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Definitions
Legendre’s Equation

Definitions

Consider the 2% order linear differential equation:

P(x)y" 4+ Q(z)y’ + R(z)y = F(x). 1)

Definition (Ordinary and Singular Points)

zo is an ordinary point of Eqn. (1) if P(zo) # 0 and Q(z)/P(z), R(z)/P(z), and
F(x)/P(z) are analytic at xo.

zo is a singular point of Eqn. (1) if zo is not an ordinary point.

The previous ODEs solved by power series methods have centered around
zo = 0, when this is an ordinary point.

In an interval about a singular point, the solutions of Eqn. (1) can exhibit
behavior different from power series solutions for Eqn. (1) near an ordinary
point.

n

If 2o = 0, then these solutions may behave like In(z) or =™ near zo.
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Definitions

We concentrate on the homogeneous 2% order linear differential equation to
better understand behavior of the solution near a singular point:

P(z)y" 4+ Q(z)y' + R(z)y = 0. (2)

Definition (Regular and Irregular Singular Points)

If z¢ is a singular point of Eqn. (2), then z¢ is a regular singular point provided
the functions:

are analytic at zg.

A singular point that is not regular is said to be an irregular singular point.

If Eqn. (2) has a regular singular point at xo, then it is possible that no power
series solution exists of the form:

oo

y(@) =Y an(z — z0)™

n=0 SDSO
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Legendre’s Equation Legendre’s Equation

Bessel’s Equation Legendre’s Equation

Example: Consider Bessel’s equation of order v: Example: Consider Legendre’s equation:
172y// + a:y' + (x2 - V2)y =0, (1=2%)y" =2y’ +ala+ 1y =0,
where P(z) = 22, Q(x) = z, and R(x) = 2% — /2. where P(z) = (1 —2?), Q(z) = —2z, and R(z) = a(a +1).
It is clear that = — 0 is a singular point. It is clear that x = %1 are singular points.
We see that
We see that
. Q(x) . —2z . 2z
] T ) R(x . lim (z — 1) =lim(z—1)—— = lim =1, and
lim acQ< ) _ 1 and lim 2 () _ lim (2? — %) = -2, el P(z) =1 (I-2%) =2=ll+w
z—0 P(;C) z—0 P(;[;) z—0
. R(x) . ala+1) . —a(a+1)
. . . 2 _ 2 _
which are both finite, so analytic. ;‘_,ml(x -1 P(z) g}l_r)nl(x -1 1—z2) ;inl(x -1 1tz 0,
It follows that zg = 0 is a regular singular point. which are both finite, so analytic.
Any other value of zq for Bessel’s equation gives an ordinary It follows that zg = 1 is a regular singular point, and a similar argument shows
point that xg = —1 is a regular singular point.
. SDST S0s0
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Legendre’s Equation Legendre’s Equation

Any other value of zg for Legendre’s equation gives an ordinary point, so o = 0

is an ordinary point, and we seek power series solutions: Collecting coefficients gives:

o0 o0 o0

_ / _ -1 " _ -2 ad

y(e) = Z;W"v y'(2) = Zl nanz" "7, and  y7(z) = 222”(” — Dana" > [(n +2)(n+ Dant2 — (n(n—1) +2n — a(a+ 1))an]x" =0
n= n= n= ne0
These are inserted into the Legendre Equation to give: or o
3 [(n +2)(n+ Dants — (n(n+1) — afa + 1))%] 2" =0,
(o] o0 o0 n—0
(1 —x?) Z n(n —Dapz™ 2 — 2z Z nane™ 1 + a(a+1) Z anz” =0
n=2 n=1 n=0 The previous expression gives the recurrence relation:

The first two sums could start their index at n = 0 without changing anything, so _nn+1)—ala+1) : — 0.1
this expression is easily changed by multiplying by x or z2 and shifting the index Ant2 = (n+2)(n+1) an or m=4uL,.
to:
oo oo oo 00 Properties of power series give ag and a; as arbitrary with y(0) = ap and
Z(n+2)(n+ Danyoz™ — Z n(n—1)anz™ -2 Z napx™ +a(a+1) Z anz™ = 0. y'(0) = ay.
n=0 n=0 n=0 n=0
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Legendre’s Equation Cauchy-Euler Equation

