Fall 2021 Math 537 HW 4 — Method of Frobenius

1. (8pts) Consider the initial-value problem
y'+p@)y +a(@)y=0,  y(0)=y, ¥'(0)=ro.
We assume a transformation of the form y = vY’, so
y =Y +Y and ' =0Y" +20'Y +"Y,
which is substituted into the original equation. This gives
Y +20'Y +0"Y + p(2) (0Y +0'Y) + g(z)oY = 0,
Y' + (20/4-]9) Y + <v”+pvl+q>Y = 0.
v v v
To eliminate the Y/ term, we must have:

20’ v
2ip@ =0 o L=l

Integrating both sides and exponentiating gives:
'U(;p) = e_%fdr p(s)ds‘

It follows that

Q) = —+pl)+a),
/ T T 2 x
Q) = 24 (M) po) (-22) + gt
_ V) =)

Q@) = B2 -8 @)

From above we see
Y (0) = ZEO; =y, since  v(0)=e" =1,
and
y'(0) = ' (0)Y (0) +v(0)Y'(0) = _p(02)yo +Y'(0), since v'(0) = _p(20)



2. a. (10pts) Consider the singular second order ODE given by:
2x2y" +ay’ + ny =0.

With P(z) = 222, Q(x) = z, and R(z) = 22, we see that

. xQ(m)_ @t 1 _

I ) il —2 TP
and ) (@) .

. Rz .

2Py b 0T

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

oo oo oo
y(x) = Z anx™t", y' = Z an(n + r)z" 1 y" = Z an(n +r)(n+r— 1)z 2,
n=0 n=0 n=0
This also gives the indicial equation:
r(r—1)+por+qo:1“2—1”4—%7”:7“(7"—%) = 0.
It follows that r = 0, %

We substitute our power series into the ODE and obtain:

o oo o
2 Z an(n+7r)(n+r—1) 2" + Z an(n+ 7)™t + Z anx™ T =0,

which shifting indices gives:

o o0 o
2 Z an(n+r)(n+r—1) 2" + Z an(n+ 7)™t + Z ap—ox" " = 0.
n=0 n=0 n=2
When n = 0, we also obtain the indicial equation, ag (2r(r — 1) +7) = ao(r(2r — 1)) = 0. Note
that when n = 1, we have a1 (2r(r +1) + r 4+ 1) = a1 (2r? + 3r + 1) = 0, which implies a; = 0
for solutions of the indicial equation. For n > 2, we obtain the recurrence relation:

w = — An—2
" (n+r)2n+2r—1)

The first solution satisfies r; = % with ag arbitrary and the recurrence relation, a,, = —né’;fl),
SO

(e.0]

yl(x) = \/Ezanwn7

n=0

where
__ __ao __ _ a2 __ ao a4 __ ag
a2 = 735 =719 = 3549 %6 = 7§13 — T 2549613
. . . . . b

The second solution satisfies ro = 0 with by arbitrary and the recurrence relation, b,, = —n(#fl),

SO

ya(x) = Z bpx™,
n=0



where

=

by=—b2 = bo b6:_b4_ bo

_ __ Qo %
by = 611 — ~ 2:34.7-6-11

2:37

4
C.'-‘
-~
3

The complete solution satisfies:

y(z) = aoVz (1 - *x + 3605‘74 - 280809” + 3818880$ + O( ))
+bo (1 - éx + @I4 - 11(1)88$ + 13305609” +0 ( )) .

b. (10pts) Consider the singular second order ODE given by:
22y” +3zy’ + (1 +x)y =0.
With P(x) = 22, Q(x) = 3z, and R(z) = 1 + z, we see that

zQ(x) 322
— lim — 9 _
a:1—>0 P(a;) z—0 $2 =3 bo;
and
2’ R(x) . x? + 23 )
1m = l1m = — .
a—0 P(z) 220 a2 w

Since these are both finite, it follows that the functions are analytic, which implies that z = 0
is a regular singular point. Thus, we may attempt solutions of the form:

o0 0o oo
:Zan$n+r7 y/:Zan(n_i_74)wn+7‘717 y/’:Zan(n—kr)(n—i—r—l)xnﬂfz.
n=0

n=0 n=0

This also gives the indicial equation:
rir—1D+por+q=r’—r+3r+1=>r+1>*=0.
It follows that r = —1 is a double root.

