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Example Example

E le 1 t): Th 1 soluti tisfies:
Example 1: Consider the example: xample 1 (cont) ¢ general sofution sabsues

(2)-(% 2)(2) (28)-a(3)emra( D)

T2 €2
. . . . which is a solution exponentially Stable Node
Find the general solution to this problem and create a phase portrait. decaying toward the origin. \ s‘ E % % \ k t tl t % f ﬁ / é ﬁ j ’,; /
Since this is a diagonal matrix, we obtain the eigenvalues from the diagonal NNNNNNVV VWYL L L)
elements, A1 = —0.5 and Ay = —1. This is a sink or stable node. N i: i: E: Q: i: \ \g t L t ﬁ ﬁ f ﬁ j j j / 7
The characteristic equation is SNY NN NN L s g 2
1 Solutions move more rapidly in \:\li‘\ :‘\ i“ v \\‘ i f / ”; ?;ﬁi/i
. . . . @) — 0 ~<macSaaN\\W\ W\ | s e —
det| 00N O = Gron =0, the direction £ ( 1 ) e
while decaying more slowly in —;1’////;’5/ 777 TIV NN \\5\.)\\\ 0
. . 1 7 7 N
the direction £ = ( - ;///;;/;?/ R IR NN,
For A1 = —0.5, we have the associated eigenvector 5(1) = ( é ) ;% ? ; ; / ; ;_54} } Q Q ’Q :t '\ ‘Q \ N
Thi le sh h it is t Z7 7770001 VAN VN NN
0 solve systems of differential equations 447 1 1111 1T TTIR VAN
Similarly, for Ay = —1 we have the associated eigenvector £(2) = ( 1 ) . Y . ot ed 27700 TV N AN
sDST with diagonal matrices, since the 77771 gt N A AN 350

variables are uncoupled.
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Example

Example 1 (cont): The general solution is given by:
We consider vectors z € R™ (or C™) and define a “distance” in terms

( mlgt; ) — o ( (1) )e—o.m ¥ e ( 0 )e—t of the norm of a vector.
xo(t 1 ’
Definition (I, Norm)

so the linearly independent solutions are combined to give a fundamental . . . T
solution: Consider an n-dimensional vector = [z1, ..., z,]" € R™ (or C™). The
—0.5¢t o o
®(t) = ( € 0 9t ) . l, norm for the vector z is defined by the following:
e

I dil h - e
t is readily seen that

| lally = {3 feal

P = AP, and ®(0) =1. i=1

Furthermore, any solution can be written:

Almost always the norms use p =1 (taxicab or grid), p = 2
( z1(t) ) — a1z (Euclidean or distance), or p = 0o (max)
z2(t) ) ’
For x = ( o >, we have [|z]]; = (2% +x§))1/2
where € = ( 2; ) SDST T2
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Unit Circles

Let z = [21,...,2,]T € R™, then the norms for p =1, p =2, or p = 00

tisfy:
Consider # € R? and ||z]| < 1 in three different norms SabslY
n
1 Norm Lo Nomn Izl = ) i
I o T i=1
n 2
= o : 1 ; [zl = Z |z
i=1
[2lloo = max{la;[}
<1 <1 <1
el < el < el < —r—
21| + o] < 1 (|21 ]2 + |m2|2)1/2 <1 max{|a1], 2]} < 1 Given an n-dimensional vector © = [y, ...,x,]7, then:

||| > 0, if x; # 0 for some i,
|z]| =0, if ©; =0 for all 1.
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Cauchy-Schwarz Inequality and Equivalence

Norm — Example

Example: Consider z = [0.2,0.4,0.6,0.8].

Property (Cauchy-Schwarz Inequality)

@ Forp=1, Consider two vectors, x = [x1,...,2,|" andy = [y1,...,ya)T, in R"
4 (or C™). Then
2l = || =02+ 0.4+0.6+0.8 =20
=1 3 3
n n n
@ MatLab command is norm(x, 1) Z |z||y;] < Z |z ;|2 Z ly;|?
@ For p =2, g=1 J=1 g=1
4 1/2
|22 = <Z $i2> — 0.01 £ 0.16 + 0.36 + 0.64 = 1.0954 Definition (Norm Equivalency)
i=1 Two norms || - ||, and || - || are said to be equivalent if there exist
e MatLab command is norm (x) or norm(x, 2) constants C' and D and x € R (or C") such that
® For p = oo, Clxlla < lIxlis < Dlx|a-
Jalloe = mas fz;| = 0.8 /
] l. If norms are equivalent, then it doesn’t really matter which norm is
@ MatLab command is norm (x, inf) SDSO used for showing different properties. SDSJO

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (/66) - i i i - - Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (0/66) i

Linear Systems of ODEs Definitions and Matrix Properties
Matrix Diagonalization
Jordan Canonical Form

Linear Systems of ODEs Definitions and Matrix Properties
Matrix Diagonalization
Jordan Canonical Form