Cauchy-Euler Equation (Also, Euler Equation): Consider the differential

The recurrence relation shows that all the even coefficients, a2, depend only equation: 2 ,
on ag, while all odd coefficients, a2n+1, depend only on a1, so all solutions have Lyl =t"y" + aty” + By =0,
the form: where o and  are constants.
y(x) = aoy1(z) + ary2(z),
Assume t > 0 and attempt a solution of the form
where yi(z) has only even powers of z and y2(z) has only odd powers of z.

y(t) =t".
From the recurrence relation it is clear that any integer value of « =0,1,2,...

results in coefficients an42 = a4 =+ =aq42r =0for k=1,2,... Note that ¢ may not be defined for ¢ < 0.

This results in one solution being an a-degree polynomial, which is valid for all z. The result is

The other solution remains an infinite series. L]
t

If « is not an integer, then both linearly independent solutions are infinite = t"[r(r—1)+ar+p=0.
series.

2(r(r — D" 2) + at(rt™ 1) + "

The polynomial solution converges for all x, while the infinite series solution Thus, obtain quadratic equation

converges for |x| < 1 using the ratio test.
Fry=r(r—1)+oar+p=0.
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Cauchy-Euler Equation Equal Roots
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Cauchy-Euler Equation Cauchy-Euler Equation

Cauchy-Euler Equation: The quadratic equation
Fry=r(r—1)+ar+8=0 Example: Consider the equation

2,1 / _
has roots 2t7y" 4+ 3ty —y = 0.

—(a—1)t/(a—1)2—4p
5 .
This is very similar to our constant coefficient homogeneous DE.

T, T2 =

By substituting y(t) = t", we have
T __ 4T 2 __ 4T —

Real, Distinct Roots: If F(r) = 0 has real roots, 71 and rq, with t2r(r =1 +3r =1 =t"2r" +r - 1) =t"(2r - 1)(r +1) =0.

r1 # 72, then the general solution of This has the real roots 11 = —1 and ry = %, giving the general

Livl = 24" + oy’ + By =0, solution
[yl =ty y + By y(t) =it ™ + eaVt, £ >0.
is
y(t) =cit™ + cot™?, t> 0.
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Cauchy-Euler Equation Cauchy-Euler Equation

Equal Roots: If F(r) = (r — r1)? = 0 has r1 as a double root, there is one
solution, yi(t) = ¢"1.
Equal Roots: For F(r) = (r — r1)? = 0, where r; is a double root,

Need dli ly ind dent solution. . . .
eed a second linearly independent solution then the differential equation

Note that not only F(r1) =0, but F/(r1) =0, so consider

5 5 5 Llyl =t*y" +ay’+ py =0,
afL[tT] = a*[trF(T)] = g[tr(’f —r1)?] .
r r r was shown to satisfy

= (r—r)%"In(t) +2(r —r)t".
L[t =0 and L[t™ In(t)] = 0.

Also,

GQL[tT] =L [Bg(t’“)} = L[t" In(t)]. It follows that the general solution is
T T

y(t) = (c1 + coIn(t))t"™.

Evaluating these at r = r1 gives

L[ In(t)] = 0.
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Cauchy-Euler Equation ) Cauchy-Euler Equation

Example: Consider the equation Complex Roots: Assume F(r) = 0 has r = u + iv as complex roots,

2y + 5ty + 4y = 0. the solutions are still y(t) = ¢".
However,

By substituting y(t) = t", we have " = e F I — phicos(vIn(t)) + isin(v1n(t))].

r _ogr..2 _gr 2
lr(r =) +5r +4] =707 +dr +4) =t"(r +2)° = 0. As before, we obtain the two linearly independent solutions by taking

This only has the real root r; = —2, which gives general solution the real and imaginary parts, so the general solution is

y(t) = (c1 + o In(t))t 2, £ 0. y(t) = t']cy cos(v1n(t)) + co sin(v In(t))].
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Complex Roots Method of Frobenius Roots Differing by an Integer,

Cauchy-Euler Equation Regular Singular Problem

Regular Singular Point: Consider the equation
Example: Consider the equation P(:c)y” + Q(x)y' + R(z)y = 0,

Py +ty' +y=0. and without loss of generality assume that it has a regular singular

point at xy = 0.
By substituting y(t) = t", we have This implies that 2Q(z)/P(z) = p(z) and z*>R(z)/P(z) = q(x) are
analytic at x = 0, so

tr(r—1)+r+1]=t"(r*+1) = 0.

