Fall 2019 Math 537 Take-Home Exam 1 - Solutions

1. (10pts) Consider the differential equation

dy
€E+y— f(t/e), y(0) = o, t>0,

where f(t) satisfies f(t 4+ T) = f(t), and on [0,T], f(¢) is defined to be

1 0<t<T)2,
f(t)_{o T/2<t<T.

We rescale this problem by letting & = é It follows that 6% = e—yd—é =

€ so the scaled ODE
becomes:

dgv

dy
— +y= 0) = yo. 1
i (&), y0)=uyo (1)
This has the integrating factor u(€) = ef, so

j§ {eﬁy(g)} =€ f(€), or ey(&)—yo= /OE e’ f(s)ds.

Thus, the solution is given by:

y(&) =e* <y0 + /j eSf(s)ds) ,

which is readily integrated. However, since f(&) is discontinuous (series of step functions),
this problem is most amenable to solution by Laplace transforms. Let Y (s) = L[y(¢§)], then
transforming (1) gives:

sY(s) —yo+Y(s) = LIF(O]  or  (s+1)Y(s) =yo+ LIf(E)]-

A theorem for periodic functions with period T states that

1 T 1 T/2
LIf(E)] = 1—6_8T/0 e_sgf(é)dg = 1_6_ST/O e_sﬁdf,
B 1 1 — ¢—5T/2 B 1
1—esT ' s T s(1 e T2y

It follows that

Yo 1 1 Yo 1 1 1
Y = . — -
() s—|—1+ (s—l— 1) 1+esT/2 5—|—1+1+e*8T/2 (s s+1)’

_ y[) n —snT/Q 1_ 1
e (Do ).

One takes the inverse Laplace transform and obtains the solution:

y(€) = yoe * + Z "upr/2(§ (1 - ef(gfnT/z)) :




Thus, the original ODE has the solution:
y(t) = yoe*t/s + Z(_l)nunT/2(t/E) (1 _ ef(t/sfnT/2)> .
n=0

This previous expression readily shows that the solution y(¢) is not T-periodic, as y(t) # y(t+71)
for all yo. However there exists a specific yg ~ 0.377541 that gives a periodic solution. This is
shown with the Method of Averaging and a fixed point theorem.
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2. (10pts) Show that if ||A|| < 1, then one has that (I — A)~! exists and

1

- A Y < ——

Proof: We prove by contradiction that (I — A)~1 exists. If (I — A) is singular, then there exists
a vector z such that (I — A)x = 0 or = Az. Taking norms we have

lzf] = [[Az|| < [[A[[fJ«]] ~ or  JJA[[=1, as [f]| #0,

which is a contradiction and (I — A)~! exists.

Define
N N N
Ay = (I—A)ZAj_[ - ZAJ'_ AT
=0 =0 =0
N N+1
= ZAJ_ZA] — _AN+1
J=0 j=0
It follows that i
[[Aw]] = [|-a¥41]] = [Ja¥*| < jlag

Since || A|| < 1, we have ||A||" ! = 0 as N — oo, which implies that H/INH =0as N —oo. It
follows that

N—o0

lim Ay =0, S0 I:(I—A)ZAj.
=0



This is equivalent to
oo
(I-A)'=> A
j=0
Taking norms and using the triangle inequality, we have

(=AM = | DA <D (147 <D llAl.
j=0 j=0 Jj=0

With ||A|| < 1, we have a geometric series, so

> ; 1
I—A)7 Y < Al = ———. e.d.
(T - 4) H_;%HII A 4

3. (15pts) This problem examines the system of differential equations given by:
X = -3l X
- \3-a -3)7

a. The characteristic equation satisfies:

where « is a real parameter.

—3—-A -1
3—a —3-2A

‘=Q+3F+3—a:0

It follows that A = -3 &+ Vo — 3.

b and c. There are two critical values of «, where the qualitative nature of the phase portrait
changes. When a = 3, there is a change in the eigenvalues between being real and complex.
The other critical value is when a = 12, where one of the eigenvalues becomes positive.

For a < 3, the eigenvalues are complex with the real part less than zero, which results in a
stable spiral. Below left shows the phase portrait for this region.
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For a = 3, the eigenvalues, A = —3, are repeated roots, which results in an improper stable

node. Above right shows the phase portrait for this value of «.