We substitute our power series into the ODE and obtain:

[e.9] o0 o0 oo
Z an(n+r)(n+r—1)z""" +3 Z an(n +r)x™" + Z anz" " 4 Z anz" T =0,
n=0 n=0 n=0 n=0

which shifting indices gives:

ian((n+r)(n+r—l)+3(n+r ) ”+T+Zan 1"t

n=0
When n = 0, we also obtain the indicial equation, ag(r 4+ 1) = 0. For n > 1, we obtain the
recurrence relation:

ap—1 _ an—1
n+r)(n+r+2)+1 (n+7r+1)%

ap = — n=12..

an—1

The first solution satisfies r1 = —1 with ag arbitrary and the recurrence relation, a, = —=5+,

SO
oo
1 n
= — g apx”,
xX
n=0



where

ay a Qa n a
(I]_:—TO, (12:—2%:(2!)2, a3:_37—_(3!%27---’an:(_1) (n!o)2)"'

Thus, the first solution is given by:
(—

B n" . a x? 3
yi1(z) = an:% (n!)zx —;<1x+(2!)2(3!)2+...>.

Since r = —1 is a repeated root, if we take y;(x) above with ap = 1, then the second solution
has the form:

y2(x) = y1(z) In(x) + 2" Z by (r)x"™
n=1

where b, (r) = al,(r) and

n

, a1y
(1) =35 [((n . 1)!)2} i

From the lecture notes, we saw that if f(z) = (z — 1) - --- - (z — ay,)P7, then:

f/(x) — /81 + ...+ Bn , for I'#OZI;OQ: y On

o) “ema e,
Therefore,
) —9 -9 -2 =
an(=1) = [<r+2 Ty n+r+1> ' (((n+r+1)!)2>} r=-1
B ~ 1\ /(=D"\ (="
) <_2mzzl m> () = e 1o

where H, =30 L =143+ 1+ 1+ ..+ +. It follows that:

m

ya(z) = yi(z)In(z) -

2
- yl(x)ln(:c)—z —:v—i-(;; <1+;>—(§S2<1+;+;>+(Z§ <1+;+;+i>+.}

Alternately, one could take the form of y(x) and insert that into the original ODE. The result
Z k(k} — 1)bk+1xk + Z 3kbk+1l’k + Z bk+1$k + Z bkack = —Qxyi — 2y1.
k=2 k=1 k=0 k=1

Carefully matching the same powers of z gives the same coefficients b, listed above and below.

Combining these results give:

y(r) = aOgc(l—fL’jL 1 _3161‘ +576954

1 .5 1.6 7
o2t smaoe + O (7))

In(z) 1.4 1 5 1 6 7
+bO( o (L=t 307 = 552° + 550" — ge” + spee” + O (27)

1 3_ 25 137 5
+3 (20— $2° + 1552° — 5" + moo” — smaoee?” + O (@ )))




c. (10pts) Consider the singular second order ODE given by:

2y +4zy’ + 2+ )y =0.

With P(z) = 22, Q(x) = 4z, and R(z) = 2 + z, we see that

eQ(z) . 4da?
I Py ~ e =4 =ro,
and
2?R(z) . 207 + 23 5
x% P(l’) N zli)% .732 —eT

Since these are both finite, it follows that the functions are analytic, which implies that z = 0
is a regular singular point. Thus, we may attempt solutions of the form:

oo o o
y(z) = Z "t y' = Z an(n + )z y" = Z an(n+7r)(n+r—1)2z" 2,
n=0 n=0 n=0
This also gives the indicial equation:
r(r—1)+por+qg=r"—r+4r+2=(r+1)(r+2)=0.
It follows that r1 = —1 and ro = —2.