Norm Equivalence Norm Equivalence

It is easy to see with the Cauchy-Schwarz inequality that

. . . AV Relating to || - ||oo, we see immediately that
Ixll = > lesl = > leyl-1 < (leﬁ) (Z 1) n n
j=1 j=1 j=1 j=1
X[l = D il < ) [%llee = nll%]loe,
= Vallxls ; ! ; - -
If ||x[}; = K, then |z;| < K, so and clearly [|x[[oc < [|x[|1, s0
e < [1xlly <
n n co = 1= TLHXHOO,
lx[l2 = (Z |9«“j2> < (Z K|93j)
i=1 7=1 which gives equivalency of the || - ||; and | - ||oc norms.
1
< VExIf = K =[x All of this can be strung together to show that:
It follows that || - || and || - ||2 are equivalent as Ixlloo < lIxll2 < [Ix[l < Vrllxll2 < nfx]lo,

L which means that all of these norms are equivalent.
\/EI\XHl < lIx[l2 < [1x[l1-
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Norm Equivalence

The fact that all these norms are equivalent means that one can
use whatever norm is most convenient.

The bounds will change, but we obtain limits on our estimates.

Depending on what we are attempting to accomplish, we will choose
different norms, each with their own special properties.

The || - ||2 is particularly important as

|

[x[l2 = ((x,x))*,
where

n
(x,y)=>_ wy;
J=1

is an tnner-product, providing important structure to our space.

Il []1 and || - ||oc do NOT come from inner-products. SDST
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Norm of a Matrix

Consider matrices A : C* — C" and B : C* — C".

Property (Matrix Norm)

A matriz norm on the set of all n X n matrices is a real-valued
function, || - ||, defined on this set, satisfying for all n x n matrices A
and B and all real numbers o:

Q 14 >0 (positivity);

Q ||A|| =0, if and only if A is 0, the matriz with all entries 0;
Q ||aA| = |a|||A]l (scalar multiplication);

Q |[A+ B| < ||A|| +||B|| (triangle inequality);

Q ||AB| < ||A|IIB]| (sub-multiplicative norm);
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Example

Norm of a Matrix: There are a number of norms on a matrix. The
most common norm for a matrix is defined by the vector norms for R"

Theorem (Matrix Norm)

If || - || is a vector norm on R™, then
A
4] = max [|Az] = max 1221
lzl|=1 lzll0 |||
1S a matriz norm.
It follows that for any x
|| Az
1Al = Tz [Az|| < [ Allll]|

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (5/66)

Example: Consider

(M0
a=(T n)

Computing the 2 norm:

o[-

[Ax[|2 = (JA] @1 + [Xo]*@2]?) ? .

If |A1| > |A2|, then choose x = ( é

()

> and it follows that

= |)\1|7
2

50 [[Aflz = [Al.
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Similarity and Exponential of Matrix Exponential of Matrix

The exponential of matriz is defined by the sum of the series:

There are a number of definitions about matrices that are needed. A2 Ak o 4k
eA:I+A+?+...+F+...: F
Definition (Similar Matrices) k=0
This series onl akes sense if it converges.

Consider two n X n matrices, A, B. Matrix A is similar to B if there exists an 15 ser Y nee il nvers
invertible matrix P such that We show this series converges for any matrix A : C® — C™ by defining the partial

AP — PB - B=plAp sums and applying the Cauchy criterion for sequences.

A? AF

Fact: Similar matrices have the same characteristic equation. Sp=1I+A+ o +ot K

The exponential of a matrix is defined by a Taylor’s series.

From the sub-multiplicative norm property, |A™| < ||A||".

The partial sums give for m > p

Let A be an n X n matrix. The matrixz exponential is defined by the followin mo Ak m Ak m All*
g ¢ Ism—spll=| S Al s Ao s~ 14T
’ k! 1 - k!
2 Ak o0 Ak k=p+1 k=p+1 k=p+1
eA =1 + A + ? + + F + = F
’ k=0 Since ||A|| is a real number, from Calculus we know this last quantity can be made
SDST arbitrarily small for sufficiently large p; and thus, this converges by the Cauchy SDST
criterion.
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e Properties and Example

Diagonalization

Consider the system of ODEs with A(n X n)

Property (Matrix Exponential Product)

If M and P commute (MP = PM ), then x = Ax,
eM . ef = M+P,

where A has n distinct real eigenvalues.

Example: Find eAf, where A = ( 8 :13 ) _ ( g g ) n ( 8 é ) Since From Linear Algebra we have the following Theorem:

the last two matrices commute, we have Theorem (Diagonalization)
Assume the matriz A(n X n) has the real distinct eigenvalues, A1, A2, ...\, then

et = exp ( 3.0 ) t-exp ( 0 1 ) t any set of corresponding eigenvectors, {vi,va,...vn} forms a basis of R™, the
0 3 0 0 matriz P = [v1,Vv2,...,Vvy] is invertible, and

P~YAP = D = diag[A1, A2, . .. An].

