Fall 2021 Homework 3 — Fundamental Solutions — Solutions Math 537
Below are the written problems from WeBWorK.

1. (5pts) The system of differential equations given by:
1:1 . 9 -8 il
.%:2 o 6 —5 T2 ’

9—-A -8
6 —-5—=A

has the characteristic equation:

det

‘—/\2—4)\+3—(A—3)(A—1)—0,

which has the eigenvalues and associated eigenvectors:

M =3, &M= <§) and  A=1, &®= G) .

This gives the general solution:

(i) =5+ ()

This solution has two positive eigenvalues, so the result is an unstable node or source. The
transformation matrix, P, comes from the eigenvectors, giving the Jordan canonical form, J:

(1 4 (-3 4 (10
e O B G ) N (]

Thus, for x = Py, we have y = Jy, which has the solution:
<yl(t)> _ <€t 0> <y1(0)>
ya(t) 0 €*) \3(0))"

4
From the largest eigenvalue as t — oo, the solution moves parallel to the direction: ¢ = (3>

or the yo-axis in the transformed coordinate system. Below are the phase portraits created in
Maple for the x;x92-coordinate system and the transformed y;y92-coordinate system:
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2. (5pts) The system of differential equations given by:
&\ (14 16 (1
2o) \—-12 —14) \x9)’

14— X 16
—-12 —-14-X

has the characteristic equation:

det‘ ‘:A2—4:(>\—2)()\+2):0,

which has the eigenvalues and associated eigenvectors:

)\1 = 2, f(l) = <_43> and )\2 = *2; 5(2) = (_11> .

This gives the general solution:

(i) = () ()

This solution has a positive and a negative eigenvalue, so the result is an saddle node. The
transformation matrix, P, comes from the eigenvectors, giving the Jordan canonical form, J:

(41 o4 (1 1 (2 0
S e ) I

Thus, for x = Py, we have y = Jy, which has the solution:
(-2 2)8)
ya(t) 0 e ) \y2(0))°
As t — oo, the solution approaches: &) = <_43> or the yj-axis in the transformed coor-

. . . 1 .
dinate system, while as t — —oo, the solution approaches: €3 = < 1) or the ys-axis in

the transformed coordinate system. Below are the phase portraits created in Maple for the
xr1x9-coordinate system and the transformed y;yo-coordinate system:
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3. (5pts) The system of differential equations given by:
fl . 0 -5 I
33:2 o 5 0 T2 ’
has the characteristic equation:

-\ =5

det 5y

’:)\2+25:0, SO A\ = 5.

which has the eigenvalue and associated eigenvector:

A =50, ¢V = (Z> .
1
It follows that:

(200) = () ot = (220 (52

This gives the general (real) solution:

(20 = () e ().

This solution has two imaginary eigenvalues, so the result is a center. All solutions form circles
moving counterclockwise around the origin. The transformation matrix, P, comes from the real
and imaaginary parts of the eigenvector, giving the real Jordan canonical form, J:

/01 (01 (0 5
(o) m=0) -(5 )

Thus, for x = Py, we have y = Jy, which has the solution:

yi1(t)\  [cos(5t) —sin(5t)\ (y1(0)
yo(t) ) \sin(5t)  cos(5t) y2(0))
The transformed coordinate system changes the solutions to forming circles moving clockwise

around the origin. Below are the phase portraits created in Maple for the xx9-coordinate
system and the transformed y;1s-coordinate system:
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4. (5pts) The system of differential equations given by:
r1\ _ (3 —4)\ [z
fQ o 1 3 $27

’:(A—$2+4=

has the characteristic equation:

3—A
1

—4

det 3.\

0,

#)
It follows that:
(1) - 3) o a2 (25).

This gives the general (real) solution:
z1(t)\ | 3 (—2sin(2t) 3¢ (2 cos(2t)
(.’Eg(t)) - ae cos(2t) +eze sin(2t) )

This solution has two complex eigenvalues with positive real part, so the result is an unstable
spiral. All solutions form outward spirals moving counterclockwise away from the origin. The
transformation matrix, P, comes from the real and imaaginary parts of the eigenvector, giving
the real Jordan canonical form, J:

3

(0 2 1 (0 05 B 2
() =0T -G

Thus, for x = Py, we have y = Jy, which has the solution:

yi(t)\ _ [etcos(2t) —e3sin(2t)\ [y1(0)
yo(t)) — \e3sin(2t) €3 cos(2t) y2(0)
The transformed coordinate system changes the solutions to forming clockwise unstable spi-

rals. Below are the phase portraits created in Maple for the xjxs-coordinate system and the
transformed yyo-coordinate system:

so =3+ 2.