For 3 < a < 12, the eigenvalues are distinct real and less than zero, A\; < Ay < 0, which results

in a stable node. Below left shows the phase portrait for this region.

For a = 12, the eigenvalues, A = —6,0, are distinct roots. The eigenvalue, \; = 0, results in a

—3x1, while Ay = —6 results in all solutions approaching (stable) these

equilibria. Above right shows the phase portrait for this value of a.

line of equilibria, x4

For a > 12, the eigenvalues are distinct real and opposite signs, A1 < 0 < A9, which results in

a saddle node. Below shows the phase portrait for this region.

Saddle Node




The characteristic equation satisfies det |A — AI| = 0:

-A 0 1
0 -3-X 0 — —3O—A —60—>\‘+1"_09 —30—/\‘
-9 0  —6-2A

= “MA+3)A+6)—9A+3) = —(A+3)° = 0.

It follows that A = —3 is an eigenvalue with algebraic multiplicity 3. We examine A + 31 and
can see that this is a rank 1 matrix, so the ker(A + 3I) is two-dimensional, which implies the
geometric multiplicity of A = —3 is 2. (Also, note that (A+31)% = 0, giving the same geometric
multiplicity.) It is easy to see that

3 0 1 1 0
(A+3)v=| 0 0 0 |v=0 haseigenvectors v=| 0 |,|1
-9 0 -3 -3 0

If we take vo = [1,0,0]7 to be in the generalized eigenspace of A, then the Jordan chain process
gives:

3 0 1 1 3
(A+3)va=10 0 O 0] =vi, whichgives vi=| 0
-9 0 -3 0 -9

With these eigenvectors, we obtain a transition matrix and with the help of Maple find its
inverse:

310 00 —3
P=|0 01 and  Pl'=[10 3%
-9 0 0 01 0
Subsequently, we obtain the Jordan canonical form:
-3 1 0
J=P1'AP=10 -3 0
0 0 -3
A fundamental solution satisfies:
e 3t te™St 0 1t 0
Ut)y=el'=| 0 e3 0 |=e3|0 10
0 0 e3¢ 00 1

b. Now consider the linear system of ODEs given by

0 1 0 0

. 0 0 1 0
x=1 0 o o 11%= Ax, x(0) = xo.

—-16 16 -8 4

This is a Vandermonde matrix, and with y = x1, 1 = x2, £2 = x3, and &3 = x4, we obtain the
4th order scalar ODE:
y//// _ 4y/// + Sy// _ 16y/ + 16 — 0’



which has the characteristic equation:
M43 4802 —16A +16 = (A —2)’(\2 +4) =0.

It follows that the eigenvalues are A = +2¢,2,2. For the Vandermonde matrix, the eigenvalue
A1 = 2 has algebraic multiplicity of 2, but geometric multiplicity of 1 with v; = [1,2,4,8]7.
To find an eigenvector in the higher dimensional null space, we solve (A — 2I)vy = v; or:

2 1 0 0 1 0 1
0 -2 1 0 2 1 2
0 0 -2 1|¥2T 4] 0 V2T 4TSy
16 16 -8 2 8 12 8

Again because this is a Vandermonde matrix, the eigenvalue A3 = 2¢ has the associated eigen-
vector vz = [1,2i, —4, —8i]T (with A4 = —2i having associated eigenvector v4 = v3). To obtain
the real Jordan canonical form, we write v = u + iw, so

1 0
0 2
u=1 | and w=1,
0 -8

It follows that an appropriate transition matrix and its inverse (from Maple) are:

1 -1 1 1

1 0 1 0 4 4 16

1 1 1

121 0 2 IR B S R S

P = A 4 -4 0 and P = 0 1 _1 _%
8 12 0 -8 L 1

-3 7z 5 0

It follows that the real Jordan canonical form is given by:

21 0 0
02 0 O
_ p—1 _
J=pPrAP = 00 0 2
00 -2 0
A fundamental solution satisfies:

et te?t 0 0
et 0 0

—a 1 0 0 et 1
) 0 —a 0 O 0 2
s=axto0=| o oo sl o | x0=]7]
0o 0 -8 0 sin(wt) -2



with «, 8,7v,w > 0, we see that the matrix, A, given below is in real Jordan canonical form:

