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Linear Systems of ODEs

D
Y
J

Example

Example 1: Consider the example:

(5)=(7%" %))

Find the general solution to this problem and create a phase portrait.

Since this is a diagonal matrix, we obtain the eigenvalues from the diagonal
elements, A1 = —0.5 and Ay = —1.

The characteristic equation is

—05-A 0
det 0 1oy |=0H0n0+) =0,

For A1 = —0.5, we have the associated eigenvector 5(1) = ( (1) )

Similarly, for Ao = —1 we have the associated eigenvector £(2) = ( (1) )
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Example

Example 1 (cont): The general solution satisfies:

(28) -0 (8)rva( 1)

which is a solution exponentially Stable Node
decaying toward the origin. \ E i“ i“ t“ \ k \% tl(t t i ﬁ f J f 5 j f /)
NNNNNNNV VW VL L L)
This is a sink or stable node. \Eikii“\‘\\;\\:ttiﬁlffjj//
SNONNNSNSN NV LI S g s
Solutions move more rapidly in \:\ii‘\:“i \ k t i ﬁ / )’;j?ﬁ%
. . 2) 0 R N N N T
the direction f( ) = 1) m——e \\B%“é‘ e
while decaying more slowly in :2::;:?;/7 ik ‘;t‘:\s;:?\j
L 1 P A R RN NN
thedlrect10n§(1)=<0> 7oz 7 7 70 1 TV NN NN NN
FTHIINRN
This example shows how easy it is to 2770000 T VA VNN
sqlve systems of dif?erent%al equations ;;; ; ; ] ; ; ; % } % % ’Q \ k ’Q ; \'Q
with diagonal matrices, since the AV B N RS LI B U\ N NN 2SO

variables are uncoupled.
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Linear Systems of ODEs

Example

Example 1 (cont): The general solution is given by:

(50) -0 (3)an (3

so the linearly independent solutions are combined to give a fundamental
solution: 0.5t
e " 0
a0 -( 5 )

It is readily seen that

b =A®, and  ®(0) = 1.
Furthermore, any solution can be written:
x1 (t) _ ~
( rg(t) ) = ‘b(t)cz

Whereé:(c1 ) SDST

c2
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Linear Systems of ODEs Definitions and Matrix Properties
<« Diagonali 3

We consider vectors x € R™ (or C™") and define a “distance” in terms
of the norm of a vector.

Definition (I, Norm)

Consider an n-dimensional vector x = [z1, ..., z,]7 € R™ (or C"). The
l, norm for the vector z is defined by the following:

n l/p

lzllp = { D lail?

=1

Almost always the norms use p = 1 (taxicab or grid), p = 2
(Euclidean or distance), or p = 0o (max)

For = = ( o1 ), we have ||z||s = (x% +x%))1/2
X2
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alization
cal Form

Unit Circles

I, Norm I, Norm 1, Norm
1" 1“ 1"
EN T 1 1
z]p <1 lz]le <1 z]]oo <1
or or or
1/2
1|+ |22l <1 (Jz 2+ o) P <1 max{|an], |2a]} <1
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Linear Systems of ODEs Definitions and Matrix Properties
Matrix Di i

Jordan Cas

Let x = [21,...,2,]7 € R™, then the norms for p=1,p =2, or p = 0
satisfy:

n
laly = 3 Jail
i=1

(]2

Il
N/_\
i M:
[\

5
=
v

ol

lelloe = max{fel}

Property (Norm)

Given an n-dimensional vector = [z1, ..., 7,7, then:

|z]| >0, if ©; #0 for some 1,
||| = 0, if x; =0 for all i.
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Linear Systems of ODEs Definitions and Matrix Properties
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Norm — Example

Example: Consider z = [0.2,0.4,0.6,0.8].
@ Forp=1,

4
lafly =" lzs| = 0.2 +0.44 0.6 + 0.8 = 2.0
=1

@ MatLab command is norm(x, 1)

o For p =2,

4 1/2
lz)2 = (Z xﬁ) = 1/0.04 + 0.16 + 0.36 + 0.64 = 1.0954
=1

@ MatLab command is norm (x) or norm(x, 2)

@ For p = o0,
|z|loo = max |z;| = 0.8

@ MatLab command is norm(x, inf) SDSO
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Linear Systems of ODEs Definitions and Matrix Properties
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Cauchy-Schwarz Inequality and Equivalence

Property (Cauchy-Schwarz Inequality)

Consider two vectors, x = [w1,...,2,])T andy = [y1,...,yn]t, in R"
(or C™). Then

Nl=

1
n n 2

n
>zl < (D I=51 >yl
j=1

Jj=1 J=1

Definition (Norm Equivalency)

Two norms || - || and || - || are said to be equivalent if there exist
constants C and D and x € R™ (or C") such that

Cllxfla < [x[ls < Dllx[la-

If norms are equivalent, then it doesn’t really matter which norm is
used for showing different properties.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (0/66)




Definitions and Matrix Properties
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Linear Systems of ODEs