Proof: Using the definition of eigenvalues and properties of matrices,

2
1 0 0 . . . .
However, 0 0 ) e ( 0 0 ), so the infinite series terminates after 2 PIAP = P-Afi,va,....va] = P~l[Av1, Ava,..., Avn]
terms. Thus, L, . = P7l1\1vi, dava, ..., Anva)
At _ 3t _( € € _ _ —
€ =e€ ( 0 1 ) - ( 0 63t ) . m = [)\1P lvl,)\gp 1V2,...,)\nP lvn]. m
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Diagonalization

Proof (cont.): However, v; is the j** column of P and
Plv; = 4t column of P~1P = j** column of I,

which implies P~1AP = D. g.e.d.

Returning to our ODE with x = Ax, we define the linear transformation
y =P 'x,

where P is defined in the Theorem above.

It follows that

x = Py,
y = P 'x = P 'Ax = P 'APy,

which leaves the uncoupled linear system:

y = Dy = diag[A1, A2, ... An]y.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (1/66) i

Linear Systems of ODEs Definitions and Matrix Properties
Matrix Diagonalization
Jordan Canonical Form

Example 1

Example 1: Consider the following system of ODEs:

0 2 1 )
Pp=(1 1 -1 ], with pl= 1
0o 1 1 -1

where again Maple helps us with the inverse matriz.

oo
v lw
=
~——
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Diagonalization

The uncoupled linear system:

A1 0 0
0 by 0
y =Dy = 2 y
. 0
0 0 An

has the solution:

et 0 0
Aot
0 e™2 0 _ D
y(t) = y(0) = Py (0).
0
0 0 eAnt

With y(0) = P~1x(0) and x(t) = Py(t) the solution to the original problem
becomes:

eMt 0 0
Aot
x(t) = P 0 e 0 P1x(0) = eAtx(0).
0
0 0 e’nt
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Example 1: From our Theorem we have:

With the linear transformation y = P~'x, we obtain the uncoupled system:

y = Dy,

which has the solution:
e2t o 0
y(t) = < 0 et 0 )y(o)-
0 0

Transforming the system back to the original coordinates gives:

2et — et 0 —2et 4 2¢7¢
2t o 0
x(t) =P 0 et 0 Pilx(O): —2e?t fet et 2t 32t — ol — 26t x(0).
0 0 et
et —e™t 0 —et + 2e7 ¢

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (4/66)
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Example 1 Jordan Canonical Form

When th t f ODEs with A(n x
Example 1: From above, our solution in the transformed coordinates satisfies: en the systetit o swi (nxn)

x = Ax,

) 0
y(t) = ( 0o e Et ) ¥(0). has the algebraic multiplicities of eigenvalues of A agree with the geometric
0 0 e multiplicities, then we can diagonalize the matrix with the n linearly

independent eigenvectors and readily solve the uncoupled system.
Below we see a graph showing several trajectories for this solution.

However, there are times when the geometric multiplicities are less than the

The 4 trajectories begin near the yg-axis o algebraic multiplicities, and the matrix A cannot be diagonalized.
3- 3

then asymptotically approach the y;y2-plane.

n (Generalized Eigenspace)

This system has an Unstable Node
in the y1 vs y2 plane (y3 = 0).

Let A:V — V be a linear transformation on a complex vector space, and let A be
a complex number. The generalized \-eigenspace, W, is the subspace of V

consisting of vectors v € V such that
This system has Saddle Nodes nSISting ot v BV u

in the y1 vs y3 plane (y2 = 0)

my, _
or y2 vs y3 plane (y1 = 0). (A= XI)"v =0,

for some positive integer m. The vector v is said to be a generalized eigenvector
of rank m, if m is the smallest positive integer such that v is in the kernel of

DSC (A=Anm. SO

Behavior is best viewed in the 2D projections.
See Maple worksheet.
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Jordan Canonical Form Jordan Canonical Form: Maple

e e ) Maple provides a toolbox (LinearAlgebra) that easily computes the Jordan
) : ) ) Canonical Form of a matrix.
For each complex constant n X n matriz A, there exists a nonsingular matriz P such that the
. _ =il S . X . . .
e J = PR AP & de i comerie femi A worksheet is available for the matrix:
Jo 0 ... o0
: 0 1 O
0o 0 :
J = ) A= 0 0 1
: K .0 2 3 0
0 500 0 Js
where Jo is a diagonal matriz with diagonal elements, A1, Aa, ..., Ak, (not necessarily distinct) . . .
and each Jp is an np X np matriz of the forms: We show the commands CharacteristicPolynomial(A,z) and
Eigenvectors(A), giving the obvious results.
Aktp 1 0o ... 0 )
Nl 0 o ) ) ) The command JordanForm allows finding the Jordan Canonical Form of A
0 Xetp 1 5 : and the Transition Matriz, Q, easily:
0 Ao 0
Jo = and Jp = R
’ S ? : o 12 s
: . . 0 X ) ) ) 2 0 0 9 3 9
0 ... 0 X : e s s 1 J=1 0 -1 1 and Q= % _% _%
0 R VA 0 0 -1 i 2 4
where p = 1,...,s and A1, need not differ from A1 4 if p# g and k+n1 +---+ns =n. The 9 9
eigenvalues of A are N\;,t =1,2,...,k + s with the simple eigenvalues appearing in Jg.
+2SJ0 SDSJO
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Fundamental Solution

Earlier we saw that if Jy was a k X k diagonal matrix, then the solution of
x = Jox was
x(t) = e70'x(0),

where e/0t = diag[e*1?t, er2t . erkt].

