving the general
solution:

v(x) = c1 cos(x) + c2 sin(x) or y(x) = x−
1
2

(
c1 cos(x) + c2 sin(x)

)
,



which are the same solutions formulated by the Method of Frobenius. Note that Bessel’s
equation of order 1

2 have solutions:

J− 1
2
(x) =

(
2
πx

) 1
2 cos(x) and J 1

2
(x) =

(
2
πx

) 1
2 sin(x),

which are appropriately scaled functions of y(x).

4. a. (10pts) Consider the singular second order ODE given by:

x2y ′′ + 6xy ′ +
(
6− x2

)
y = 0. (1)

With P (x) = x2, Q(x) = 6x, and R(x) = 6− x2, we see that

lim
x→0

xQ(x)

P (x)
= lim

x→0

6x2

x2
= 6 = p0, and lim

x→0

x2R(x)

P (x)
= lim

x→0

6x2 − x4

x2
= 6 = q0.

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

y(x) =

∞∑
n=0

anx
n+r, y ′ =

∞∑
n=0

an(n+ r)xn+r−1, y ′′ =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.

These are substituted into (1), giving:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r + 6
∞∑
n=0

an(n+ r)xn+r + 6
∞∑
n=0

anx
n+r −

∞∑
n=0

anx
n+r+2 = 0.

This becomes:
∞∑
n=0

(n+ r + 2)(n+ r + 3)anx
n+r −

∞∑
n=2

an−2x
n+r = 0.

For n = 0 and n = 1, we see

(r + 2)(r + 3)a0 = 0 and (r + 3)(r + 4)a1 = 0.

The first gives the indicial equation and is satisfied by r1 = −2 and r2 = −3. With r1 = −2,
the second equation implies that a1(−2) = 0. For n ≥ 2, we have:

an(r) =
an−2(r)

(n+ r + 2)(n+ r + 3)
,

which is the recurrence relation.

The first root, r1 = −2, is inserted into the recurrence relation to give:

an =
an−2

n(n+ 1)
, n ≥ 2.

Since a1 = 0, it follows that a3 = a5 = · · · = a2m+1 = 0, m ≥ 0. Continuing we see that:

a2 =
a0

2 · 3
=
a0
3!
, a4 =

a2
4 · 5

=
a0
5!
, . . . a2m =

a0
(2m+ 1)!

, m ≥ 1.



It follows that the first solution to (1) is:

y1(x) = a0x
−2

( ∞∑
m=0

x2m

(2m+ 1)!

)
= a0x

−3
∞∑
m=0

x2m+1

(2m+ 1)!
= a0x

−3 sinh(x).

Since r1 − r2 = 1, we investigate:

lim
r→r2

aN (r) = lim
r→−3

a1(r) = 0.

This limit exists, so the logarithmic form of y2(x) is unnecessary. It follows that the recurrence
relation for r2 satisfies:

bn(r2) =
bn−2

(n− 1)n
, n ≥ 2.

We note that b0 is arbitrary and b1 generates the same series as y1(x), so take b1 = 0. Thus,
b3 = b5 = · · · = b2m+1 = 0, m ≥ 0. It follows that:

b2 =
b0
2!
, b4 =

b2
3 · 4

=
b0
4!
, . . . b2m =

b0
(2m)!

, m ≥ 1.

The second linearly independent solution is:

y2(x) = b0x
−3

∞∑
m=0

x2m

(2m)!
= b0x

−3 cosh(x).

The general solution to (1) is:

y(x) = x−3

(
a0

∞∑
m=0

x2m+1

(2m+ 1)!
+ b0

∞∑
m=0

x2m

(2m)!

)
= x−3

(
a0 sinh(x) + b0 cosh(x)

)
.

b. (7pts) Consider the change of variables, y(x) = xαv(x). It follows that

y ′(x) = αxα−1v(x) + xαv ′(x),

and
y ′′(x) = α(α− 1)xα−2v(x) + 2αxα−1v ′(x) + xαv ′′(x).

Substituting this into (1) gives:

α(α− 1)xαv + 2αxα+1v ′ + xα+2v ′′ + 6αxαv + 6xα+1v ′ + 6xαv − xα+2v = 0,

or
xα+2v ′′ + xα+1

(
2α+ 6

)
v ′ +

[
α(α− 1)xα + 6αxα + 6xα − xα+2

]
v = 0.