Norm Equivalence
It is easy to see with the Cauchy-Schwarz inequality that

1
2

1

n n n n §
Ixllh = > lagl = > Jayl-1 < > ll? >

j=1 j=1 j=1 j=1
Vnllx|l2

If ||x||1 = K, then |z;| < K, so

Nl
[

A

n n
Ixllz = | > le;l? < | DKl
j=1 j=1

1
VE|x||f = K = [x]1.

IN

It follows that || - || and || - |2 are equivalent as
1
Vn

[l < fixfl2 <[]

(11/66)

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)
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Norm Equivalence

Relating to || - [|lco, we see immediately that

n n
Il = Y lzsl < Y Ixloe = nlxllo,
j=1 j=1

and clearly ||x]|co < [|x||1, sO
[1%[loo < [1x[lr < nf[x][oo,
which gives equivalency of the || - ||; and || - ||coc norms.
All of this can be strung together to show that:
xlloe < lIxll2 < [Ix[l1 < Vrllx[l2 < nfl%[l,

which means that all of these norms are equivalent.
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Linear Systems of ODEs Definitions and Matrix Properties
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Norm Equivalence

The fact that all these norms are equivalent means that one can
use whatever norm is most convenient.

The bounds will change, but we obtain limits on our estimates.

Depending on what we are attempting to accomplish, we will choose
different norms, each with their own special properties.

The || - ||2 is particularly important as

1
[x[l2 = ({(x,x))?,
where

n
x,y)=>_zy;
j=1

is an #nner-product, providing important structure to our space.

|||l and || - [[co do NOT come from inner-products. SDSO
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Linear Systems of ODEs Definitions and Matrix Properties
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Norm of a Matrix

Consider matrices A: C* — C" and B : C* — C".

Property (Matrix Norm)

A matriz norm on the set of all n X n matrices is a real-valued
function, || - ||, defined on this set, satisfying for all n x n matrices A
and B and all real numbers a:

O 4] >0 (positivity);

QO ||A|| =0, if and only if A is 0, the matriz with all entries 0;
O ||| = |a||A]l (scalar multiplication);

Q ||A+ B|| < ||A|| + ||B|| (triangle inequality);

Q |AB| < ||A|ll|B]l (sub-multiplicative norm);
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Linear Systems of ODEs Definitions and Matrlx Properties

Norm of a Matrix

Norm of a Matrix: There are a number of norms on a matrix. The
most common norm for a matrix is defined by the vector norms for R"

Theorem (Matrix Norm)

If || - || is a vector norm on R™, then
| Az|
[All = max |[Az| =

lelim1 jeizo [z]
18 a matriz norm.
It follows that for any x

| Az
1Al > I or  ||Az| < [ Allfl
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Example

Example: Consider

Computing the 2 norm:

[Axlz = (|1 |z1]® + [X2l?[22]?) 2 .

If |A1] > |Az2], then choose x = ( (1) ) and it follows that

(o)

- |)\1‘7
2

50 [|[Allz = [A]-
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Similarity and E

There are a number of definitions about matrices that are needed.

Definition (Similar Matrices)

Consider two n X n matrices, A, B. Matrix A is similar to B if there exists an
invertible matrix P such that

AP = PB or B=P AP

Fact: Similar matrices have the same characteristic equation.

The exponential of a matrix is defined by a Taylor’s series.

Definition (e?)

Let A be an n X n matrix. The matrixz exponential is defined by the following
series:

A A? -
=T+A+ ot +F+ o

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (7/66)
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Exponential of Matrix

The exponential of matrix is defined by the sum of the series:
A2 Ak >, Ak
A =T+HA+ =y
2! k! k!
k=0
This series only makes sense if it converges.

We show this series converges for any matrix A : C* — C™ by defining the partial
sums and applying the Cauchy criterion for sequences.

A2
Sk=T+A+ 5+t

From the sub-multiplicative norm property, ||[A™| < ||A]|™.

The partial sums give for m > p

AP [l o [lA*
s -si = 35 45 < $ ML o
k=p+1 k=p+1 k=p+1

Since || A|| is a real number, from Calculus we know this last quantity can be made
arbitrarily small for sufficiently large p; and thus, this converges by the Cauchy SDST
criterion.
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e! Properties and Example

Property (Matrix Exponential Product)

If M and P commute (MP = PM ), then

A o P = M,

oo
o~
N———
<
5
1
@

3 1 30
. At = =
Example: Find e ,WhereA—( 0 3 )-( 0 3 >+(

the last two matrices commute, we have

et = exp(g g)t-ewp(g (l])t

o o
~—
2]
(=]
o+
=
@
5
=
=}
=8
@
0
e}
2.
@
0
o+
@
s
&
1A
o+
@
2]
o
=+
@
=
[\

2
0 1 0
However, ( 0 0 = ( 0

terms. Thus,
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Diagonalization

Consider the system of ODEs with A(n X n)
%X = Ax,

where A has n distinct real eigenvalues.

From Linear Algebra we have the following Theorem:

Theorem (Diagonalization)

Assume the matriz A(n X n) has the real distinct eigenvalues, A1, A2, ... An, then
any set of corresponding eigenvectors, {vi,va,...vn} forms a basis of R™, the
matric P = [v1,Va,...,Vvy] is invertible, and

P7YAP = D = diag[\1, A2, ... An].