Next we evaluate eJPt, where Jp = A4 pIp + Np and Ny is an np X np matrix:

0 1 0

Np =
1
0 0

It is easy to see that Ap4,Ip and Np commute, so

tnpfl
(np—1)!

eIpt — ¢ k+pt

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (9/66) i
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Fundamental Solution Shelbibiny OF 2 % 2 Shysienns

Fundamental Solution

We saw that any matrix A can be transformed into Jordan canonical form, J,
which is in a block diagonal form with all the eigenvalues on the diagonal and
repeated eigenvalues with an eigenspace having a kernel or nullspace larger than
1 having ones on the superdiagonal.

The fundamental solution, ¥(t), of y = Jy satisfies:

elot 0 0
Jit
T (t) :e‘]t _ 0 e
0
0 0 elst

because of the block structure of the matrix J.

It follows that the fundamental solution, ®(t), of x = Ax satisfies:

B(t) = et = ePIP™'t _ pitp—1
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Example of Fundamental Solution

Example: Consider the system of linear homogeneous equations:

-7 -5 =3
x=Ax = 2 -2 -3 X.
0 1 0
The characteristic equation satisfies:
—7—=A -5 -3
det 2 —2—-2 -3 | =-(1+33=0,
0 1 -\

implying A has the eigenvalue A\ = —3 with algebraic multiplicity = 3.

Examining A — A\I gives:

-743 -5 -3 -4 -5 -3 2 1 -3
2 243 -3 |=( 2 1 -3 |~|01 3 |,
0 1 3 o 1 3 00 0

which is a rank 2 matrix, so ker(A + 3I) is one-dimensional.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (1/66)

Example of Fundamental Solution

Example: Since ker(A + 3I) is one-dimensional, the geometric multiplicity of
A = —3 is only one.

We compute (A + 3I)% and (A + 31)2 and find:

—4 -5 -3 \?2 6 12 18 —4 -5 -3 \°
2 1 -3 =( -6 —12 -—18 and 1 -3 =o0,
0 1 3 2 4 6 0 1 3

which implies the generalized eigenspace has dimension 3.

n

We create a Jordan basis by satisfying the following relations:

(A= X)vy =0, (A= Al)ve = vy, (A= Al)vs =va.

The process employed is called a Jordan chain, where we select a vector v in the
generalized eigenspace, which is R3 (which in this case cannot be in the eigenspace
of (A — \I)?).

It suffices to take vz = [1,0,0]7.
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Example of Fundamental Solution

Jordan Form and Complex Eigenvalues

Fundamental Solution Shelbibiny OF 2 % 2 Shysienns

Example of Fundamental Solution

Example: With vs = [1,0,0]T, we solve

-4 -5 -3 1 —4
vy = (A — Al)vs = 2 1 -3 o | = 2
0 1 3 0 0
-4 -5 -3 —4 6
vi = (A — A)vy = 2 1 -3 2 =| -6
0 1 3 0 2

Thus, we obtain our linear transformation matrix:

and

1

6 -4 1 0 0 3

= -6 2 o with P '=| o L1 3
2 0 o0 22

12 3

It is not hard to see that

W W N
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Jordan Form and Complex Eigenvalues

What happens to the Jordan canonical form when some of the eigenvalues are
complex?

If the eigenvalues come from a real matrix A and \; = o — i3, then Ao = a + 8
is another eigenvalue.

Suppose that A is a 2 X 2 real matrix with eigenvalues, A = o + i3, then there
exists a complex matrix P, such that

—1 . a—1if 0
P AP—J—( 0 Oé+7:,8).

Thus, a fundamental solution (complex) to y = Jy satisfies:

(a—iB)t 0
_at_ [ e
T(t)=e't = ( 0 (atip)t )

How are real fundamental solutions formed for this matrix A?

Example: From our results before, the fundamental solution of y = Jy is given
by:

2
W(t) = eIt = ¢~ o |
1

The the fundamental solution of x = Ax is given by:

&(t) = e = pedtpt

3873tt274673tt+673t 75e73tt+6673tt2 73ef3tt+9e73tt2

—3073tt2+2073tt 073tt+073t —6e 312 —3e 3t —9e 3142

3142 e—3tp 4 po—3t2
The general solution of x = Ax satisfies:
2

x(t) = cie 3tvy + coe 3t (tvi 4+ v2) + cge 3¢ (’;—!vl + tve + V3> ,

where vi, va, and v3 are the respective columns of P.

(34/66)
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Jordan Form and Complex FEigenvalues

With the 2 X 2 real matrix A and A = a &+ ¢, our theory gives the existence of a
complex matrix P, such P~'AP = J is a diagonal matriz with the eigenvalues
on the diagonal.