—a 1 0 O
0 —a 0 0O
A= 0 0 0 g
0 0 -8 0

e ot temot 0 0
o o e 0 0
O(t) =™ = 0 0 cos(ft)  sin(ft)
0 0  —sin(Bt) cos(ft)
with its inverse
e —tet 0 0
i m 0 eot 0 0
() = = 0 0  cos(Bt) —sin(Bt)
0 0 sin(8t)  cos(pt)

so the particular solution is given by:

¢
xp(t) = eAt/o e~ %g(s)ds,

e* —se™® 0 0 e
3 as
_ / 0 e 0 0 0 |
o | O 0  cos(Bs) —sin(Bs) 0
0 0 sin(8s)  cos(fs) sin(ws)
ela=7)s
at [ 0
- /0 — sin(fBs) sin(ws) ds.

cos(fs) sin(ws)

We examine the 3 integrals above (with Maple), considering the special cases where av = ~y, and

b =w.

/t laMs g — { 01#-’? (o0 =1), a#,
0 ta a =,
sy (9= )sin((5 +)0) - (58 -+ wysin(5 - )1 ).

sin(2t) t
S4B 2

_ /O " sin(Bs) sin(ws)ds

t
cos(f3s)sin(ws)ds =
| o8 sintes) o

B #w,

f=w,

s 8+ @) cos((8—)0) — (- eos((B+w)) 2 ), 67w

b =w.



Technically, there are 4 cases, but since the system is decoupled, the solution will look at the
generic case when o # v and 8 # w, then combine the cases where « = v and § = w and
understand there are permutations of these solutions. First we write the generic case when
a # v and 8 # w. The solution of the IVP is

(ef'yt_efat)

(1+2t)e= +

a—y
2e—at
X(t) = cos sin ) sin((8—w sin cos((B—w cos w
dcos(31) — 2sin(B1) + P (B _ (B | s (eos(B) _ cos(Fn)
4 sin(ﬁt) _ 2COS(ﬁt) . singﬁt) (Sin(éiZW)t) _ sin éB,::‘))t)) + cosg@t) (cos(éﬁi;w)t) . cos(éit}w)t))

With Maple, this is simplified:

(ef'yt_efat)

(14 2t)e ot +

a—y
2€_O‘t
x(t) = | |
dcos(Bt) — 2sin(Br) + L) (B
—4sin(pt) — 2 cos(ft) + wcos(ugz):;cos(ﬁt)

We combine the two special cases, @« = v and 8 = w, where the first two elements are for a =
and the last two rows are for = w. The resulting solution to the IVP is

(1+ 3t)e
2t
x(t) = . -
( ) 4COS(,8t) . QSin(ﬂt) + cos(,@t)4s5n(26t) . tcosé(ﬁt) + s1n;gﬁt)

—4sin(6t) _9 COS(ﬁt) . sin(ﬁt);;n(Qﬁt) + tsin2(ﬂt) + cos(Bt)le‘gnz(ﬁt)

With Maple, this is simplified:

(1+ 3t)e ot
Qefat
xX(t) = .
(t) 4 cos(ft) — 2sin(ft) + W

. t sin(ft)
—4sin(ft) — 2 cos(Bt) + %
It is clear that when § = w, the solution becomes unbounded from the resonance (¢ term).

b. The homogeneous part of the non-constant, nonhomogeneous system of linear ODEs with

t>0: )
. 0 1 —16t 4
(3 e (). 0 (4)
can be readily seen to satisfy the Cauchy-Euler equation:

which has the auxiliary equation, r(r —1) —r —3 =72 —2r —3 = (r + 1)(r — 3) = 0. This gives
the homogeneous solution:
yn(t) = y1(t) = ert ™ + ot



With ys = 91, we can write the fundamental solution and its inverse:

13 3t _
(I’(t) = <—t_2 3t2> and (I’_l(t) = ( 411 14> )

43 42

using det |®| = 4¢. The variation of parameters method can be used to find the solution:

y(t) = BH®(1)y(1) + B(1) /1t¢—1<s>g<s>ds,

T—3t3 —2t31n(t)