Proof: Using the definition of eigenvalues and properties of matrices,

P lap = PilA[vhvz,...,vn] = Pil[AV1,AV2,...7AVn]
P A1vi, Aava, ..o, Anvin)
[)\1P71V1,)\2P71V2,...,Anpflvn].

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (0/66)



Linear Systems of ODEs Definitions and Matrix Properties
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Diagonalization

Proof (cont.): However, v; is the j* column of P and
P~1lv; = j*" column of P~1P = jt* column of I,

which implies P~1AP = D. g.e.d.

Returning to our ODE with x = Ax, we define the linear transformation
y =P 'x,

where P is defined in the Theorem above.

It follows that

x = Py,
y = P7'x = P lAx = P lAPy,

which leaves the uncoupled linear system:

y = Dy = diag[A1, A2, ... A\n]y.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (1/66)



Linear Systems of ODEs

Diagonalization

The uncoupled linear system:

A1
0
y=Dy=
0
has the solution:
ettt 0
Aot
0 e2
y(t) =
0

Definitions and Matrix Propert
Matrix Diagonalization
Jordan Canonical Form

0 0
A 0
2 y
0
0 >\n
0
D
y(0) = Pty (0).
0
eAnt

With y(0) = P~1x(0) and x(t) = Py(t) the solution to the original problem

becomes:
eMit 0
Aot
x(t) = P 0 e
0

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)
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P~ 1x(O) = eAtx(O).

0

eAnt
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Linear Systems of ODEs Definitions and Matrix Properties
Matrix Diagonalization
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Example 1

Example 1: Consider the following system of ODEs:

0 2 1
2, vi = 1 s A2 =1, vo = 1 s Az =—1, vz = —1 .
1 1

o o

0o 2 1 —2 1 3
=1 1 -1, with P! = 1 -1
—1 2

where again Maple helps us with the inverse matrix.

jmahaffy@sdsu.edu) (3/66)
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Linear Systems of ODEs Definitions and Matrix Properties
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Example 1

Example 1: From our Theorem we have:

2 0 0
P laPp=D=( 0 1 o
0 0 -1

With the linear transformation y = P~1x, we obtain the uncoupled system:

y = Dy,

which has the solution:

e?t 0 0
y(t) = ( 0 et 0 )y(O).
t

0 0 e

Transforming the system back to the original coordinates gives:

5 2et —e~t 0 72et+2eft
et o 0
x(t) = P 0 et 0 P_lx(O): —2e2t et et 2t 362t _et — 267t x(0).
0 0 et
et —et 0 —et —4—297’5

SDSO

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (4/66)



Linear Systems of ODEs Definitions and Matrix Properties
Matrix Diagonalization
Jordan Canonical Form

Example 1

Example 1: From above, our solution in the transformed coordinates satisfies:

e?t 0 0
y(t) = ( 0 et 0 ) v(0).
0 t

0 e”
Below we see a graph showing several trajectories for this solution.

The 4 trajectories begin near the ys-axis, ~10
then asymptotically approach the yiy2-plane. &

This system has an Unstable Node
in the y1 vs y2 plane (y3 = 0).

This system has Saddle Nodes

in the y1 vs y3 plane (y2 = 0) /"]
or y2 vs y3 plane (y1 = 0). 10

=5 £
Behavior is best viewed in the 2D projections. ¥l i y2
See Maple worksheet. di
| DST
- 10

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (5/66)




Linear Systems of ODEs ofi 11tlnns and Matrix Properties
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Jordan Canonical Form

When the system of ODEs with A(n x n)
%X = Ax,

has the algebraic multiplicities of eigenvalues of A agree with the geometric
multiplicities, then we can diagonalize the matrix with the n linearly
independent eigenvectors and readily solve the uncoupled system.

However, there are times when the geometric multiplicities are less than the
algebraic multiplicities, and the matrix A cannot be diagonalized.

Definition (Generalized Eigenspace)

Let A:V — V be a linear transformation on a complex vector space, and let A be
a complex number. The generalized \-eigenspace, Wy, is the subspace of V'
consisting of vectors v € V' such that

(A—XD)™v =0,

for some positive integer m. The vector v is said to be a generalized eigenvector
of rank m, if m is the smallest positive integer such that v is in the kernel of

(A= XD)™. b1

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (6/66)



Linear Systems of ODEs finitions and Matrix Properties
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Jordan Canonical Form

orem (Jordan 1 Form)

For each complex constant n X n matriz A, there exists a nonsingular matriz P such that the
matriz J = P~ LYAP is in the canonical form:

Jo 0 c. 0
J= 0 J1 0 i
. . 0
0o ... 0 Js
where Jo is a diagonal matriz with diagonal elements, A1, Aa, ..., Ak, (not necessarily distinct)

and each Jp is an np X np matriz of the forms:

Akdp 1 0 A 0
A1 0 0
: 0 Akdp 1
Jo = 0 A2 © . and Jp = . 5 %o T ’
: 5 5 5 0
0 . 0 Ak . “. . . 1
0 .. o 0 Apip
where p = 1,...,s and Ag4p need not differ from X4 if p #qandk+ny+---+ns =n. The
eigenvalues of A are X\;,i =1,2,...,k + s with the simple eigenvalues appearing in Jg.