We choose α such that 2α+ 6 = 0 or α = −3 to eliminate the v ′ term. It follows that:

x−1v ′′ +
[
12x−3 − 18x−3 + 6x−3 − x−1

]
v = 0,

or
x−1v ′′ − x−1v = 0, so v ′′ − v = 0.



This ODE in v(x) has the characteristic equation λ = ±1, so has the general solution:

v(x) = c1e
x + c2e

−x = d1 cosh(x) + d2 sinh(x),

using a different linear combination of the exponentials, where c1 = d1+d2
2 and c2 = d1−d2

2 .
Since y(x) = xαv(x), it follows that:

y(x) = x−3
(
d1 cosh(x) + d2 sinh(x)

)
,

which are the same solutions formulated by the Method of Frobenius.

5. a. (10pts) Consider the singular second order ODE given by:

xy ′′ + (1 + 2x)y ′ + (x+ 1)y = 0. (2)

With P (x) = x, Q(x) = 1− 2x, and R(x) = x− 1, we see that

lim
x→0

xQ(x)

P (x)
= lim

x→0

x+ 2x2

x
= 1 = p0, and lim

x→0

x2R(x)

P (x)
= lim

x→0

x3 + x2

x
= 0 = q0.

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

y(x) =

∞∑
n=0

anx
n+r, y ′ =

∞∑
n=0

an(n+ r)xn+r−1, y ′′ =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.

These are substituted into (2), giving:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−1 +

∞∑
n=0

an(n+ r)xn+r−1 + 2

∞∑
n=0

an(n+ r)xn+r

+
∞∑
n=0

anx
n+r+1 +

∞∑
n=0

anx
n+r = 0.

Shifting indices to match powers of x, this becomes:

∞∑
n=0

an(n+ r)2xn+r−1 + 2
∞∑
n=1

an−1(n+ r − 1)xn+r−1 +
∞∑
n=2

an−2x
n+r−1 +

∞∑
n=1

an−1x
n+r−1 = 0.

For n = 0, we have a0r
2 = 0, which gives the indicial equation, r2 = 0, so r1 = r2 = 0. For

n = 1, we have a1(r + 1)2 + (2r + 1)a0 = 0. For n ≥ 2, we have

∞∑
n=2

(
an(n+ r)2 + (2n+ 2r − 1)an−1 + an−2

)
xn+r−1 = 0,

which gives the recurrence relation:

an(r) = −(2n+ 2r − 1)an−1(r) + an−2(r)

(n+ r)2
, n ≥ 2.

The first root, r1 = 0, gives a1 = −a0 and is inserted into the recurrence relation to give:

an = −(2n− 1)an−1 + an−2
n2

, n ≥ 2.



It follows that

a2 = −3a1 + a0
22

=
3a0 − a0

22
=

a0
2

=
a0
2!
,

a3 = −5a2 + a1
32

= −
5a0
2 − a0

32
= − 3a0

2 · 32
= −a0

3!
,

a4 = −7a3 + a2
42

=
7a0
3! −

a0
2!

42
=

4a0
3!42

=
a0
4!
,

...
...

an = (−1)n
a0
n!
.

Thus, the first solution to (2) is:

y1(x) = a0

∞∑
n=0

(−1)n
xn

n!
= a0e

−x.

Since r1 = r2 = 0, the second solution has the form:

y2(x) = y1(x) lnx+

∞∑
n=1

bnx
n,

so

y ′2 = y ′1 ln(x) +
y1
x

+
∞∑
n=1

nbnx
n−1, y ′′2 = y ′′1 ln(x) + 2

y ′1
x
− y1
x2

+
∞∑
n=2

n(n− 1)bnx
n−2.

Substituting this into (2) gives:

x

(
y ′′1 ln(x) + 2

y ′1
x
− y1
x2

+
∞∑
n=2

n(n− 1)bnx
n−2

)
+

(1 + 2x)

(
y ′1 ln(x) +

y1
x

+
∞∑
n=1

nbnx
n−1

)
+

(x+ 1)

(
y1 lnx+

∞∑
n=1

bnx
n

)
= 0.