This has the complex roots 7 = +i (u = 0 and v = 1), which gives the p(z) = Zop"x and q(x) = Zoq“x ,
general solution n= n=

are convergent series for some interval |z| < p with p > 0.

y(t) = c1 cos(In(t)) + co sin(In(t)), t>0.

This gives the equation:

Lyl = 2*y" + ap(z)y’ + q(z)y = 0.
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Regular Singular Problem Method of Frobenius

Regular Singular Problem: Since the p(z) and ¢(z) are analytic

at x = 0, the second order linear equation can be written: Method of Frobenius: Since the regular singular problem starts with the
zeroth order terms in the coefficients being similar to the Cauchy-FEuler

equation, this suggests looking for solutions with terms of z".

oo oo
2 1 /
L[y] =z7y +z Z pnz” |y’ + Z gnz” |y =0. (3) As with the Cauchy-Euler equation, we consider x > 0 with the case x < 0
n=0 n=0 handled by a change of variables x = —¢& with £ > 0.

The Method of Frobenius seeks solutions of the form:

oo oo
yz)=z"(ao + a1z 4+ -+ apz" +...) =2a" Z anz” = Z anz" T,
n=0 n=0

Note that if p, = ¢, =0 forn=1,2,... with

then the second order linear equation becomes the @ What values of r give a solution to (3) in the above form?

Cauchy-Euler equation: © What is the recurrence relation for the an?

© What is the radius of convergence for the above series?

z?y" +xpoy’ + qoy = 0.
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Method of Frobenius Method of Frobenius

For the regular singular problem

Indicial Equation: In the previous equation, we examine the lowest

o0 o0
ey +u (Z pnfﬂ”) v+ (Z an”) y=0, power of z, so n = 0.
n=0 n=0

This gives
oo r _ _
we seek a solutions of the form: y(x) = Z anz™ T, so o (T(r 1) +por + qO) 0.
n=0
oo oo For ag # 0, we obtain the indicial equation, which came from
Z an(r+n)a™ " and  y" =3 an(r+n)(r - Da R solving the Cauchy-Euler equation:
F(r)=r(r—1)+por+q =0,
Thus,

which is a quadratic equation.

8

Zan(r+n)(r+n71)mr+" + (Zmﬂ:") Z an(r +n)z™ T

The form of the solution of the Cauchy-FEuler equation depended

n=0 n=0
oo on the values of r for the indicial equation, which in turn affects
+ (Z anT ) > ana™t =0. the factor " multiplying our power series solution.
n=0 m m
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The Method of Frobenius breaks into 3 cases, depending on the
roots of the indicial equation. Example: Consider the regular singular problem given by

Case 1. Distinct roots not differing by an integer, vy —ry # N. day” +2y" +y =0,

For this case, a basis for the solution of the regular singular . . .
; where x = 0 is a regular singular point.
problem satisfies:

From our deﬁnitions before we have p(z) = % and ¢(z) = £, which

() = 2" (ap + a1z + -+ + apz +...) = 2 Zanwn implies that py = = and qgo = 0.

Since p and ¢ have convergent power series for all z, the solutions will

and converge for |z| < oo.

The indicial equation is given by:

92(33):$r2(b0+b1$+"'+bn$n+-“):xmzbnmn rir—1)+3r=r(r—-13)=0
2 2 )

_ _ 1
with these solutions converging for at least |z| < p, where p is the sorp =0and ry = 3.

radius of convergence for p(x) and g(z). SDST SDSJ
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Example: We multiply our example by z and continue with

4x2y”+2azy’+xy:0,

o0
trying a solution of the form: y = Z an
n=0

n-+r

Differentiating y and entering into the equation gives:

4Zan(r+n)7‘+n—1)m’"+"+22an T4 n)z T 4 Zan 12"t
n=0 n=0

shifting the last index to match powers of x.