Joseph M. Mahaffy, (jnahaffy@sdsu.edu) (27/66)



Linear Systems of ODEs

Jordan Canonical Form

Jordan Canonical Form: Maple

Maple provides a toolbox (LinearAlgebra) that easily computes the Jordan
Canonical Form of a matrix.

A worksheet is available for the matrix:
0 1 0
A= 0 0 1
2 3 0

We show the commands CharacteristicPolynomial(A,z) and
Eigenvectors(A), giving the obvious results.

The command JordanForm allows finding the Jordan Canonical Form of A
and the Transition Matriz, Q, easily:

Loz s
2 0 0 9 3 9
J=(0 -1 1 and Q=| 2 -2 -2
0 0 -1 4 2 4

9 3 79

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (28/66)
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Fundamental Solution

Earlier we saw that if Jp was a k X k diagonal matrix, then the solution of

x = Jox was
x(t) = e70tx(0),
where /0t = diag[eMt, er2t ... eMkt],

Next we evaluate e’r?, where Jp = Mg4plp + Np and Ny, is an np X np matrix:

0 1 0
Np =

. 1

0 0

It is easy to see that Ag4,Ip and Np commute, so

yp—1
(np—1)1

e/t — Aktpt

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (9/66)



an Form and Complex Eigenvalues

Fundamental Solution B TG
ity of 2 x 2

Fundamental Solution

We saw that any matrix A can be transformed into Jordan canonical form, J,
which is in a block diagonal form with all the eigenvalues on the diagonal and
repeated eigenvalues with an eigenspace having a kernel or nullspace larger than
1 having ones on the superdiagonal.

The fundamental solution, ¥(t), of y = Jy satisfies:

e’ot 0 0
W(t) = 7t = 0 eJ1t
0
0 0 elst

because of the block structure of the matrix J.

It follows that the fundamental solution, ®(t), of x = Ax satisfies:

B(t) = At = ePIPTt _ poJtp—1

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)



an Form and Complex Eigenvalues

Fundamental Solution lity of 2 x

Example of Fundamental Solution

Example: Consider the system of linear homogeneous equations:

-7 -5 -3
x=Ax = 2 -2 -3 X.
0 1 0
The characteristic equation satisfies:
—7T—=A -5 -3
det 2 —-2-X =3 | =-(+3)3=0,
0 1 -

implying A has the eigenvalue A = —3 with algebraic multiplicity = 3.

Examining A — A\I gives:

=7+3 -5 -3 -4 -5 -3 2 1 -3
2 —-2+3 -3 | = 2 1 -3 |~ 0 1 3 ,
0 1 3 0 1 3 0 0 O
which is a rank 2 matrix, so ker(A + 3I) is one-dimensional. SD0S0
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an Form and Complex Eigenvalues

Fundamental Solution ility of 2 x 2

Example of Fundamental Solution

Example: Since ker(A + 3I) is one-dimensional, the geometric multiplicity of
A = —3 is only one.

We compute (A + 37)? and (A + 3I)3 and find:

—4 -5 -3 \?2 6 12 18 —4 -5 -—3\3
1 -3 = -6 -—12 -18 and 1 -3 =o,
0 1 3 2 4 6 0 1 3

which implies the generalized eigenspace has dimension 3.

[
[

We create a Jordan basis by satisfying the following relations:

(A= X)vi =0, (A= A)va = vy, (A= Al)vs = va.

The process employed is called a Jordan chain, where we select a vector vz in the
generalized eigenspace, which is R3 (which in this case cannot be in the eigenspace

of (A — AI)2).

It suffices to take vs = [1,0,0]7.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (2/66)



n Form and Complex Eigenvalues

Fundamental Solution lity of 2 x 2 tems

Example of Fundamental Solution

Example: With v3 = [1,0,0]T, we solve

-4 -5 -3 1
va = (A — X)vs = 2 1 -3 0 | =
0 1 3 0
-4 -5 -3 —4 6
vi=(A—A)vy = 2 1 -3 2 =| -6
0 1 3 0 2

Thus, we obtain our linear transformation matrix:

and

1

6 -4 1 o 0 3

P=| -6 2 o0 with P '=| o L 3
2 0 o0 22

1 2 3

It is not hard to see that

P laP=| o

SV
W Nlw Nl

Joseph M. Mahafty,



. ordan Form d Complex Eigenvalues
Fundamental Solution \bility of 2 X 2

Example of Fundamental Solution

Example: From our results before, the fundamental solution of y = Jy is given

by:
L2
Ty =elt=e 0 1
0o 0 1

The the fundamental solution of x = Ax is given by:

&) = e = peltpt
3e 3142 74073tt+073t 75c73tt+6c73f’t2 73c73tt+9073tt2
= —3e 3%42 £ 2e 31 e Bttpe 3t _ge 3142 —3e 3t —9ge 3142
=312 e=3tt 4 0o—3142 e=3t 4 30-3ts 4 36-342

The general solution of x = Ax satisfies:
2
x(t) = cie 3tvy + coe 3t (tvi + va) + cge 3t (’;—!vl 4+ tvo + V3) ,

where vi, va, and vs are the respective columns of P.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (4/66)



Jordan Form and Complex Eigenvalues
S i s

Fundamental Solution iy 0F @ % 2 Shyetiarmes

Jordan Form and Complex Figenvalues

What happens to the Jordan canonical form when some of the eigenvalues are
complex?