We substitute our power series into the ODE and obtain:

(o] o0 (o) (0]
Z an(n+r)(n+r— 12" +4 Z an(n +7r)z" " 2 Z A" + Z anz™ T =0,

n=0 n=0 n=0 n=0

which shifting indices gives:

o 00
Z an<(n +r)n+r—1)+4n+r)+ 2):):”” + Z ap_12"" = 0.
n=1

n=0

When n = 0, we also obtain the indicial equation, ag(r? + 3r + 2) = ag(r + 1)(r + 2) = 0. For
n > 1, we obtain the recurrence relation:

Gp—1 Gp—1

A = — = _ n=172,..
" (n+r)(n+r+3)+2 (n+r+1)(n+r+2) Y

The first solution satisfies 11 = —1 with ag arbitrary and the recurrence relation, a,, = —n‘(Lerll),
SO

1 o

yi(x) = - Z anx",
n=0
where
ar=—9, a2= -5 =8, 3= 57 = 3= D" Gt

Thus, the first solution is given by:

ap (=)™ agp r  2? 3
n
}: _ D=4 = = 4 ).
n(@) T = n!((n—i—l)!x x ( 20 2131 314! )



Since ro = —2 and r; — ro = 1 is an integer, we evaluate:
lim an(r) = lim a;(r) = —ao(r)

r—ro r——2 (7’ -+ 2)(7”‘ + 3) '

Since ag is an arbitrary, the limit is undefined, so a second series solution requires the logarithmic
term. We take y;(x) above with ap = 1, then the second solution has the form:

y2(2) = y1(2) In(x) + 272 by(r)z”
n=0

This is readily substituted into the original ODE giving;:

2kayy — kyi + Z(n —2)(n — 3)bpa™ 2 + dky; + Z 4(n — 2)bpaz" 2+
n=0 n=0

o0 [o¢]
Z 20,22 + Z bzt = 0,
n=0 n=0

which is readily transformed into the equation:

Z (n — 1)bpa™™ 2—}—an " = —k(3y1 + 223))
n=2 n=1
_ e(3 3, 2 _2+£_£+
N r 2 4 48 6 36
When n = 1, we have bpz~! = —kz~! or k = —bp, where by is arbitrary. The series produced

from by reproduces the solution y;(x), so we take by = 0. The next few coefficients are readily
found:

n=2: 2b2+61:—3—;0 or b2:—34ﬂ,
n=3: 6b3 + by = bz—i—%o or bgz%,
n=4: 12by + by = —% g—‘é or by=— i’?gg
Alternately, from the lecture notes, we compute k from:
k= Tim (r 4 2)ar(r) = lim T DED

o2 re2 (r+2)(r+3)

and calculate by, (r2) from:
d
bn(—2) = ar [(r + 2)an(r)],—_ -
Following the techniques similar to those in 2(b) are used to derive the coefficients b,,.
Combining these results give:

2 1.3 14
— 12"t 38807

+b0( ()(177x+12x2 ﬁx3+flsox

- 8641100335 + 362%8001"6 +0 ("37))

- 86i00$5 + 362%800x6 +0 (957))

1 3,2 7.3 _ 35 101 5 7.6 7
+22 (1 327+ 552° — 52" + 00" — om0 + O (2 )))

y(lz) = aoé(l—%x+%x




3. a. (10pts) Bessel’s equation of order 3 satisfies:

:E2y"+xy'+ (I‘2 _ %)y _ 0’
and is important in solving PDEs with spherical geometry. With P(z) = 22, Q(z) = =, and
R(z) = 2% — 1, we see that

Qx) . a? . 2?R(z) ot - qa? 1
=lim = =1= ] — lim 4 _
ac1—>0 P(JE) xli% .732 po and mgr(l) P(JE) xl_% 1‘2 4 0

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

) 0o oo
y(a:) = Zananrr, y/ — Zan(n + T)anrrfl’ y// — Zan(n + T‘)(TL +r— 1)xn+r72'
n=0

n=0 n=0

These are substituted into Bessel’s equation, giving:

o o0 o0 o0
Y anntr)ntr—10a"T 4> an(n+r)a" + Y ana™? = 1> apa™ =0,
n=0 n=0

n=0 n=0

This becomes:

oo [e.e]
Z ((n +r)(n+r—1)+n+r)— i)anaz"” + Z ap—ox" " =0,
n=0 n=2
or
[e.e] oo
Z ((n +7r)?2 — i)anaz"” + Z ap_ox" " =0,
n=0 n=2

For n =0 and n =1, we see
<r2 — %)ao =0 and <(r +1)2 - %)al =0.
The first gives the indicial equation and is satisfied by r = j:%. With either value of r, the

second equation implies that a; = 0. For n > 2, we have:

Gp—2
1
(n+7)?%—-7

)

((n+r)2—%>an+an,2:0 or ap = —

which is the recurrence relation.

