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Markov Chain

Markov Chain

The simplest of stochastic processes is one where the current state
decides the next state of the system.

Definition (Markov Process)

A Markov process is a discrete stochastic process that depends only
on the current state, so is independent of its past history.

Definition (Markov Chain)

A Markov chain is a model that follows a series of steps using a
Markov process at each step.
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Markov Model

Markov Model for transitions is a discrete dynamical model that
follows stochastic changes among certain possible states.

Consider a system that has n possible states.

Assume over a fixed time period there is a certain probability tij
that the system moves from state j into state i.

These transition probabilities form a transition matrix,
T = (tij), where the columns sum to one.

Define a probability vector, x = (x1, ..., xn)T , with nonnegative
entries summing to one.

A general Markov model for transitions has the form of a
discrete dynamical system given by

xn+1 = Txn.
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Markov Model

Consider the Markov Model for transitions given by:

xn+1 = Txn.

Since the columns of T sum to one, the dominant eigenvalue
is λ1 = 1.

The associated eigenvector (normalized) provides the
equilibrium distribution, provided some power of T has all
positive entries.

It is easy to see that λ1 = 1 is an eigenvalue by considering
looking at x = [1, ..., 1], since xT = x.

The Gerschgorin Circle theorem, which states that all
eigenvalues of a matrix, (tij), lie inside a circle radius
Cj =

∑
j 6=i tij with center at tjj , shows all others have

magnitude less than 1.
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Gerschgorin Circle theorem

Theorem (Gerschgorin Circle Theorema)

Let A be a complex n× n matrix, with entries aij . For i ∈ {1, . . . , n} let

Ri =
∑
j 6=i
|aij | be the sum of the absolute values of the non-diagonal entries in the

ith row. Let D(aii, Ri) be the closed disc centered at aii with radius Ri. Such a
disc is called a Gerschgorin disc. Every eigenvalue of A lies within at least one of
the Gerschgorin discs D(aii, Ri).

Corollary

The eigenvalues of A must also lie within the Gerschgorin discs Cj corresponding
to the columns of A.

Since the transition matrix, T , has columns summing to 1 with one eigenvalue,
λ1 = 1, then all remaining eigenvalues have magnitude less than 1.

ahttps://en.wikipedia.org/wiki/Gershgorin circle theorem, viewed 11/17
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Princeton Forest Ecosystem 1

Princeton Forest Ecosystem: A complex model for the successional dynamics
for the Princeton forest ecosystem was created by Horn1 2

Transitional probabilities were found for five dominant species of trees based on
which species replaced a resident species of tree that dies.
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1
Horn, H. S. (1975). Forest succession, Scientific American, 232, 90-98.

2
Horn, H. S. (1975). Markovian properties of forest succession. In M. L. Cody and J. M.

Diamond, ed., Ecology and Evolution of Communities, 196-211, University Press, Cambridge,
MA.
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Princeton Forest Ecosystem 2

Princeton Forest Ecosystem: Assume that the ordering of the probability
state vector is Red Oak, Hickory, Tulip tree, Red Maple, and Beech (in that
order), then the transition matrix is given by:

T =


0.12 0.14 0.12 0.12 0.13
0.12 0.05 0.08 0.28 0.27
0.12 0.10 0.10 0.05 0.08
0.42 0.53 0.32 0.20 0.19
0.22 0.18 0.38 0.35 0.33

 , with


Red Oak
Hickory
Tulip

Red Maple
Beech

 .

The normalized eigenvector associated with λ1 = 1 is

xe =


0.1269
0.1955
0.0816
0.2992
0.2968

 .

This eigenvector shows that the predicted climax forest community should be
approximately 12.69% Red Oak, 19.55% Hickory, 8.16% Tulip tree, 29.92% Red
Maple, and 29.68% Beech.
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Princeton Forest Ecosystem 3

Princeton Forest Ecosystem: Below we graphically view the Gerschgorin
Circle Theorem for our matrix, showing all eigenvalues lie in the unit circle.

T =


0.12 0.14 0.12 0.12 0.13
0.12 0.05 0.08 0.28 0.27
0.12 0.10 0.10 0.05 0.08
0.42 0.53 0.32 0.20 0.19
0.22 0.18 0.38 0.35 0.33

 .
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Gerschgorin for Princeton Forest
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Princeton Forest Ecosystem 4

Princeton Forest Ecosystem: Consider the action of the transition matrix,
T , defined above on some initial tree distribution.

The transition matrix considers what occurs in each “generation,” which
would be a succession event.

Below we simulate what the model predicts would occur starting with all
Red Oaks and following 5 generations, i.e., if x0 = [1, 0, 0, 0, 0]T

xi = Txi−1, i = 1, ...5.