If the eigenvalues come from a real matrix A and A\; = a — i3, then Ao = a + i3
is another eigenvalue.

Suppose that A is a 2 X 2 real matrix with eigenvalues, A = a £ i3, then there
exists a complex matrix P, such that

—1 _ _ Ot—iﬂ 0
P AP,J,( 0 o¢+iﬁ>'

Thus, a fundamental solution (complex) toy = Jy satisfies:
(a—ip)t 0
_ Jt_ [ e
\Il(t)_et_( A )

How are real fundamental solutions formed for this matrix A?

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (5/66)



Jordan Form and Complex Eigenvalues

Fundamental Solution Tsiibtsy @ 3 % 2 Shyeieres

Jordan Form and Complex Figenvalues

With the 2 x 2 real matrix A and A = o + i3, our theory gives the existence of a
complex matrix P, such P~1AP = J is a diagonal matriz with the eigenvalues
on the diagonal.

However, it is often preferable to transform A into the anti-symmetric matriz,
K:
_ -1 _ a B
k=qag=( % 7).

where K is similar to A and @ has real entries.

Theorem (Complex Eigenvalues and Rotation-Scaling Matrices)

If the 2 x 2 real matriz A has eigenvalues a £ i (with B #0), and if v +iw is an
eitgenvector of A with eigenvalue o + i3, then

o

Q rAQ = (féﬁ 6) =K, where Q = [v w].

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (6/66)
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Jordan Form and Complex Eigenvalues
S i s

ility of 2 X 2 Systems

Jordan Form and Complex Figenvalues

The previous theorem provides the tools for transforming the 2 x 2 real matrix A
with a 2 X 2 real matrix @Q into a similar 2 X 2 real anti-symmetric matriz, K,
which is a rotation-scaling matriz.

This theorem generalizes to the higher dimensional eigenspaces to allow
transformation of any real matrix A into a real Jordan form matriz, where
complex eigenvalues are represented by real anti-symmetric blocks on the
diagonal.

It can be shown that the exponential of the anti-symmetric matriz, K, has the

following form:
oKt — gat ( cos(Bt)  sin(Bt) )
—sin(8t) cos(Bt) )’

which gives the fundamental solution to the ODE, y = Ky, given by

W(t) = Xt
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General Jordan Form with Complex Eigenvalues

Let A be a real matriz with real eigenvalues, Aj, j = 1,...,k and complex eigenvalues,

Aj =a; +B5 and A\j = aj —Bj, j=k+1,...,n. Then there exists a basis

Lm0 00 0@ Uk 41, Whgls---»Un, wn } for R2n_k, where vj, j =1,...,n, are generalized

eigenvectors of A, the first k of these are real and u; = Re(vj), w; = Im(vj;) for

j=k+1,...,n. The matriz P = (v1]| ... |vglupyi|wggpi]| ... |un|wn) is invertible with
Ji ... 0

ptap=| ],
0 oo Jr
where the elementary Jordan blocks, J;, i = 1,...,r are either of the form of our previous

Theorem for Jordan Canonical Form for the real eigenvalues, Xj, j = 1,...,k, or of the form
D, Iz 0 e 0

o D, I

Jp = 9
P 0
D I
0 0o D,
where
_ ap Bp _ 1 0 _ 0 0
2=( %, ) ==(o 7) °=(53)
for Xp = ap + iBp a complex eigenvalue of A. E
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The Jordan Block matrices, Jp, in the previous theorem coming from the
complex eigenvalues, A\p, Ap, depend on the algebraic and geometric
multiplicities.

For distinct complex eigenvalues or any complex pair, A\ = o + ifg, with
algebraic and geometric multiplicities agreeing have a diagonal form similar to Jg
in the previous theorem with diagonal elements,

_ ar Bk
Dk_( —Br o >

When the complex pair, A, = ap 8, has algebraic multiplicity = 2m(m > 1)
with geometric multiplicity = 2, then J, has the form shown above with m
diagonal blocks of the form Dy.
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Fundamental Solution with Complex EVs

We use the theorem for the real Jordan canonical form to find the
Fundamental Solution to the problem:

x = Ax, x(0) = xo.

The Fundamental Solution satisfies:
x(t) = etxg = Pe’t P 1xq.

We have seen the form of blocks of e’ for real eigenvalues and distinct complex
eigenvalues.