However, it is often preferable to transform A into the anti-symmetric matriz,
K:
—-lan_[ a B
K=Q AQ7< ‘s )

where K is sitmilar to A and @ has real entries.

Theorem (Complex Eigenvalues and Rotation-Scaling Matrices)

If the 2 X 2 real matriz A has eigenvalues a + i (with B # 0), and if v +iw is an
etgenvector of A with eigenvalue o + i3, then

QrAQ = (_aﬁ 'B) =K, where Q = [v w].

«
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Jordan Form and Complex Eigenvalues

Jordan Form andVCOmplex Eigenvalues

Fundamental Solution Stability of 2 X 2 Systems

General Jordan Form with Complex Eigenvalues

The previous theorem provides the tools for transforming the 2 x 2 real matrix A
with a 2 X 2 real matrix Q into a stmilar 2 X 2 real anti-symmetric matriz, K,
which is a rotation-scaling matrizx.

This theorem generalizes to the higher dimensional eigenspaces to allow
transformation of any real matrix A into a real Jordan form matrixz, where
complex eigenvalues are represented by real anti-symmetric blocks on the
diagonal.

It can be shown that the exponential of the anti-symmetric matriz, K, has the

following form:
oKt _ at ( cos(Bt)  sin(pt) )
—sin(Bt) cos(Bt) )’

which gives the fundamental solution to the ODE, y = Ky, given by

W(t) =Xt
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General Jordan Form with Complex Eigenvalues

The Jordan Block matrices, Jp, in the previous theorem coming from the
complex eigenvalues, Ay, Ap, depend on the algebraic and geometric
multiplicities.

For distinct complex eigenvalues or any complex pair, Ay = ay £ 8k, with
algebraic and geometric multiplicities agreeing have a diagonal form similar to Jo
in the previous theorem with diagonal elements,

_ ar Bk
Dk_( —Br  ag )

When the complex pair, A\p = ap £ i8p has algebraic multiplicity = 2m(m > 1)
with geometric multiplicity = 2, then J, has the form shown above with m
diagonal blocks of the form Dy,.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (9/66)

Theorem (Real Jordan Canonical Form)

Let A be a real matriz with real eigenvalues, Aj, 3 =1,...,k and complex eigenvalues,

Aj = aj + B4 and ij =oa; —Bj,j=k+1,...,n. Then there exists a basis

{v1,..., vk, U1, Wty -5 Un, wn } for ]R2n7k, where vj, j =1,...,n, are generalized

eigenvectors of A, the first k of these are real and u; = Re(v;), w; = Im(v;) for

j=k+1,...,n. The matriz P = (v1|...|vg|ugy1|wgsil-- . |un|wn) is invertible with
J1 0

plap =
0 . Jr
where the elementary Jordan blocks, J;, © = 1,...,r are either of the form of our previous

Theorem for Jordan Canonical Form for the real eigenvalues, Xj, j = 1,...,k, or of the form
D, I (o} 0oa (0]

Iy = o ,
: o . D I
0 ... ... 0 D,

. « B (1 0 /(0 0
ppo=( g ) n=(s %) o=(3 %)

for X\p = ap +iBp a complex eigenvalue of A.

where
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Fundamental Solution with Complex EVs

We use the theorem for the real Jordan canonical form to find the
Fundamental Solution to the problem:

x = Ax, x(0) = xg.

The Fundamental Solution satisfies:
x(t) = etxg = Pe!t P~ 1xo.

We have seen the form of blocks of e/t for real eigenvalues and distinct complex
eigenvalues.

Remains to show the block form of e/rt for Jp from the theorem above with
complex A\p = ap £ 8.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (0/66)
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Jordan Form and Complex Eigenvalues
Stability of 2 X 2 Systems

Example with Complex EVs

For the 2m x 2m Jordan Block matriz, J, in the real Jordan canonical form Example: Consider the following system of linear homogeneous equations:
theorem, it can be shown that the Fundamental Solution, e’/»t, for
Ap = ap £ ifp with algebraic multiplicity = m, has the form:

0 1 0 0
. _ 0 0 1 0
x = Ax = 0 0 0 1 X.
2 m—1 -4 -8 -8 —4
R Rt RYG ... Ry
. gm—2
(o] R Rt . Rm
e,lpt:eapt

The characteristic equation satisfies:

(A2 +22+2)2 =0,
R which gives the eigenvalues, A = —1 £ i with algebraic multiplicity of 2 each.
where R is the rotation matrix With the help of Maple, we obtain the etgenvectors:
R— ( cos(Bt) sin(Bt) >
—sin(Bt)  cos(Bt)

vi=(1,-1-142i,2—2)T  and
and each entry in the solution block above being a 2 X 2 matrix.

vo = (1,—-1+414,—2i,2 + 2i)T,
associated with A\; = —1 — ¢ and A2 = —1 + 4, respectively.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

However, these only have geometric multiplicity of 1 each.
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Fundamental Solution