Note that when n = 0, we have
ao[4r(r — 1) + 2r] = 2aer(2r — 1) =0,
which is an alternate way to obtain the indicial equation.
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Example: Thus, the first solution is:

oo

yi(z) = ao Z 2n)1'1m

Second Solution: Let r =rg = %, then the recurrence relation becomes:

—by,
byl = ———n —0,1,...,
"t T 2n 1 3)(2n + 2) or
% b b b b b
0 1 0 2 0
by = ——2 bp= ——1 =2, by = ——2 = 29
! 3.2 2 5.4 5 3 7.6 7!
Thus,

_ (="
T @n+

Thus, the second solution is:

yg(l‘)—boz (2( i)l)' nt}
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Example: For n > 1, we match powers of z, so

[4(r+n)(r+n—1)+2(r +n)]an + an—1 = 0.

From this we obtain the recurrence relation:

—an

2n+2r+2)2n+2r+1)’

an+1 = for n=0,1,...

First Solution: Let » = r1 = 0, then the recurrence relation becomes:

—an f 0,1
a = | or n=0,1,...,
T 2n+2)@2n+ 1)
SO
ao al ag a2 ao
a1 =——-, ag=——7-=—, a3 =———=——.
2.1 4.3 4 65 6!
Thus,
—1)"
an:( ) ag.

(2n)
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Example: The series we see as solutions to this problem have similarities with
series for cosine and sine.

Specifically, a change of variables gives:

o0 TL

vi(@) = ag Z e = a0 32 @ = a cos (vE).

Similarly, the second linearly independent solution satisfies:

n

y2(z) = bo Z < (2n -1:1)' "= z;; %(ﬁ)%ﬂ = bosin (V) .

Thus, we could write the general solution as
(z) = ap cos (\/5) + bg sin (\/5) ,
which can readily be shown satisfies the ODE in this example:

4?y" + 22y’ + zy = 0.
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Repeated Roots, ri =ro =r Repeated Roots, ry =ro =r

The form of the second solution is found in a manner similar to solving the

Cauchy-FEuler equation.
Case 2. Repeated roots, ry =1y = 7.
The first solution is found as before with:

For this case, a basis for the solution of the regular singular

o0
problem satisfies: (@) = ¢(r,x) =2 3 an(r)a”,
] n=0
Y1 (x) =" (ao +aix+ -+ anx” 4+ ... ) =" Z (ann where the coefficients an (r) are determined by a recurrence relation with the
n=0 values of r found from the indicial equation
and F(r)=r(r—1)+por+qo =0.
oo
y2(x) = y1(x) In(@)+a” (brz+- - +bpa+...) = yi(2) In(z)+2" Y bpz” Our regular singular problem was Ly] = 2%y" + ap(x)y’ + q(x)y = 0, which
1 with our first solution and the power series for p(z) and ¢(z) gives
n—
o n—1
with these solutions converging for at least |x| < p, where p is the Ligl(r, @) = a"agF(r) + 3 |anF(r+n) + 3 agl(r+ k)pn_g +an_xl| 27" =0,
radius of convergence for p(x) and g(z). n=t h=0
SDST where the second sum comes from multiplying the infinite series and collecting SDST

terms.
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Repeated Roots, ri =ro =r Repeated Roots, ry =ro =r

Assuming F(r +n) # 0, the recurrence relation for the coefficients as a function Since %(Tl,m) is a solution and our first solution is:
of r satisfies:
koo Wl + K)po—k + dn—] D(@) = 6(ri,z) =" 3 an(r)e”
Qn (T) = — ) n > 1. ’ 0 " ’
n=

F(r+mn)

. . . . we obtain the second solution:
Selecting these coefficients reduces our power series solution to:

a oo
Lg|(r,) = 2" agF(r), @) = 22| - 2 [w > aW)x"}
- n=0 r=rqi
where F(r) = (r — r1)? for our repeated root, so L[¢](r1,z) = 0, since our first oo oo
solution is: - = (z" In(z)) Z an(r1)z™ 4z Z a, (r1)z"
vi(e) = B(r1,2) = 2" 3 an(ri)a”, A .
" = yi@)n@)+2™ Y ay (e, z>0,
Significantly, we have n=1
L[ (r1,z) =a l[mr(rfr )2] =ag [(r—1r )Zxrln(m)+2(r7'r- A =0, where B
{67‘] 1 0 or RRA P 0 1 1 — an(r) = — Z:& ap[(r + K)Prn—k + qn—x] >
F(lr+n ’ =
SO %(rl,x) is also a solution to our problem. SDSU ( ) S0S0
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Bessel’s Equation Order Zero Bessel’s Equation Order Zero