Remains to show the block form of e/#* for J, from the theorem above with
complex Ap = oy £ ifp.
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Fundamental Solution with Complex EVs

For the 2m x 2m Jordan Block matrix, Jp, in the real Jordan canonical form

theorem, it can be shown that the Fundamental Solution, e’»t, for
Ap = ap £ i8p with algebraic multiplicity = m, has the form:

2

{m=11
gm—2
0 R Rt R(m72)!
ert — eapt . ,
. R Rt
0] (0] R

where R is the rotation matrix

r=( “Gah s )

and each entry in the solution block above being a 2 X 2 matrix.
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Example with Complex EVs

Example: Consider the following system of linear homogeneous equations:

% = Ax = x.
-4 -8 -8 -4
The characteristic equation satisfies:
A2 4+20+2)2 =0,
which gives the eigenvalues, A = —1 + ¢ with algebraic multiplicity of 2 each.

With the help of Maple, we obtain the eigenvectors:
_ Ca- T _ . . T
vi=(1,-1—14,2¢,2 — 2i) and vo = (1,—-1+14,—2¢,2 + 2i)",

associated with Ay = —1 — ¢ and A2 = —1 + ¢, respectively.

However, these only have geometric multiplicity of 1 each.
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Example: Maple readily gives the Jordan canonical form and its transition
matriz for the complex solution:

. 1 i 1 : 1 i 1 .
—10—1 11 8 8 *Efr% g i *51*% gt
— it = -t *
Je = 0 0 -1+ 1 Pe= —1—1 i —1+1 —1 ’
0 0 0 -1+ 2% —2i —21 21

with:
Je =P lAP., and y=P x

This gives the complex fundamental solution:

eMt ter1t 0 0
At
_ Jet _ 0 el 0 0
y(t) =e"¢"y(0) = o 0 A2t goAat (0).
0 0 0 erat

Thus, a complex fundamental solution to the X = Ax satisfies:

®(t) = Pee’e' P71
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Example with Complex EVs

Example: Our real Jordan canonical form theorem states we can find a
matrix J similar to A in the following form:

-1 1 1 0
-1 -1 0 1

J= 0 0 -1 1 ?
0 0 -1 -1

where J = P~1 AP for some transition matriz, P.

This gives the real fundamental solution:

cos(t) sin(t) t cos(t) t sin(t)

T(t) = oIt — ot — Si(;l(t) coz(t) 7zossi(12()t) tSfS?S,)
0 0 — sin(t) cos(t)

Thus, a real fundamental solution to the x = Ax satisfies:

®(t) = PeltpPL.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (4/66)



Fundamental Solution = iy o
ility of 2 X

Jordan Form and Complex Eigenvalues

2 Systems

Example with Complex EVs

Example: For the fundamental solution in x(t) the previous Slide shows that

we need P and P~ 1.

Since A is similar to J, it follows that there exists a non-singular matrix P with

AP = PJ.

We saw that if the columns of P consists of the eigenvectors of A, then we obtain

the diagonal Jordan canonical form.

It takes more work to obtain the transformation matriz, P, for the real Jordan

canonical form (see Maple sheet):

-1 -2
1 1 -1 o0
-2 0 2 0 1 1 3
P= 2 -2 -4 2 e
0 4 4 -8 2
0 -3

where J = P~1AP.

Thus, a real solution to the x = Ax with x(0) = xo is giv

x(t) = Pelt P 1x.

(45/66)
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Fundamental Solution

Stability of 2 x 2 Systems

Consider the system =

. D<o

x = Jx,
where J is a 2 X 2 matrix. Re(d,,)>0

unstable focus

Let Ay and A5 be
eigenvalues of Jx @_cgze_r_______
Results from Linear Algebra asanll
give tr(J) = A1 + Ag,
det |J| = A1 - A2, and -
D = (ji1 — j22)? + 4j12J21 e
The figure shows the : . %)
Stability Diagram for Aty <
x = Jx with axes '

of tr(J) vs det|J|
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General Linear System

Consider the general linear system given by:
x=A(t)x+g(t), x(to) = %o, (1)

where A(t) is an n x n matrix and g(t) is an n vector.

Theorem (Existence and Uniqueness)

If A(t) and g(t) are continuous on the interval t € [a,b] with ty € [a, b]
and ||xo|| < oo, then the system (1) has a unique solution, ®(t)
satisfying the initial condition, ®(to) = xo, and existing on the
interval t € [a,b].

The proof of this theorem uses the continuity, hence boundedness of A(t) and g(t)
for ¢ € [a,b]. It also requires a property known as Gronwall’s inequality. These
details are left for the interested reader to explore.
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General Homogeneous Linear System

Now consider the general linear homogeneous system given by:
x = A(t)x, x(tg) = xo, (2)

where A(t) is an n x n continuous matrix.

The previous theorem significantly states that there is the unique
solution (trivial) ®¢(t) = 0, given the initial condition xo = 0.
(Inspection shows the trivial solution is always a solution to (2).)

Similarly, (2) has unique solutions ®1(t), ®2(t),. .., ®,(t) with
®,(ty) = e;, where e; is the j basis vector of R™.

The set {®1(t), ®2(t),..., P, ()} form a linearly independent set
for ¢ € [a,b].
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General Homogeneous Linear System

Theorem (Solution Vector Space)

If the complex n x n matriz A(t) is continuous on an interval
t € [a,b], then the solutions of the system (2) on t € [a,b] form a
vector space of dimension n over the complexr numbers.