Jordan Form and Complex Eigenvalues

Stability of 2 X 2 Systems
Example with Complex EVs
Example: Maple readily gives the Jordan canonical form and its transition
matriz for the complex solution: Example: Our real Jordan canonical form theorem states we can find a
matrix J stmilar to A in the following form:
R 0 0 3ty ati o —a-g oy
J 0 —1—3i 0 0 po_ 1 —i 1 i -1 1 1 0
c 0 0 —1+41 1 ¢ —1—3 i —1+41i —i ’ -1 -1 o0 1
0 0 0 —1+i 24 -2 —24 24 J= 0 0o -1 1 ’
0 0o -1 -1
with:
Je = Pc_lAPC, and y= Pc_lx. where J = P! AP for some transition matriz, P.
This gives the real fundamental solution:
This gives the complex fundamental solution:
cos(t) sin(t) t cos(t) t sin(t)
At At o Jt . —t —sin(t) cos(t) —tsin(t) t cos(t)
Jet ‘ O1 teeAllt g g FH) == 0 CO§(t) sin(t)
y(t) = elety(0) = o 0 ot oot y(0). 0 0 — sin(t) cos(t)
0 0 0 erat
Thus, a real fundamental solution to the x = Ax satisfies:
Thus, a complex fundamental solution to the x = Ax satisfies:
®(t) = Pe’tpL.
®(t) = Pe’etp L
SDSJO
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Fundamental Solution Sty @F 2 % 3 Shysienns

Example with Complex EVs Stability of 2 x 2 Systems

Example: For the fundamental solution in x(t) the previous Slide shows that .

—1 s Apdy >0 D>0
we need P and P~1. Consider the system tracet’) %: dnsoblesode D0
Since A is similar to J, it follows that there exists a non-singular matrix P with x = Jx, i, 1o S

a,=0

AP = PJ. h J . 2 2 " . saddle point : >I<

. . . . whnere 1S a X matrix. ¥
We saw that if the columns of P consists of the eigenvectors of A, then we obtain J \\_ \g‘ @ u:ﬁ:;}:m
the diagonal Jordan canonical form. )

g Y Let A1 and A5 be \\'f

It takes more work to obtain the transformation matriz, P, for the real Jordan : ~
canonical form (see Maple sheet): eigenvalues of Jx [ e center

RlL)=C det(d)

Results from Linear Algebra

I
1
11 -1 o0 - _12 1o give tr(J) = A1 + Ag, i
Z _ 1 1 0 0 i
"= 22 _02 _24 g , PTh= -1 72% -1 -1 det |J‘ =A1- /\227 and —\\[f | Re(4,,) <0
0 4 4 -8 D =1(311 — 1 491919 * g stable focus
0 _% _% _% (]11 ‘722) + j12]21 saddle point % oy
[
where J = P-1AP The figure shows the iy '—:r; .
' Stability Diagram for i s < D=0
Thus, a real solution to the x = Ax with x(0) = x¢ is given by: % = Jx with axes i stable node
x(t) = Pe’t P~ 1xq. of tr(J) vs det |J|
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General Linear System General Homogeneous Linear System

Consider the general linear system given by: )
Now consider the general linear homogeneous system given by:

X=Alt)x+gt),  x(to) = xo, (1) x=A(t)x,  x(to) = xo (2)

where A(t) is an n x n matrix and g(t) is an n vector. ) . )
where A(t) is an n x n continuous matrix.

Theorem (Existence and Uniqueness) The previous theorem significantly states that there is the unique

solution (trivial) ®¢(t) = 0, given the initial condition x¢ = 0.

(Inspection shows the trivial solution is always a solution to (2).)

If A(t) and g(t) are continuous on the interval t € [a,b] with ty € [a, b]
and ||xo|| < oo, then the system (1) has a unique solution, ®(t)
satisfying the initial condition, ®(to) = xo, and existing on the Similarly, (2) has unique solutions ®4(t), ®5(t),. .., ®,(t) with
interval t € [a,b]. ®,(to) = ej, where e; is the ;" basis vector of R™.

The set {®1(t), ®2(t),..., P, (1)} form a linearly independent set
The proof of this theorem uses the continuity, hence boundedness of A(t) and g(t) for t € [ b]
for ¢ € [a,b]. It also requires a property known as Gronwall’s inequality. These or a, 0]
details are left for the interested reader to explore.
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General Linear System

General Homogeneous Linear System General Homogeneous Linear System

Theorem (Solution Vector Space)

If the complex n x n matriz A(t) is continuous on an interval
t € [a,b], then the solutions of the system (2) ont € [a,b] form a
vector space of dimension n over the complex numbers.