With Bessel’s equation order zero,
Bessel’s Equation Order Zero satisfies: o RN
z?y" +zy + 2y =0,
ny// +£Uy/ +x2y — O7
we try a solution of the form: y = Z anzTT.
where x = 0 is a regular singular point. n=0

L . Differentiati d entering into th tion gives:
From our definitions before we have p(z) = 1 and ¢(z) = 22, which Herentiating y and eniering mto the equation gives

implies that pg = 1 and g9 = 0. oo oo oo
an(n+r)n+r—1z"" + an(n 4+ )zt + An_oz"TT =0,
Since p and ¢ have convergent power series for all z, the solutions will nzzzo ( ) ) ,;) ( ) nzzzg ’

converge for |z| < oco.

shifting the last index to match powers of x.
The indicial equation is given by: ) )
From the same powers of x, (n + r)%an + an—2 = 0, which for r = 0 gives the
recurrence relation:

r(r—1)4+r=1r%=0,

an = ———— for n=2,3,4,...
so r1 = ro = 0, repeated root. " n2 ' oy

SO0SJO with ag arbitrary and a1 = 0. SDSJ
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Bessel’s Equation Order Zero Bessel’s Equation Order Zero

The recurrence relation shows that the odd powers of x all vanish. This first solution gives the Bessel function of the first kind of order zero,
Jo(z). Below shows some polynomial approximations from the partial sums of the

Letting n = 2m in the recurrence relation gives: . .
series solution.

—a2m-—2
(2m)?

Bessel’s Jy(z) Approximation

agm = for n=1,2,3,...,

SO

ao o az _ao o a4 o ao
27, a4 = — = ag = — -

2= (2-2)2 2422 (2-3)2 26(3-2)2’

In general, we have

(=1)™ag

2 D) m=1,23,...

az2m =

The first solution becomes:

( 1)m 2m
22m(ml)2 :

y1(z) = aoJo( )—aoz
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Bessel’s Equation Order Zero 5 Bessel’s Equation Order Zero

From the formula deriving the recurrence relation, we find (r + 1)2a1(r) = 0, so

— / _
Since the Bessel’s equation order zero has only the repeated root r = 0 from not only a1(0) = 0, but 4} (0) = 0.

the indicial equation, the second solution has the form: It follows from the recurrence relation that
I ! — .. = / R —
. oo a3(0) = a5(0) = --- = a41(0) =---=0.
y2(x) = y1(z) In(z) + =" Z bnz™ = In(z)Jo(z) + Z bnz™.
n=1 n=1 The recurrence relation gives:
agam (r) = _GQLQ(T) m=1.2.3
One technique to solve for this second solution is to substitute into Bessel’s 2m - (2m + )2 ’ TS
equation and solve for the coefficients, by,.
Hence,
Alternately, we use our results in deriving this form of the second solution, where ag
we found that the coefficients satisfied: az(r) = - (2+7)2’
—d _ _On=2(n) a(r) = —-220 a0 ,
bn = ay(r), where an(r) = (n+r2’ (44 7)2 (4+7)2(2+7r)2
as(r) ao
evaluated at » = 0 based on the recurrence relation for coefficients of the first a6(r) (6 +7)2 o (6+7)2(4+7r)2(2+7)2 ’
solution. (—1)™a
azm/(r) = 0 m=1,23,...

@em+r)22m—2+7r)2.-. (44+7)2(2+1)2’
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Bessel’s Equation Order Zero Bessel’s Equation Order Zero

Note that if Define 1 1 1
@) = (& = 0 (2 — a2)% - (2 — )P [ S S
m m-—1 2
then . L .
then using this with the recurrence relation
f/(m) = Bl(x—a1)5171 [(l‘—ag)52 ...(m_an)ﬁn] , (_1)ma0
A Oy (0) = —Hm—5———, m=1,23,...
+B2(x — an)?2™ [(z — a))? . (z— an)B"] SR 22m (m)
Hence, for z # a1, aq, ... It follows that the second solution of Bessel’s equation order zero (with ag = 1)
satisfies:
f’(:l}) Bl /82 ﬁn > (_1)m+1Hm 2
= e - . = J 1 ) Am m7 > 0.
f(x) T — Qi + T — oo + + T — an v2(2) o(@)In(z) + mZ=1 22m ()2 € x
Thus, , Usually the second solution is taken to be the Bessel function of the second
A (1) . 1 1 1 kind of order zero, which is defined as
—em: 7 — _9 + 4.4
agm (1) 2m+r  2m—2+47r 247