which has the eigenvalue and associated eigenvector:

M =3+2i, ¢D
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1. (6pts) a. Define the matrices B and C":

-2 0 0 010
B=10 -2 0 and C=10 0 1
0 0o -2 0 0O

It is easy to see that these matrices commute, BC' = CB, so it follows that:
oAt _ BtHCt _ Bt Ct

By the definition, we have

B2t2 6_2t 0 O
eBt =T+ Bt + 51 + .= 0 e2 0 = e 2.
’ 0 0 e 2
and 022 033
t t
Ct _ S
et =1+Ct+ 51 + 3]
This expansion becomes:
010 , 0 0 1 , 0 0 0
e“'=1+tf0 0 1|+5[0o0 0l+5 (00 0]+
0 00 0 00 0 00
Thus,
010 00 1 e e Lo
9 .
eM=eBt eCt =21 T4+¢t|0 0 1 —I-% 0 0 0 = 0 e 2t te2t |,
000 000 0 0 e 2

which is the fundamental matrix solution obtained from the notes on the Jordan canonical
form.

b. With A given by:

0 1 0 0
0 O 1
A= o |,
: . . 0 1
0O ... ... 0 O

it is easy to see that A times any matrix B results in the rows of B shifting up one row and
the last row replaced by a row of zeros. It follows that A* results in the super-diagonal of ones
in A shifting up k — 1 rows for k = 1,2,...,n — 1. (See Part a.) We now apply the definition
of et and obtain: 1

-

et :I+At+A2t2—2!+---+A”‘1(n_1)!.

or ) L
t tn-
O T
.. tn72
oAt — )
: 1 t
0 0



2. (3pts) Assuming that P is nonsingular, we first note that (P~1AP)? = P~1AP. P~1AP =
P~1A?P. By induction we assume (P~'AP)* = P~1A*P, then

(P7rAP)HL = p=lakp. p=lAop = p~1AFtip,
From the matrix definition of e, we have
PleAP = P (I+tA+ QA%+ ot Al )P
= P UP4+tP AP+ 5P APy 4 L PTIARP 4
— [+4(P'AP)+ L(PTIAPY? 4+ L(PTIAP) £

-1
_ PTlAP

3. (4pts) Assume that AB = BA (commute). We have the following;:

eATB  — Z%(A+B)m7

m=0 k=0
= 2 () (Gt ™).
m=0 k=0
= 23 (84) (B ™).
k=0 m=k
B (ikl'Ak> ijllBj = etef = P
k=0 3=0

With the commutativity of A and B we used the binomial theorem in the second line, and the
order didn’t matter allowing the conclusion that

eA—i—B _ eAeB — eBeA.

4. (4pts) Let

0 1 0 0
A—(O O) and B_<1 0).

We see that these matrices fail to commute as

1 0 0 0 0 1
an= (20, mas (0 0), wa avn- (0 D).



00 00
o . . 2 _ 2
By definition with A° = < 0 0) and B° = ( 0 0),

eA=T+A+ A+ ...

I
N\
O
— =
N——

Similarly,
eP=I+B+B*+...= (1 O).

2 1 1 1

A B _ B_A _

ee(l 1) and ee(l 2).
2k 2k+1

0 1 01 0 1

<1 0) =1 and (1 0) _<1 0)’

Thus, we have

We note that

so by the definition of eAT 5, we have
oo o
1 0 0 1 et+et e—e”
A+B _ 1 1 -1
= () D)+ (S ) (o) =2 (1 i
J: ]:

Thus, it is clear that
eAB £ ¢AeB £ eBeA,

5. (7 pts) a. With A = <g 2) and B = <—Oﬁ g), it is easy to see that

_ 0 afB\
a= (0, )

so eAtB = 4B,

b. From the definition of €5t we have:
Pl =T +tB+ LB+ - + LB 1.

We have
B* = -p1,

so it follows that
B2k — (B2)k — (—1)kﬁ2k1 and B2k+1 — (BZ)k .B = (—1)k62k3
Thus, for eP?, the two diagonal elements are

242 444 _1)kg2k42k
1_627;54_%_...4_%4----:008(@5),

and the upper diagonal element is

3,3 5.5 1)k g2k+142k+1 .
Bt_%‘i‘ﬁ; _...+()(2+1)!+---:sm(ﬁt),




with the lower diagonal element being the negative of the upper diagonal element. This gives:

= (ST o)

At _ Lot Bt _ [ cos(Bt) sin(Bt) :
c. From above, we have e" = e*'] and e”"' = (_ sin(Bt) cos(Bt) with

JATBY _ JAL Bt _ at < cos(ft) sin(ﬁt)) _ ( et cos(Bt) e sin(ﬁt))
- N —sin(Bt) cos(Bt))  \—e®sin(Bt) e cos(ft) )’

which is the real Jordan canonical form e”’?.