Generation x1 x2 x3 x4 x5 e.v.
Red Oak 0.12 0.1246 0.1273 0.1268 0.1269 0.1269
Hickory 0.12 0.207 0.1939 0.1956 0.1954 0.1955
Tulip 0.12 0.077 0.0823 0.0816 0.0816 0.0816

Red Maple 0.42 0.2782 0.3018 0.2989 0.2993 0.2992
Beech 0.22 0.3132 0.2947 0.2971 0.2968 0.2968
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Gillespie’s Method – Introduction

Introduction

Many chemical reaction systems are very complex.

Hard to create detailed ordinary differential equation systems.

Problems when the number of reacting molecules is small.

This is particularly true for biochemical reactions happening
inside cells.

The basic scheme is Gillespie’s method 3

A stochastic approach to simulating chemical reactions by considering

molecules in the reactions as a kind of random walk process.

This process is governed by differential-difference equation, called the

master equation.

3
Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions, J.

Phys. Chem., 81, 2340-2361.
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Chemical Reactions – ODEs

Chemical Reactions – ODEs: The traditional models for chemical kinetics use
systems of ODEs of the form:

ẋ1 = f1(x1, x2, ...xn),

ẋ2 = f2(x1, x2, ...xn),

...

ẋn = fn(x1, x2, ...xn).

Often highly nonlinear systems determined by structures and rate constants
for M chemical reactions.

The models are continuous and deterministic.

Biological situations commonly have small numbers of specific molecules and
significant fluctuations.

ODEs may not accurately follow the “average” molecular populations.

This may be particularly significant for certain threshold switches.
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Stochastic Formulation of Chemical Kinetics

Stochastic Chemical Kinetics: Assume idealized spherical molecular species,
S1 and S2, in thermal, but not necessarily chemical equilibria.

A collision occurs when the center to center distance decreases to r12 = r1 + r2.

Calculate the rate of collisions in a fixed volume by estimating the number of S2

molecules whose centers lie inside

δVcoll = πr212 + v12δt.

(If δt→ 0, then this becomes an ODE model.)

r2

r

r  + r21

1

12v

Molecule 2

Molecule 1

δ tv12δ

δ V coll
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Stochastic Formulation of Chemical Kinetics

Stochastic Markov Process: Assume that the molecules are distributed
randomly and uniformly in volume, V .

This implies that the probability that the center of an arbitrary S2 molecule

is inside δVcoll at time t is the ratio δVcoll
V

.

Average this ratio over velocity distributions of S1 and S2.

The average probability that a particular 1-2 pair will collide in a small time
interval δt is given by:

δVcoll

V
= V −1πr212v12δt.

v12 =
√

8kT/πr12 is the Maxwellian velocity distribution.

If there are X1 molecules of S1 and X2 molecules of S2, then the probability
of any 1-2 collisions is

X1X2V
−1πr212v12δt.

These collisions are a stochastic Markov process.
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Stochastic Reaction Constant cµ

Stochastic Reaction Constant cµ: Apply the above stochastic Markov
process to reactive collisions, then

X1X2c1dt = probability that an R1 reaction will occur inside the volume, V ,

in the time interval (t, t+ dt).

More generally, suppose that V contains a spatially homogeneous mixture of
Xi molecules of species Si, (i = 1, .., N).

These N species interact through M specified chemical reaction channels,
Rµ, (µ = 1, ..M).

Assume there exists M constants, cµ, (µ = 1, ..M), depending on physical
properties of the molecules and the temperature, where cµdt = average
probability that a particular combination of Rµ reactant molecules will react
in the time interval (t, t+ dt).

This equation is the fundamental hypothesis of the stochastic formulation of
chemical kinetics and is valid for “well-mixed” systems.
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Stochastic Reaction and ODE Model

Stochastic Reaction and ODE Model: The stochastic reaction model is
readily connected to the ODE model.

The mean stochastic approach is closely related to the rate constants, ki,
in deterministic equations:

ki =
V ci〈XiXi+1〉
〈Xi〉〈Xi+1〉

,

where 〈X〉 = average ensemble and 〈XY 〉 ' 〈X〉〈Y 〉.
It follows that ki ' V ci.
The V remains in this formulation, whereas the ODE models use
concentrations.

There are a number of differences between this formulation and the ODE
models, especially due to the discrete nature and other properties, but the
models are considered closely related.
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Master Equation

Grand Probability function is given by:

d

dt
P (X1, ...XN ; t) =

M∑
µ=1

[Bµ − aµP (X1, ...XN ; t)].

Its derivation is very similar to the derivation of the birth only process.

This equation is harder to use than deterministic equations.

The discrete time version of this grand probability function with time step dt is
given by:

P (X1, ...XN ; t+ dt) = P (X1, ...XN ; t)

1−
M∑
µ=1

aµdt

+

M∑
µ=1

Bµdt.

The first term on the right is the probability of staying in the current
state in [t, t+ dt].