Let
B(t) = [21(t), B2(t), ..., Bal(t)]
be an n x n matrix created with the column solutions ®;(¢).
Clearly by the composition
b(t) = At)®(t)  with ®(to) =1.

The solution ®(¢) forms a fundamental set of solutions to (2) on
t € [a, b], where any solution:

for some appropriate c.
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General Homogeneous Linear System

Theorem (Abel’s Formula)
If ®(t) is a solution matriz of (2) ont € [a,b] and if to € [a,b], then

det ®(t) = det ®(to)exp / Zam , for every t € [a, b].
Oj 1

It follows that either det ®(¢) # 0 for each ¢ € [a, b] or det ®(¢) = 0 for
every t € [a, b].
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General Homogeneous Linear System

The following Corollary immediately follows from Abel’s formula.

A solution matriz ®(t) of (2) ont € [a,b] is a fundamental matrix
of (2) ont € [a,b] if and only if det ®(t) # 0 for every t € [a,b].

The initial value problem for the general linear homogeneous
system satisfies:
x = A(t)x, x(to) = xo,

where A(t) is an n x n continuous matrix.

Assume that ®(t) is a fundamental matriz solution of (2) on
t € [a,b]. Then the unique solution of the initial value problem is
given by:

x(t) = ®(t)®(to)xo.
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Example with A(t)

Example: Consider the non-constant system of linear ODEs with t > 0:

(3 ) ()

02

Verify that the following are solutions to (3):

<I>1(t):< 7’;3 ) and  @y(t)

Solution: From the system of ODEs we have

. _o94—3
‘I>1:( 2t

2 ) and A(t)<1>1(t>:< ;2 1; )( jzzifs )

. 0
by = ( B ) and  A(t)®a(t) = < 4
t

(%)

()
) a)-(%)

Hence, it follows that ®1(¢t) and ®2(t) solve the system of ODEs.
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Example with A(t)

Verify that ®(t) = [®1(t), P2(t)] forms a fundamental solution to
(3).

Solution: We demonstrated that the columns of ® are solutions of
(3), so the Corollary to Abel’s Formula states that it suffices to
verify that det ®(t) # 0.

=2 2

4
—2t_3 2% :;750 for t>0.

det ®(t) = det

Find a fundamental solution, ¥(t) with ¥(1) = 1.

Solution: Solve:
1
Cl(Pl(l) + 02‘1’2(1) = ( 0 )

" 411 (1) + do®s(1) = < ! >
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Example with A(t)

Equivalently,

1 1
0 or c1 =cy = —.

1 1 1
d1(_2>+d2(2):((1)) or d1:—d2:—1.

It follows that another fundamental solution with ¥(1) = I is given by:

24172 22
— 2 1
U(t) = L oma e .

2

and

With this fundamental solution, we readily obtain the unique solution to (3)

given by:
24472 242
_ _ 2 1 Zo1
x(8) = ¥(t)xo = < 4 -8 tt? ) ( To2 )
2
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Example with A(t)

How does we find a solution to (3) (without Maple)?

Solution: Earlier we showed how to transform 2"¢ order ODEs in
systems of 1°! order ODUEs, so here we reverse the process.

The 1°¢ row of (3) gives i1 (t) = xa(t), so
.fg = 'l"l = pxl — zl‘g = ﬁl'l — ;33"1, or

t2'1.‘1 +try —4x1 = 0.

This is a Cauchy-FEuler equation (solutions z1(t) = t") with the
auxiliary equation:

rir—1)+r—4=r*—-4=0 or r =42
It readily follows that

z1(t) = 1172 4 cot? and To(t) = —2¢1t73 + 2cot.
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Linear Nonhomogeneous System

Our work on Fundamental Solutions is a critical basis for solving
the nonhomogeneous problem.

Consider the general linear nonhomogeneous system given by:
x = A(t)x +g(t), x(to) = Xo, (4)

where both A(t) and g(t) are continuous on some interval I.

Theorem (Variation of Constants Formula)

Let ®(t) be a fundamental matriz solution of x = A(t)x. Then
the unique solution of (4) is given by:

t

x(t) = D)D" (to)x0 + B(t) / &-1(s)g(s)ds.

to
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Proof for Variation of Constants

The variation of constants formula in our theorem states that given a
particular solution, then all other solutions only differ by the solution of the
homogeneous equation.

To find the particular solution, assuming we know a fundamental matrix
solution, ®(t), to the homogeneous equation, we attempt W, of the form:

Wy (t) = ()v(t),
with v(¢) to be determined.
Differentiating gives:
Py (t) = R(t)v(t) + ()V(E) = A()R(E)v(t) + g(D).
With ®(¢) solving the homogeneous problem, the ®(t) cancels A(t)®(t), leaving

2(t)v(t) = g(t)-

Since ®(¢) is nonsingular, integration yields the particular solution:

t t
v(t) = & 1(s)g(s)ds or W, (t) = ®(t) & 1(s)g(s)ds.
to to SDSO

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (7/66)



Homogeneous System

General Linear System Linear Nonhomogeneous System

Constant Linear Nonhomogeneous System

For the case when we have a constant matrix A, then the linear
nonhomogeneous system given by:

X = Ax + g(t), x(0) = xo, (5)

where g(t) are continuous on some interval I has a simpler
formulation.