Yo(z) = 2 [y2(2) + (v — In(2)) Jo(2)],

where 7 is the Euler-Mdscheroni constant

or with »r =0

() = —2 (o + ———— 4+ = ) azm(0)
b m (0). v = lim (H, —In(n)) ~ 0.5772.
n— o0
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Distinct Roots,
Repeated Roots, r; =79 =1r
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Roots Differing by an Integer, r; —r9 = N

Bessel’s Equation Order Zero

The standard solutions for Bessel’s equation are the Bessel function of the Case 3. Roots Differine by an Intecer. 1 — ro — N. where N is
first kind of order zero, Jo(z) and Bessel function of the second kind of L g by ger, 1 2 ’
a posltive Integer.

order zero, Yo (x).

Bessel's Jy(x) and Yi (z) As before, one solution of the regular singular problem satisfies:

15 T

pi(@) = ol Y ana”
n=0
The second linearly independent solution has the form:
y2(x) = kyr () In [z] + |2 ba”
n=0

with these solutions converging for at least |x| < p, where p is the
radius of convergence for p(z) and ¢(z).

This case divides into two subcases, depending on whether or not the
SDSO logarithmic term appears, as k may be zero. SDOSO

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)
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Roots Differing by an Integer, r; — 19 = N Example: Roots, r1 —ro = N

Case 3. Roots Differing by an Integer, r; — ro = N, where N is Example: Consider the ODE:

a positive integer. 22y" + 3zy’ + dzty = 0,

This case is more complicated with the coefficients in the second

solution satisfying: where x = 0 is a regular singular point.

oo
_d o We try a solution of the form: y;(z) = anztT.
ba(r2) = £(r —ra)an(r)],_,,, n=0,12,.. @=2 an
with ag = r — 75 and Differentiating y and entering into the equation gives:
oo oo (o]
k= Tllg} (r —r2)an(r). D an(ntr)(n+r -1z 43> an(n 1)z 44> an_az™ T =0,

2 n=0 n=0 n=4
In practice the best way to determine if & = 0 is to compute a,,(r2) shifting the last index to match powers of .
and see if one finds ay (7"2). Examining this equation with n = 0 gives the indicial equation:
If this is ‘possi.ble, then the sgcond solutior} is rgadily found without F(r)=r(r—1)43r = r(r+2) =0,
the logarithmic term; otherwise, the logarithmic term must be
included. Sosd which has the roots r1 =0 and ro = —2 (r; — ro2 = 2). S0S0
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Example: The series above could be rearranged in the following form:

oo oo

Z an(n+r)(n+r+2)z"t" =4 Z Ay gzt
n=0

With r; = 0, we obtain the recurrence relations:

aj(ry1 +1)(r1 +3) =3a1 =0, az(r1+2)(r1 +4) =8az =0, az(ry+3)(r1+5) = 15a3 =0,

a1 = ag = a3z = 0, and

) . ) .

an(r) = ——————an_4(r or apn = ——————an—

" (n+r(n+r+2) " * " nn+2) " *

It follows that

4 ag 4 ag 4 ag

G4 =——a)=——, A8 =———Q4 = —, Q12 = — ag = ——,
YT T4 T T3 BT 08 T MMT T T T

and a1 = a5 = ... = @4nt+1 =0, a2 = ag = ... = aan42 = 0, and

az = a7 = ... = a4n4+3 = 0.
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Method of Frobenius Roots Differing by an Integer, r

Example: Roots, r1 —ry = N
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Example: Roots, r; —ro = N

To find the 2% solution we need to know if the logarithmic term needs to be
included.

This term is unnecessary if

lim an(r) exists.