6. (6pts) a. (Proof of Abel’s formula for 2 x 2 case) If b;;(¢) is differentiable for

B(t) = (Zi Eg Z;zgg) and det(B(t)) - bll(t)bQQ(t) - 512 (t)bgl(t),

then
BN = [0 + b 0a)] — (Bt () + brae) 0]
= [b’n(t)bm(t) - b’u(t)bzl(t)} + {bn(t)b’m(t) — bia(t) ’21(75)],
= e ) o o] 50 0 |
b. Define

B(t) = <f€11(t) $12(t)> and  A(t) = (an(t) a12(75)> ,

xo1(t) woa(t) az (t) aga(t)

where ®(¢) is a fundamental solution of z’ = A(t)z. From Part a, we have:

d 2 (t)  25(t) ‘ r11(t)  w12()
— (det ®(t)) = det | "1 12 + det .
ai PO = i) ) (1) whal0)
Since ' = A(t)z, we have componentwise
2

/
T11 = Q11211 + a12T21 = E aiprr1,  ete.
k=1



so the previous expression satisfies:

a11x11 + a12221  @11T12 + a12T22
T21 T22

T11 T12

d
— (det®) = det
a21x11 + a22x21 2112 + a22T22

det
di +de

= x22 [anﬂ?n + (1121U21] — I21 [anl‘lz + 04255’22]
+T11 [a21$12 + a22x22} — T12 [@19611 + a22$21] s

= an |:$11.%'22 - x12$21:| + a2 |:$11$22 - $12.%'21:| )

2
= aj;det(®) + aza det(P) = Zaiidet(i)) = tr(A) det(®).
i=1

c. With z(t) = det ®(t) where ®(t) is the fundamental solution to 2’ = A(t)x, Part b gave:
2" =tr(A(t))z, with  2(0) = det ®(0),

which is a linear, homogeneous scalar equation. This equation is readily solved by integration
to give:
Z(t) _ Z(O)efg(trA(s))ds7

which establishes this special case of Abel’s formula.

7. (9pts) For the linear system of ODEs given by x = Ax, where

4 6 -—15 c1
A= 1 3 -5 5 X0 = c2 |,
12 —4 c3

the characteristic equation satisfies:

4—X 6 ~15
det[A=X=| 1 3=-X -5 |==-XM4+32-3x+1=-(1-13=0,
1 2 —4—\

which gives A = 1 an eigenvalue with algebraic multiplicity of 3. Computing A — AI gives

3 6 —15 0 00
A-T=1|1 2 -5 and (A-I)?>=10 0 0],
1 2 =5 0 00
which implies the null space (kernel) or eigenspace has dimension 2. Since vo = [1,0,0]7 is

not an element of the null space, we employ the Jordan chain method to find v; by solving
(A —TI)vy = vy. It is easy to see that

3 6 —15

1
(A—[)VQZ 1 2 -5 0 = 1 = V1.
1 2 =5 0



The remaining eigenvector must solve (A — I)vs = 0 and be linearly independent of vi. It is
not hard to see that

3 6 5)
(A—I)vs=|1 2 -5 |v3=0 issatisfiedby v3= [0
1 2 1

From the eigenvectors we create the transition matrix (and inverse):
3 15 0 1 0

P=[1100 and Pl'=|1 2 -5

1 01 0 -1 1

We obtain the Jordan canonical form, .J, and solution, e’ (solving y = Jy):

1 10 et tet 0
J=P'AP=10 1 0 and  ®H)=ell=[0 e 0
0 01 0 0 ¢
The fundamental solution satisfies:
3t+1 6t —15¢
()=t =pPeftP =€ | t 142t -5t
t 2t —5t+1

For the linear system of ODEs given by x = Ax, where

0 1 0 0
0 0 1 0
A=1o o o 1]
2 —6 -7 —4

A is a companion matrix (or the transpose depending on definition). The characteristic
equation satisfies:

- 1 0 0
det]A— A =| ¢ _OA LY =X s 2= (P 122+ 1) =0,
-2 —6 -7 —4-A
which gives A\; 2 = —1 an eigenvalue with algebraic multiplicity of 2 and complex A\, = —1 £ 1.
Computing A — A1 1 gives
11 0 0
0o 1 1 0
A+T= o o 1 1/
-2 -6 -7 -3
which is a matrix with rank = 3, implies the null space (kernel) or eigenspace for Ay = —1 only

has dimension 1. If the first entry is vi = 1, then solving

1 1 0 0 1

0 1 1 0 —0 . -1
0 0 1 1= gives vy =

-2 -6 -7 =3 -1

(A+I)V1 =



The companion matrix is easily seen to have eigenvectors of the form v = [1, A\, A, ..., A" 1|7,
The higher null space eigenvector, va, solves (A + I)vy = vy, so again if the first entry vy = 1,
then it is not hard to see that