The first root, ry = %, is inserted into the recurrence relation to give:

Ap—2 an—2

anp = — = — , n > 2.
b -i D
Since a; = 0, it follows that a3 = a5 = -+ = agm+1 =0, m > 0. Continuing we see that:
a a a a a
ag = _ %o = 0 ay = _22 0 aom = (_1)m 0 m > 1.

2.3 3D 4.5 B em+1) T



It follows that the first solution to this Bessel’s equation is:

1 > (_1)mx2m a1 > (_1)m.x2m+1 o
yl(l“) = apx? (1 + Z m = apxr 2 Z W = apxr 2 SIH(IE).
m=1 m=0

Since r; — ro = 1, we investigate:

A avtr) = m, ar) =0

This limit exists, so the logarithmic form of y9(x) is unnecessary. It follows that the recurrence
relation for ro satisfies:

bn(rg) = — = — n > 2.

We note that by is arbitrary and b; generates the same series as y;(x), so take by = 0. Thus,

bs =bs =---=boypyr1 =0, m >0. It follows that:
bo ba by m o
bQZ—a, b4:—374:E, me:(—l) (2m)|7 le
The second linearly independent solution is:
L1 (—1)ma?m _1
ya(z) = box ™ 2 Z ami = boz ™ 2 cos(x).

The general solution to Bessel’s equation of order % is:

1 m 2m+1 o0 (_1)mx2m
yle) =z OLOZ 2m+1 +boz (2m)!

m=0

a2 (ao sin(x) + bo cos(ac)).
b. (7pts) Consider the change of variables, y(x) = x_%v(ac). It follows that

and ) , .
y"(x) =2 20" (z) — 2”20/ (x) + %:c 2u(z).
Substituting this into Bessel’s equation gives:

§ /i l / 3 _l l / 1 _l § 1 _l
T20 — 220 + 3T 20+ 22V — 5T 20+ T2V — 52 29 =0,

which reduces to ,
5(1} —i-v):O or v +v=0.

The characteristic equation for this equation in v is A2 +1 = 0, so A = =1, giving the general
solution:

v(z) = ¢1 cos(z) + cosin(x) or y(x) = z73 (cl cos(z) + co sin(x)),



which are the same solutions formulated by the Method of Frobenius. Note that Bessel’s
equation of order % have solutions:

1 1

(z) = (£)2 cos(z) and Ji(z) = (£)2sin(z),

which are appropriately scaled functions of y(z).

4. a. (10pts) Consider the singular second order ODE given by:
x2y”+6xy/+(6—a:2)y:0. (1)
With P(z) = 22, Q(z) = 6z, and R(x) = 6 — 22, we see that

eQ(z) . 6x? . @?R(z) . 6a?—a*
2 Plr) amh gz 0= ke and Ty =T e 0w

Since these are both finite, it follows that the functions are analytic, which implies that x = 0
is a regular singular point. Thus, we may attempt solutions of the form:

oo o o0
y(m) :Zanxn+r7 y/:Zan(n+T)1‘n+r_1, y//:Zan(n_'_r)(n_’_r_l)xn-i-r—?
n=0 n=0 n=0
These are substituted into (1), giving:
(o] [o¢] (0] o0
Z an(n+r)(n+r—1)z""" +6 Z an(n +7r)z"" +6 Z anx™ " — Z a2 = 0.
n=0 n=0 n=0 n=0

This becomes:

(o] oo
n+r+2)(n+r+3)az"" — Ap_ox™" = 0.
>
n=0 n=2

Forn=0and n =1, we see
(r+2)(r+3)ag =20 and (r+3)(r+4)a; =0.