This simplifies to:

∞∑
n=2

n(n− 1)bnx
n−1 + (1 + 2x)

∞∑
n=1

nbnx
n−1 + (x+ 1)

∞∑
n=1

bnx
n = −2y1 − 2y ′1 = 0,

since y1(x) = a0e
−x = −y ′1(x). Shifting indices so that all terms have xn, the above equation

becomes:

∞∑
n=1

(n+ 1)nbn+1x
n + 2

∞∑
n=1

nbnx
n +

∞∑
n=0

(n+ 1)bn+1x
n +

∞∑
n=1

bnx
n +

∞∑
n=2

bn−1x
n = 0.



For n = 0, we see that b1 = 0. For n = 1, it follows that 4b2 + 3b1 = 0 or b2 = 0. For n ≥ 2, we
have the recurrence relation:

(n+ 1)2bn+1 + (2n+ 1)bn + bn−1 = 0 or bn+1 = −(2n+ 1)bn + bn−1
(n+ 1)2

.

Thus, b3 = 0, . . . , bn = 0, for all n. Hence, y2(x) = y1(x) ln(x) = a0e
−x ln(x), so the general

solution is:
y(x) = a0e

−x + b0e
−x ln(x).

b. (6pt) Consider the linear ODE, y ′′ + p(x)y ′ + q(x)y = 0. If y1(x) is one solution, then one
attempts a solution of the form y(x) = v(x)y1(x) to find the second solution. We saw that v(x)
satisfies:

v(x) =

∫
e−

∫
p(x)·dx

[y1(x)]2
dx.

Since y1(x) = e−x is one solution to (2), we have:

y2(x) = e−x
∫
e−

∫
( 1
x
+2)dx

e−2x
dx = e−x

∫
x−1e−2x

e−2x
dx = e−x ln |x|.

Alternately, let y = e−xv. so y ′ = e−x(v ′ − v) and y ′′ = e−x(v ′′ − 2v ′ + v). When this is
inserted into (2), we have:

xe−x(v ′′ − 2v ′ + v) + (1 + 2x)e−x(v ′ − v) + (1 + x)e−xv = 0,

or
e−x(xv ′′ + v ′) = 0.

Let w = v ′, then

w ′ = −w
x

or ln(w) = − ln(x) + c or w(x) = v ′(x) =
c1
x
.

Integrating this gives:

v(x) = c1 ln(x) + c2, so y(x) = (c1 ln(x) + c2)e
−x.

The solutions match with the solutions from Part a.

6. (10pt) Consider the singular second order ODE given by:

xy ′′ − (2 + x2)y ′ + xy = 0. (3)

With P (x) = x, Q(x) = −2− x2, and R(x) = x, we see that

lim
x→0

xQ(x)

P (x)
= lim

x→0

−2x− x3

x
= −2 = p0, and lim

x→0

x2R(x)

P (x)
= lim

x→0

x3

x
= 0 = q0.

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

y(x) =
∞∑
n=0

anx
n+r, y ′ =

∞∑
n=0

an(n+ r)xn+r−1, y ′′ =
∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.



These are substituted into (3), giving:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−1 − 2
∞∑
n=0

an(n+ r)xn+r−1

−
∞∑
n=0

an(n+ r)xn+r+1 +

∞∑
n=0

anx
n+r+1 = 0,

so matching terms and shifting indices gives:

∞∑
n=0

an(n+ r)(n+ r − 3)xn+r−1 −
∞∑
n=2

an−2(n+ r − 3)xn+r−1 = 0.

It follows that for n = 0, a0r(r−3) = 0, which give the indicial equation with roots, r1 = 3 and
r2 = 0. For n = 1, we have a1(r + 1)(r − 2) = 0, which implies a1 = 0 for r1. The recurrence
relation becomes:

an(r) =
an−2(r)

n+ r
, n ≥ 2.

With the first root, r1 = 3, we see that all odd coefficients are a1 = a3 = · · · = a2k+1 = 0, and
the recurrence relation is written:

an =
an−2
n+ 3

, n ≥ 2.