1 1 0 0 1 1
0 1 1 0 -1 0
0 0 1 1|71 SO R [
-2 -6 -7 -3 -1 2
We find an eigenvector associated with A, = —1 + 4, which from our statement above about
companion matrices gives:
A 1 0 0 1 1
0 =X 1 0 Ac -1+
0 0 —x 1 |¥VTO s wvs=lel=1
-2 -6 -7 =-3-X A3 2+ 2

From the class notes, the real Jordan form matrix with block diagonal anti-symmetric matrices
for complex eigenvalues are obtained by using the real and imaginary parts of any complex
eigenvector. Thus, for v = uz + iws with ug and ws real, we can now obtain our transition
matrix P = [vy, vy, ug, ws] or

1 1 1 0 0o -2 -2 -1
-1 0 -1 1 1| 2 4 3 1
P=11 1 0 - and - P= 0 9 1o
-1 2 2 2 -1 -3 -3 -1
We obtain the Jordan canonical form, .J, and solution, e’ (solving y = Jy):
-1 1 0 0 et tet 0 0
0 -1 0 0 0 et 0 0
_ p-lgp_ _Jt
J=PrAP = 0 0 -1 1 and (t) =™ = 0 0 etcos(t) e tsin(t)
0o 0 -1 -1 0 0 —etsin(t) e 'cos(t)

8. (7pts) a. For real parameters a, b, and ¢, we consider the matrix
_(aly A
\da aly)’

1 0 0 a 0 c
I2—<0 1>, A12—<b 0>7 A21—<a 0>-

The eigenvalues are found by solving:

(a — A)IQ A12

Q@ O O 2
o o 2
o2 o
Q@ O O e

where

_ _ W\271., _
det ‘ Ay, (a-NbL | = det ‘(a A1y A12A21‘
B (a—N)?—a? 0
= det 0 (@ — )2 —be

— ((a — )\)2 — a2) ((a — )\)2 — bc) = 0.



It follows that the eigenvalues are

7.

A=a+a=0,2a, and A =a=+Vbe.

. If a#0, bec > 0, and bc # a?, then there are 4 distinct real eigenvalues.

. Ifa #0, bc > 0, and be = a?, then the eigenvalues are A = 0,0, 2a, 2a, a pair of repeated

real eigenvalues.

. If a # 0 and be < 0, then the eigenvalues are A = 0,2a (real) and two complex A\ =

a £ iy/|bcl.

. If a # 0 and be = 0, then the eigenvalues are A = 0, a, a, 2a (real) with A\ = a repeated.

. If a =0, bc > 0, and bc # a?, then A = 0,0, ++/be, which are 3 distinct eigenvalues with

A = 0 repeated.

. If a = 0 and bc < 0, then there are the repeated real eigenvalues A = 0,0, and a pair of

imaginary A\ = £iy/|bc|.

If a =0 and bc = 0, then A = 0 is the only eigenvalue with algebraic multiplicity of 4.

b. If a = b = ¢ = 2, then we are in Case 2 with two pairs of repeated eigenvalues, A = 0,0, 4, 4.
For A = 0, we solve

(A-0I)v=Av =

N O O N
SN NN O
o NN O

N O O N
N~
<
I
=

which has geometric multiplicity 2 and gives

1 0
0 1
Vi = 0 and Vo=
-1 0
For A = 4, we solve
-2 0 0 2
0o -2 2 0
(A—4l)v = 0 2 -9 0 v =0,
2 0 0 =2
which has geometric multiplicity 2 and gives
1 0
0 1
vy = 0 and va= [
1 0
The transformation matrix and its inverse are
1 0 10 0 0 -1
o 1 01 (o 3 -2 o0
P=10o -1 01 e E O N
-1 0 10 03 3 O



so the Jordan canonical form becomes:

P AP =J =

o O o O
o O o o
S = O O
- O O O

It readily follows that for ¥ = J®¥, the fundamental solution satisfies:

1 0 0 O

01 0 O
‘Il(t) = 0 0 e4t 0

00 0 et

9. (2pts) If A is an invertible matrix, then we know AA~! = I and ||I|| = 1. By the sub-
multiplicative property of norms:

1ANATH > [[AATH] = (7] = 1.