The first gives the indicial equation and is satisfied by r1 = —2 and ry = —3. With r; = =2,
the second equation implies that a;(—2) = 0. For n > 2, we have:

() = 2l
" (n+r+2)(n+r+3)’°

which is the recurrence relation.

The first root, 71 = —2, is inserted into the recurrence relation to give:
ap—2
ap = —————, n > 2.
" n(n+1) -
Since a; = 0, it follows that a3 = a5 = -+ = agm+1 =0, m > 0. Continuing we see that:

ag agp a2 ag ao >1
aQ = —— = — aq = —— = —- e a = - m .
> 2.3 3 YT 45 B T omy ) T



It follows that the first solution to (1) is:
o me o x2m+1
y]_(ﬂf) = a0$_2 (Z (27’n—}—1)|> = CL0$_3 Z m = CLO$_3 Slnh(ﬂf)
m=0 m=0
Since r1 — ro = 1, we investigate:

rllg}z aN(T) - r1—1>r£13 al(r) =0

This limit exists, so the logarithmic form of y9(x) is unnecessary. It follows that the recurrence
relation for ry satisfies:

bn—2
b = > 2.
n(TQ) (TL — 1)7’L’ n =z
We note that by is arbitrary and b; generates the same series as y;(x), so take by = 0. Thus,
bs =bs = - =boypyr1 =0, m >0. It follows that:
bo b bo bo
by = — by=—=—, ... boyy= >1
2Tor T3 T = omyr

The second linearly independent solution is:

[e.e]

2m
— b3 ro g -3
x) = box mgzo o)l box ™ cosh(z).

The general solution to (1) is:

_ 3 > p2m+1 0 22m 5 .
y(x) ==z ap Z ami1) Z (ao sinh(z) + by cosh(:r)) .
m=0

b. (7pts) Consider the change of variables, y(x) = xz®v(z). It follows that
y/(z) = a2 Lo(z) + 2% (z),
and
y"(z) = a(a — 1)z* ?v(z) + 202* 10/ (z) + 20" (2).
Substituting this into (1) gives:

ala — 1)z + 202 o’ + 29720 " 4 6ax®v 4 62 v’ 4 6% — 220 = 0,

or
a+2 l/+xa+1(2a+6)v +[ (a_1)xa+6axa+6xa_$a+2]vzo.

We choose a such that 2o+ 6 = 0 or a = —3 to eliminate the v’ term. It follows that:
"+ [123;_3 — 18273 + 6273 — x_l}v =0,

or

— " — /
R 11):0, SO v —v=0.



This ODE in v(x) has the characteristic equation A = +1, so has the general solution:

v(x) = c1€” + cae” * = dj cosh(x) + da sinh(z),

using a different linear combination of the exponentials, where ¢; = dlng and cp = de;dQ
Since y(z) = z%v(x), it follows that:
y(z) =23 (dl cosh(z) + d sinh(a:)),

which are the same solutions formulated by the Method of Frobenius.
5. a. (10pts) Consider the singular second order ODE given by:

zy” +(1+22)y" + (x+ 1)y = 0. (2)
With P(z) =z, Q(x) =1 — 2z, and R(z) = x — 1, we see that

_2Qx) . w422 . 2?R(z) . xd4a2?
M ) A = 1= and lim=pr e = lim mmm = 0= g

Since these are both finite, it follows that the functions are analytic, which implies that z = 0
is a regular singular point. Thus, we may attempt solutions of the form:

) 0o oo
:Zan$n+r7 y/:Zan(n_i_74)wn+7‘717 y/’:Zan(n—kr)(n—i—r—l)xnﬂfz.
n=0

n=0 n=0
These are substituted into (2), giving:

[e.o]

Z m+r)n+r—1)z "+T1+Zann—i—r) "+T1+2Zann+r) e
n=0 n=0 n=0

0 00
n+r+1 n+r
—i-g an® + g an® = 0.