T2
For this example, 12 = —2 and N = 2, so we examine
0
lim as(r) = ———— =
r——2 2(r) (r+2)(r+4) ’
which implies the second series may be computed directly with no logarithmic
term.
Thus, we try a solution of the form:
o0
ZOEDBLE N SDsT
n=0

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)
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Example: Following the same process as finding y1 (z), we have:
o0 oo
D ba(ntra)(ntra + 222 = 437 by g2,
n=0 n=4
With ro = —2, we obtain the recurrence relations:
bi(r2 +1)(r2 +3) = —b1 =0, ba(r2 +2)(r2 +4) =0bz =0, b3(r2 +3)(r2 +5) =3b3 =0,
b1 = bg = 0 (bz is arbitrary and generates y1, so take bg = 0), and

4

b = by bp = ————bn_4.
n(7) (n+r(n+r+2) " 4(r) o " nin—2) " *
It follows that
4 bo 4 bo 4 bo
ba= ——bp=— 2 bg=—— b= 2 hy=— by = — 2
TR T T BT e T P T 12100 T ey
and b1 =bs = ... =bapt1 =0, b2 =bg = ... = bap42 =0, and
b3 =b7 =... =ban4+3 =0.

Example: Roots, 11 —rg = N

Example: These results are combined to give the 2% solution:

o (=D)™ 4
yo(z) = boz ™2 Z (2m)'

It follows that our general solution for this example is:

This could be rewritten:

y(x) — ao 72 i ( 1) 2)2m+1 +b0$72 i (71)m (x2)2m

2m+1)!

x~ (ao sin(:v ) + bo cos(z?)).
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Example 2: Roots, 11 —r9 = N

Example 2: Consider the ODE:
2’y —ay =0,
where x = 0 is a regular singular point.
oo
Try a solution of the form: yi(z) = Z anz™tT.
n=0

Differentiating y and entering into the equation gives:

oo o0
Z an(n+r)n+r -1z — Z an—12"t" =0,
n=0 n=1

shifting the last index to match powers of x.

Examining this equation with n = 0 gives the indicial equation:

F(r)y=r(r—1)=0,

which has the roots r1 =1 and ro =0 (r; —r2 = 1).
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Example 2: Roots, 11 —1r9 = N

Example 2: The results above are combined to give the 15 solution:

> 1
y1(m) = ag Z 7mn+1
=y ni(n+ 1)

To find the 2% solution we need to know if the logarithmic term needs to be
included.

This term is necessary if

lim apn(r) fails to exist.
T—7T2

For this example, r9 = 0 and N = 1, so we examine

ao(r)

) = T

Since ag is arbitrary (non-zero), this limit is undefined, so a second series solution
requires the logarithmic term.

For ro = 0, we try a solution of the form:

y2(2) = kyi(2)In(z) + ) bpa" 72,

n=0

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)
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Example 2: Roots, 11 —ro = N

Example 2: The series above is rearranged in the following form:

oo oo
Yo an(ntr)(nr =12 =3 apga
n=0 n=1

With r; = 1, we obtain the recurrence relation:

1 1

- - an.1, n=1,2,3,...
an(r) (n+r)(n+7‘—1)an 1(r) or an n(n—l—l)an Lo
It follows that
1 1 aop 1 ap

a1 =——ay, G2 =——a1=——, G = —,

TR T M T oy BT 34T 3u
SO a

- ° _ n=1,23,...
nl(n + 1)!
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Example 2: Roots, 11 —1ro = N

oo
Example 2: Insert y2(x) = ky1(z) In(z) + Z bra™ into the ODE, so

n=0

oo
o® | ky! In(z) + 2ky1 £ —kyr 25 + > n(n — Dbpa™ >

x
n=2

(o)
—kzy1 In(z) — Z bzt = 0.
n=0

Because y1(z) is a solution of the ODE, kIn(z)[x%y) — zy1] = 0, which reduces
this expression to

oo oo
2kxy] — ky1 + Z n(n — 1byz™ — Z bzt = 0.
n=0

n=2
Using the series solution for y;(z) with ap = 1 and shifting indices, we obtain

n=

oo oo
n=1 n=0
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Example 2: Roots, 11 —r9 = N

Example 2: From the series above our recurrence relation gives:

k—bg =0, or k=1bo

and
%—m—kn(n—kl)bnﬂ—bnzo, n=1,2.3,...
Equivalently,
_ 1 (2n+1)k _
butt = iy [bn = SEEE]. =123,

For convenience we take ag = 1 and bg = k = 1.

The constant by is still arbitrary (as it would generate y1(x) again), so we select
b1 = 0 and find a particular 2% solution using the recurrence relation:

y2(z) = yi(z)In(z) + 1 — %:cz — 367" — T95gT — -
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