Corollary (Variation of Constants Formula)

Let et be a fundamental matriz solution of x = Ax. Then the
unique solution of (5) is given by:

t
x(t) = elxq +/ eAt=9g(s)ds,
0

where e~ e

As _ ( As)*l'
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Example: Linear Nonhomogeneous System

Example: Consider the linear nonhomogeneous system given by:

)'(Ax+g(t)(_01 (1)>x+((2), with x(O)(ié)

The matrix A is in our real Jordan canonical form, which implies
we can immediately write the fundamental matrix solution:

o () ) ),

—sin(t) cos(t)

It is easy to see that the inverse satisfies:

oAt _ ( cos(t) —sin(t) ) .

sin(t)  cos(t)
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Example: Linear Nonhomogeneous S

Example: Next we compute the particular solution:

t
Xp(t) eAt/O e~ A%g(s)ds,

= (i =) G
- (5 20 (@6 as )

(20

With the initial condition, the unique solution becomes:

¢ c1 cos(t) + e sin(t) + t — sin(t)
x(t) = e'x(0) + zp(t) = (—c11 sin(t) + 522 cos(t) +1— cos(t)) ’
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Example 2: Linear Nonhomogeneous System

Example: Consider the linear nonhomogeneous system given by:

2 11 1 1
x=Ax+gt)=(0 2 0]x+|0], with x(0)=[1
0 0 3 t 1

It should be no surprise that Maple can readily solve this equation.

It is also apparent that the eigenvalues are \; = 3 with algebraic
and geometric multiplicity of one and assoctated eigenvector,
vi=[1,0,1]7

and Ao = 2 with algebraic and geometric multiplicities of two
and one, respectively, and associated eigenvector, vy = [1,0,0]7.

It follows that the Jordan canonical form is given by

SDSO

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (1/66)



Homog System
General Linear System Linear Nonhomogeneous System

Example 2: Linear Nonhomogeneous System

Example: The previous slide gives the Jordan canonical form, J,
and with the help of Maple we obtain the transition matriz, P,

and its inverse, P71:

0 1 -1 -1 o 0 1
1], p=(o o -1}, P l=|-1 1 1
2 1 0

3
J=10
0 0 0 0 -1

o N O

The fundamental matrix solution follows readily from the
Jordan canonical form:

e3t 0 0
eJt— | 0 e2t te2t
0 0 e?t

The fundamental matrixz solution of the homogeneous part of
the original ODE follows readily from:

€2t pe2t o3t _ o2t
eAt=petp~l=|( 0 % 0
0 0 e3t
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Example 2: Linear Nonhomogeneous System

Example: The variation of constants formula gives:

t
x(t) = elxq +/ eAt=g(s)ds.
0

or
€2t teZt 63t _ eZt 1
x(t) = 0 2t 0 1
0 0 et 1
2(t s) (t _ 5)62(t75) e3(t—s) _ g2(t—s) 1
+ / (t=s) 0 0] ds.
0 63(t—s) s
Thus,
t e2t + e3t + (1 _ S)EQ(t_S) + ge3(t—s)
x(t) = et +/ 0 ds.
3t 0 5e3(t—s)

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (3/66)



Homogeneous

General Linear System Linear Nonhomogeneous System

Example 2: Linear Nonhomogeneous S;

Example: From before the variation of constants formula gives:

te2t + e3t . (1 _ 8)62(1575) + ge3(t—s)
x(t) = et +/ 0 ds.
e3t 0 ge3(t—s)

We let Maple perform these integrations, and the net result is:

10 3t 1y .2t 4 ¢ 13
9 € +(t+4)e 6 36

which is the unique solution to this example’s initial value
problem.
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Example 3: Linear Nonhomogeneous System

Example: Consider the non-constant, nonhomogeneous system of
linear ODEs with ¢t > 0:

%= < :4) _11 >x+ (10;2)) (1) = @ (6)

In an earlier example, we demonstrated that a fundamental
solution to the homogeneous part of (6) was given by:

a
)= * :
(—fs 2t>

We also showed that det |®(t)] =  so it follows that:
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Example 3: Linear Nonhomogeneous System

With the fundamental solution, ®(t), the variation of
constants formula is applied giving:

t

x(t) = 0@ ' (xo+ () [ B (s)g(s)ds,
1
2 3
= P\ (3 1) /(4 = O\ (5 -1 (1082
= 2 o 1 1 4 + 2 o 1 1 8 ds,
T 2 i T L \ze2
& + 32 & 2\ gt (5st—2s°
= 2 + 2 / 2 | ds
-2 +6t -2 2t) i \ 5+2
1 2 1 2 N
_ (Eta (® t ot 1
-3 +6t -& 2t) \5t+2In(t) -5
262 In(t) + 6t° — 3t2 + 5
4tln()+8t2—3t—% ’
which gives the unique solution to our initial value problem SDSO
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