Shifting indices to match powers of z, this becomes:

[e.e] [e.@] o0 oo
§ :an(n + T,)2$n+r71 +2 § :an—l(n 4 — 1)xn+r71 + Z an_anﬂ"fl + Z an_lanrrfl = 0.
n=0 n=1 n=2 n=1

For n = 0, we have agr? = 0, which gives the indicial equation, 2 = 0, so r; = 7 = 0. For
n =1, we have ai(r + 1)? + (2r + 1)ag = 0. For n > 2, we have

o0

Z (an(n + r)2 +(2n+2r—1ay,—1 + anfz):E”J”_l =0,
n=2

which gives the recurrence relation:

(2n +2r — Day_1(r) + an—2(r)
(n+1)2

n > 2.

an(r) = —

)

The first root, 71 = 0, gives a; = —ag and is inserted into the recurrence relation to give:

(2n - 1)(171,1 + an—2
n2

Ap = — s 77/22



It follows that

. 3a1 + ag . 3ag — ag _ap _ ap
@S Ty T Tor T g T
_ Sag +ay &%_GO B 3ap  ao
“@T Ty T T3 T Taoix T T3r
Taz +ay %0— or  4dap  ao
w“ 42 42 342 4l
: : a0
a, = (—1)”5.

Since r1 = r9 = 0, the second solution has the form:

yo(x) = y1(z) Inx 4+ Z bnx",
n=1

S0
yh=yin +§;nbnx . yh=yii@) + @——Qj (n— 1)bpa™
Substituting this into (2) gives:
/
z |y In(z )+2?——+Z n(n — )b,z | +
(1+22) (y’lln + annx )

(x+1) (yllnx—i-an:c") = 0.

n=1

This simplifies to:

oo oo oo

Zn(n — Dbpz™ 1 + (14 22) ann:z:”_l +(z+1) Z bua" = —2y; — 2y} =0,

n=2 n=1 =
since y1(z) = ape™* = —y (). Shifting indices so that all terms have 2", the above equation
becomes:

o0

S (4 Dnbpara™ +2> nbpa” + Y (04 Dbpra” + Y bpa" + Y by_12” =0.

n=1 n=1 n=0 n=1 n=2



For n = 0, we see that by = 0. For n = 1, it follows that 4by + 3b; = 0 or by = 0. For n > 2, we
have the recurrence relation:
(2n + 1)by, + bp—1

(n+ 1)

(n+1)%p00 +2n+ Dby +bp1 =0  or by =—

Thus, b3 =0, ..., b, = 0, for all n. Hence, y2(z) = y1(x)In(z) = ape " In(z), so the general
solution is:
y(x) = age™ ¥ + bpe” “ In(z).

b. (6pt) Consider the linear ODE, y” + p(z)y’ + ¢(x)y = 0. If y1(x) is one solution, then one
attempts a solution of the form y(z) = v(x)yi(x) to find the second solution. We saw that v(z)

satisfies:
e~ J p(z)-dz
v(z) = / ————dz.
[y1(z)]

Since y1(x) = e~ is one solution to (2), we have:

—J($+2)dx ~1,-2
y2(x) = ex/ed:z: =e 7 / %dw =e “ln|xz|.

6—2:(: 6_2

Alternately, let y = e ™ v. soy’ = e (v’ —v) and y” = e *(v” — 2v’ + v). When this is
inserted into (2), we have:

ze (v = 20" +v)+ (1+2z)e (v —v) + (1 +x)e "v =0,

or
e (zv" +v') = 0.

Let w = v’, then

w' =-2 or In(w) = —In(z) +¢ or w(z)=v'(z)= a
x x
Integrating this gives:
v(z) = c1In(x) + co, S0) y(x) = (c1In(x) + c2)e™ ™.
The solutions match with the solutions from Part a.
6. (10pt) Consider the singular second order ODE given by:
zy" — 2+ 2%y’ +ay=0. (3)

With P(z) =z, Q(z) = —2 — 22, and R(z) = =, we see that

zQ(x) . —2x— a3 . 7?R(x) .