Theorem (Abel’s Formula)
If ®(t) is a solution matriz of (2) ont € [a,b] and if ty € [a,b], then

Let
@(t) = [@1(t)7¢2(t))7q>n(t)] t
be an n x n matrix created with the column solutions ®;(t). it @2{7) = et iy e /to z; (s - o ey C [,
J:
Clearly by the composition
B(t) = A(t)®(1) with  @(to) = I. It follows that either det ®(t) # 0 for each ¢ € [a,b] or det ®(¢) = 0 for

The solution ®(t) forms a fundamental set of solutions to (2) on every ¢ € la,b].

t € [a,b], where any solution:
x(t) = ®(t)c

for some appropriate c.
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General Homogeneous Linear System : Example with A(t)

The following Corollary immediately follows from Abel’s formula. Example: Consider the non-constant system of linear ODFEs with t > 0:

0 1
*—( s 1>x, x() =xo = (20 ). 3)
A solution matriz ®(t) of (2) ont € [a,b] is a fundamental matriz 2 Tt roz
of (2) ont € [a,b] if and only if det ®(t) # 0 for every t € [a,b].

Verify that the following are solutions to (3):

The tnitial value problem for the general linear homogeneous . )
. t t
system satisfies: @ (t) = < o3 > and  Po(t) = ( o ) :
x = A(t)x, x(to) = %o,
Solution: From the system of ODEs we have

where A(t) is an n x n continuous matrix.

° \ . . _op— 0 — op—

Theorem (Unique Solution) $; = ( 6?,43 ) and  A(H)®1(t) = ( 4 _1% ) ( 7’;;3 ) = ( 63543 )
Assume that ®(t) is a fundamental matriz solution of (2) on

X . . . o 1
t 6 [a,b]. Then the unique solution of the initial value problem is by — ( 2t ) and  AD)Pa(t) = ( Sl ) ( t;t ) _ ( 2t ) '
given by: 2

_ =1
X(t) — (I)(t)q) (tO)XO' SO Hence, it follows that ®1(¢t) and ®2(t) solve the system of ODEs. SDSO
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Example with A(t) Example with A(t)

Verify that ®(t) = [®1(t), ®2(t)] forms a fundamental solution to Equivalently,
(3). 1 1 1 1
Solution: We demonstrated that the columns of ® are solutions of c1 ( _9 ) +e2 ( 9 ) = ( 0 ) or  a=c=g.
(3), so the Corollary to Abel’s Formula states that it suffices to
verify that det ®(¢) # 0. and ) ) . )
t72 t2 4 d1(72>+d2<2):(1) or dl:_dQZ_Z'
det ®(t) = det Lot 3 o | T3 #0 for t>0.
It follows that another fundamental solution with ¥(1) = I is given by:
Find a fundamental solution, ¥(t) with ¥(1) = I. 22 22
— 2 4
Solution: Solve: () = < t_1-3 # )
1
Cl@l(l) + 62‘1)2(1) = ( 0 > With this fundamental solution, we readily obtain the unique solution to (3)
given by:
and 2 2ot xo1
0 x(t) = ¥(t)xo = < 2 43 > ( )
diP1(1) + da®Po(1) = ( 1 ) t—t=3 o2
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Example with A(t) : Linear Nonhomogeneous System

How does we find a solution to (3) (without Maple)? . ' o ) )
Our work on Fundamental Solutions is a critical basis for solving

Solution: Earlier we showed how to transform 2"¢ order ODEs in the nonhomogeneous problem.

systems of 1%t order ODEs, so here we reverse the process. ) . )
Consider the general linear nonhomogeneous system given by:

The 15t row of (3) gives @1 (t) = z2(t), so

To =21 = ;%xl — %LL‘Q = %Jil — %.1"1, or X = A(t)X + g(t), X(to) = Xo, (4)
t24 + td] — dxy = 0. where both A(t) and g(t¢) are continuous on some interval I.
This is a Cauchy-Euler equation (solutions z1(t) = t") with the Theorem (Variation of Constants Formula)

auxiliary equation:

Let ®(t) be a fundamental matriz solution of x = A(t)x. Then

rr—=1)+r—4=r>—4=0 or r=4+2. the unique solution of (4) is given by:
. t
It readily follows that x(t) = (I’(t)q)_l(to)XQ 4 <I>(t)/ <I>_1(s)g(s)ds.
t
x1(t) = 1t ™2 + cot? and xo(t) = —2¢1t73 + 2¢ot. 2
SDSJT SDSJ
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Proof for Variation of Constants Constant Linear Nonhomogeneous System

The variation of constants formula in our theorem states that given a
particular solution, then all other solutions only differ by the solution of the
homogeneous equation.

For the case when we have a constant matrix A, then the linear
nonhomogeneous system given by:

To find the particular solution, assuming we know a fundamental matrix
solution, ®(t), to the homogeneous equation, we attempt W, of the form:

K= Axta®),  x(0)=x, 6
Wy (t) = 2()v(t), where g(t) are continuous on some interval I has a simpler
with v(t) to be determined. formulation.

Differentiating gives:

@, (t) = ®()v(t) + BH)V(E) = A()B(E)V(E) + g(t).