It follows that

a2 =
a0
5
,

a4 =
a2
7

=
a0

5 · 7
,

a6 =
a4
9

=
a0

5 · 7 · 9
,

...
...

a2k =
a0

5 · 7 · · · · · (2k + 3)
.

Thus, the first solution to (3) is:

y1(x) = a0x
3

(
1 +

x2

5
+
x4

35
+

x6

315
+ ...

)
.

Since r1 − r2 = 3, the second solution has the form:

y2(x) = ky1(x) ln(x) + x0
∞∑
n=0

bnx
n,

so

y ′2 = k
(
y ′1 ln(x) +

y1
x

)
+

∞∑
n=1

nbnx
n−1, y ′′2 = k

(
y ′′1 ln(x) + 2

y ′1
x
− y1
x2

)
+

∞∑
n=2

n(n−1)bnx
n−2.



Substituting this into (3) gives:

x

(
k

(
y ′′1 ln(x) + 2

y ′1
x
− y1
x2

)
+

∞∑
n=2

n(n− 1)bnx
n−2

)
−

(2 + x2)

(
k
(
y ′1 ln(x) +

y1
x

)
+
∞∑
n=1

nbnx
n−1

)
+

x

(
ky1(x) ln(x) +

∞∑
n=0

bnx
n

)
= 0.

This simplifies to:

−2b1 +
∞∑
n=1

[
(n+ 1)(n− 2)bn+1 − (n− 2)bn−1

]
xn = k

(
3

x
+ x

)
y1 − 2ky ′1.

Expanding the left hand side, we see the x2 term is zero and we have:

−2b1 + (−2b2 + b0)x+ (4b4 − b2)x3 + (15b5 − 2b3)x
4 + (18b6 − 3b4)x

5 + . . .

In y1(x), we let a0 = 1, then expanding the right hand side gives:

k

(
3

x
+ x

)(
x3 +

x5

5
+
x7

35
+

x9

315
+ ...

)
− 2k

(
3x2 + x4 +

x6

5
+
x8

35
+ ...

)
= k

(
−3x2 − 2

5
x4 − 4

35
x6 − 6

315
x8 − ...

)
.

The leading term on the rhs is −3kx2, which must be zero as there are no x2 terms on the lhs.
It follows that k = 0. Alternately, with r1 − r2 = 3, we examine:

k = lim
r→r2

(r − r2)a3(r) = 0,

as a3 = 0. The leading term on the lhs must satisfy b1 = 0. This simplifies our series expression
to:

∞∑
n=1

[
(n+ 1)(n− 2)bn+1 − (n− 2)bn−1

]
xn = 0,

which has the recurrence relation:

bn+1 =
bn−1
n+ 1

.

With b0 arbitrary and b1 = b3 = b5 = · · · = b2k+1 = 0, we obtain the even coefficients:

b2 =
b0
2

=
b0

1!21
,

b4 =
b2
4

=
b0

2! · 22
= ,

b6 =
b4
6

=
b0

3! · 23
,

...
...

b2k =
b0

k! · 2k
.



Thus, the second solution is

y2(x) = b0

∞∑
m=0

x2m

2m ·m!
= b0

∞∑
m=0

(x
2

2 )m

m!
= b0e

x2

2 .

b. (6pt) To verify that y1(x) = e
x2

2 is one solution, we compute

y ′1(x) = xe
x2

2 and y ′′1(x) = e
x2

2 + x2e
x2

2 = (1 + x2)e
x2

2 .

Substituting back into the ODE:

x(1 + x2)e
x2

2 − (2 + x2)xe
x2

2 + xe
x2

2 = 0,

which is clearly satisfied, so y1(x) = e
x2

2 is a solution to (3). This matches the result of y2(x)
from Part a.

With p(x) = − (2+x2)
x = − 2

x −x and using the Reduction of Order method to obtain the second
solution, we obtain:

y2(x) = y1(x)

∫
e−

∫
p(x)dx

(y1(x))2
dx,

= e
x2

2

∫
e
∫
( 2
x
+x)

ex2
dx,

= e
x2

2

∫
x2e

x2

2

ex2
dx.

It follows that the second solution is:

y2(x) = e
x2

2

∫
x2e−

x2

2 dx.