J:l—>0 P(LL’) ccg(l) x Pos and zli% P(IL’) xl—r% X 0 @

Since these are both finite, it follows that the functions are analytic, which implies that z = 0
is a regular singular point. Thus, we may attempt solutions of the form:

oo o0 00
y(x) = Zanxn—i-r’ y/ — Zan(n + T)x"+r_1, y// _ Zan(n Fr)(ndr— 1)xn+r_2.
n=0



These are substituted into (3), giving:

oo o0
Z an(n+r)(n+r—1)z"""1 2 Z an(n 4+ r)z" 1

n=0 n=0

o0 (o]
— E an(n 4+ )z 4 E anz™tH =0,

n=0 n=0

so matching terms and shifting indices gives:

> 00
Z an(n+r)(n+r— 3)xn+r_1 — Z an—o(n+r— 3)33”‘”_1 =0.
n=0 n=2

It follows that for n = 0, agr(r — 3) = 0, which give the indicial equation with roots, r; = 3 and
rg = 0. For n = 1, we have a;(r + 1)(r — 2) = 0, which implies a; = 0 for r;. The recurrence

relation becomes:

an—2(r)
= —7 > 2.
an(r) n+r’ "=
With the first root, r; = 3, we see that all odd coefficients are a1 = a3 = --- = agg+1 = 0, and
the recurrence relation is written:
an—2
= > 92
n n+3’ "=
It follows that
ao
az = E;7
as a
a = _—= —
4 7 5.7
a4 a
Qa, = _— =
6 9 5-7-9°
ao
a = .
2k 5.7 (2k +3)
Thus, the first solution to (3) is:
2 4 6
3 T x T
= 1+ —+—4+—+..].
y1(z) = apx ( +5+35+315+ >

Since r1 — ro = 3, the second solution has the form:

yo(z) = ky1 () In(z) 4 2° Z bpx™,
n=0

SO

00 , 0o
yh==k (y’l In(z) + %)JFZ nbpz™ !, yh =k <y'1’ln(m) + 2% - 3;) +Z n(n—1)b,z" 2.
n=1 n=2



Substituting this into (3) gives:

x <k: (y'{ln(x)—i—2$—$2> —|—Z_:n(n—1)bnm > -

2+ 2?) (k (ylln ) annx )
<ky1 —i—anx) = 0.

This simplifies to:
s 3
—2by + ) [(n +1)(n —2)bpg1 — (0 — 2)bn_1}$n =k <x + $> y1 — 2ky .
n=1

Expanding the left hand side, we see the 22 term is zero and we have:
—2b; + (—2bg + bo)x + (4by — bo) x> + (15bs — 2b3)z* + (18 — 3by)2® +

In y;1(x), we let ap = 1, then expanding the right hand side gives:

3 oz’ x? 26 a8
k(- — =+ — 2k | 322 4+ 24 ll
<x+x><x+5+35+315+ > (:Jc +w+5+35+ >

2 4
—k(—32%— 2t — —25— ixs — .
5 35 315

The leading term on the rhs is —3k22, which must be zero as there are no 22 terms on the lhs.
It follows that & = 0. Alternately, with r1 — ro = 3, we examine:

k= lim (r — r9)as(r) =0,

=72

as a3 = 0. The leading term on the lhs must satisfy b; = 0. This simplifies our series expression
to:

> [+ 1) = Db = (0= 2ba]a” = 0,

which has the recurrence relation:

b _ bn—l
T T
With by arbitrary and by = b3 = bs = - - - = bop+1 = 0, we obtain the even coefficients:
o bo Do
b2 = 5 = T
ba bo
b= Y T
by bo
b = —_— = —
0 6  31.23
b
bo = 2

k! . 2k



Thus, the second solution is

& x2m o0 (%)m 22
w23 g = 3 e
m=0 m=0

x2
b. (6pt) To verify that y;(x) = e is one solution, we compute

22 2 22

yi(z) =ze? and yl(x)=eT +2%7 = (1+22)e

o2
2

Substituting back into the ODE:

22

22
r(1+2%e? — (24 2%)ze T + xe

She

:()7

22
which is clearly satisfied, so y1(xz) = €= is a solution to (3). This matches the result of y2(x)
from Part a.

With p(z) = G4 2 pand using the Reduction of Order method to obtain the second

x T -
solution, we obtain:

e~ Jp(x)de

yo(z) = yl(m)/(?ﬂ(ﬂf))Qdm’
_ zQ/ef(i‘m)d

It follows that the second solution is:

yo(z) = €2 /x2e2d$.