Jorollary (Variation of Constants Formula)

i ) . . Let et be a fundamental matriz solution of x = Ax. Then the
With ®(t) solving the homogeneous problem, the ®(t) cancels A(t)®(t), leaving unique solution of (5) is given by:
e(t)v(t) = g(t). .
x(t) = e?'xg +/ eAt=)g(s)ds,
Since ®(t) is nonsingular, integration yields the particular solution: 0

v(t) = ' ®1(s)g(s)ds or W, (t) = ®(1) /t & 1(s)g(s)ds. where e=4s = (eAs)il,
to to
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Example: Linear Nonhomogeneous System Example: Linear Nonhomogeneous System

Example: Consider the linear nonhomogeneous system given by: Example: Next we compute the particular solution:
t
x=Ax+g(t) = 0 14 + 0 , with x(0) = (“'). xp(t) = eAt/ e Hog(s)ds,
-1 0 t Co 0

_ cos(t)  sin(t) t [ —s sin(s) d
. o —sin(t) cos(t) /0 s cos(s) s
The matrix A is in our real Jordan canonical form, which implies

we can immediately write the fundamental matriz solution: _ ( cos(t) Sin(t)) ( —sin(t) +t cos(t) )
—sin(t) cos(t) ) \cos(t) +t sin(t) — 1

- (3 ) - ()

It is easy to see that the inverse satisfies: With the initial condition, the unique solution becomes:
_a¢ [ cos(t) —sin(t) At _ < c1 cos(t) + co sin(t) + t — sin(t) )
© < sin(t)  cos(t) ) x(1) = eTx(O) () = { e, sin(#) + ez cos(t) + 1 — cos(t) )

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (9/66) i - i i Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (0/66)



Homogeneous System Homogeneous System

Linear Nonhomogeneous System General Linear System Linear Nonhomogeneous System

General Linear System

Example 2: Linear Nonhomogeneous System Example 2: Linear Nonhomogeneous System
Example: Consider the linear nonhomogeneous system given by: Example: The previous slide gives the Jordan canonical form, J,
P 9 Y &V Y and with the help of Maple we obtain the transition matriz, P,
2 11 1 1 and its inverse, P71
x=Ax+g(t) = x+ (0], with x(0)= |1

020 ' 3.0 0 1 -1 -1 0 0 1
003 t 1 J=(0 2 1}, pP=|0 0 -1}, pl=(-1 1 1].
0 0 2 1 0 0 0 -1 0

It should be no surprise that Maple can readily solve this equation.

The fundamental matriz solution follows readily from the

It is also apparent that the eigenvalues are A\ = 3 with algebraic Jordan canonical form:

and geometric multiplicity of one and assoctated eigenvector,
vi = [1,0,1]7 Bt 00

eJt — 0 th te2t .
and Ay = 2 with algebraic and geometric multiplicities of two 0 0 2t

and one, respectively, and associated eigenvector, vo = [1,0,0]7. ) )
The fundamental matriz solution of the homogeneous part of

It follows that the Jordan canonical form is given by the original ODE follows readily from:
3 0 0 o2t pe2t g3t _ g2t
J=10 2 1]. eAt = peltp~1 = < 0 et 0 ) .
3t
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Example 2: Linear Nonhomogeneous System Example 2: Linear Nonhomogeneous System

Example: The variation of constants formula gives:
Example: From before the variation of constants formula gives:

t
_ At A(t—s)
x(t) = e 'xg + /0 e g(s)ds. (t 2ty 63t> . ((1 — s)e2(t—s) 4 563(t5)>
+/ ds.
0

x(t) = et 0
or e3t ge3(t—s)
2 2 3 2 . . .
® (eot te2 : e’ 86 t) (i) We let Maple perform these integrations, and the net result is:
X = (&
0 0 e3t 1 10 3t 1\ 2t .t _ 13
36 +(t+1)6 +g—%
. eZ(t—s) (t _ 8)62(t—s) eB(t—s) _ 62(t—s) 1 X — ezt
n / 0 2(t—s) 0 0| ds. '
0 0 0 e3(t—s) s %6315 _ % _ %
Thus, which is the unique solution to this example’s initial value
te2t + e3t : (1 _ S)EQ(t—s) +s eS(t—s) roblemn
x(t) = et + / 0 ds. p ’
e3t 0 ge3(t—s)
SDST SDSJO
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Example 3: Linear Nonhomogeneous System
Example: Consider the non-constant, nonhomogeneous system of
linear ODFEs with t > 0:

With the fundamental solution, ®(t), the variation of
constants formula is applied giving:
0 1

In an earlier example, we demonstrated that a fundamental
solution to the homogeneous part of (6) was given by

-1 K
® (1)x0+*I>(t)/1 &1 (s)g(s)ds

1
2
- (%)
3
o <t2+3t2> (; t2>/t<554253>d8
(1) z 1 % +6t -2 o) 2
) .
—= 2t
13 <
t

N[ N[
=
I
~—
/N
NN
N————
+
VS
1~
[\~
~

t 5 +
. 2 46t -2 2t) \st+2m@t) -5/’
We also showed that det |®(t)| = 7 so it follows that: v ®
2 3 _ 542 1
P o _ <2t In(t) + 6% — 312 + 2t2>
() = 2 T4 4tIn(t) + 8% — 3t — 5
1 1
27 At SDSO
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which gives the unique solution to our initial value problem
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