The second term is the probability that a reaction from another state
comes into the state {X1, ...XN} in [t, t+ dt].
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Master Equation

Discrete Grand Probability function is given by:

P (X1, ...XN ; t+ dt) = P (X1, ...XN ; t)

[
1−

M∑
µ=1

aµdt

]
+

M∑
µ=1

Bµdt.

The quantity aµdt = cµdt× (number of distinct Rµ molecular
combinations in the state (X1, ...XN ))

This equals the probability that an Rµ reaction occurs in V
during (t, t+ δt) given that the system is in the state
(X1, ...XN )) at time t.

The terms Bµdt represent the probabilities that the system is
one Rµ reaction removed from the state (X1, ...XN ).
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Stochastic Simulation Algorithm

Stochastic Simulation Algorithm is designed to move from the probabilistic
Master equation to a simulation the stochastic time evolution of the chemical
reactions.

Assume the system is in state (X1, ...XN ) at time t, then to simulate the model
there are two questions to answer:

1 When will the next reaction occur?

2 What kind of reaction is it?

We introduce the probability function:

P (τ, µ) ≡ probability that given state (X1, ...XN ) at time t,
the next reaction in V occurs in the infinitesimal
time interval (t+ τ, t+ τ + dτ) and this reaction
is an Rµ reaction.

This is the reaction probability density function on the space of the continuous
variable τ (0 ≤ τ <∞) and the discrete variable µ (µ = 1, 2, ...,M).

These variables are needed for answering the two questions posed above.
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Stochastic Simulation Algorithm

The algorithm needs the analytical expressions for P (τ, µ).

Define the following for each reaction, Rµ

hµ ≡ number of distinct Rµ molecular reactant combinations
available in the state (X1, ..., XN ) (µ = 1, ...,M).

As examples:

S1 + S2 → anything gives hµ = X1X2.

2S1 → anything gives hµ = X1(X1−1)
2 .

In general, hµ is a combinatorial function of X1, ..., XN , so

aµdt ≡ hµcµdt = probability that an Rµ reaction will occur in V
in (t, t+ dt) given that the system is in the state (X1, ..., XN )
at time t (µ = 1, ...,M).
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Stochastic Simulation Algorithm

Write the probability density function as the product of P0(τ).

It is the probability that given that the system is in the state
(X1, ..., XN ) at time t.

No reaction occurs in the time interval (t, t+ τ).

The subsequent probability that an Rµ reaction occurs in the
interval (t+ τ, t+ τ + dτ):

P (τ, µ)dτ = P0(τ) · aµdτ.

The expression

P0(τ) = exp

(
−

M∑
µ=1

aµτ

)
,

is the exponential waiting time for a reaction to occur.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Stochastic Models — (21/36)

Markov Chain Theory
Gillespie’s Method

Master Equation
Specific Simulation Algorithm
Gillespie Algorithm for Lotka Reactions

Stochastic Simulation Algorithm

It follows that the reaction probability density function satisfies:

P (τ, µ) =

{
aµ exp(−a0τ) if 0 ≤ τ <∞ and µ = 1, ...,M

0 otherwise,

where aµ = hµcµ (µ = 1, ...M) and

a0 ≡
M∑
ν=1

aν ≡
M∑
ν=1

hνcν .

This probability is key to the Stochastic Simulation Algorithm.
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Stochastic Simulation Algorithm

The stochastic simulation algorithm is a Monte Carlo
simulation that uses two random numbers at each step of the
process.

The random numbers, r1 and r2, are selected from the unit
interval:

1 Give the waiting time, τ , for a reaction to happen.

2 Define specifically which reaction, µ, occurs.

Chose these variables as follows:

τ =
1

a0
ln

(
1

r1

)
,

µ = integer satisfying

µ−1∑
i=1

ai ≤ r2a0 ≤
µ∑
i=1

ai.
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Specific Simulation Algorithm

Simulation Algorithm for time evolution of a chemically reacting system.

Step 0 (Initialization): Input M reaction constants c1, ..., cM and N initial
molecular populations numbers X1, ..., XN . Set t = 0 and reaction number n = 0.
Initialize the random number generator.

Step 1: Calculate and store the M quantities a1 = h1c1, ..., aM = hM cM for the
current populations, where hi is a function of X1, ..., XN . Calculate and store
a0 =

∑M
µ=1 aµ.

Step 2: Generate random numbers r1 and r2. Compute

τ =
1

a0
ln

(
1

r1

)
,

µ = integer satisfying

µ−1∑
i=1

ai ≤ r2a0 ≤
µ∑
i=1

ai.

Step 3: Increase t by τ (add waiting time) and adjust molecular populations
based on the reaction Rµ. (For example, if S1 + S2 → 2S1, then X1 increases by
one and X2 decreases by one.) Increase the reaction counter by one, n→ n+ 1.

Repeat Steps 1–3 until the reaction reaches the time desired.

Run the simulation multiple times computing averages and standard deviations.
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Discussion of the Simulation

Discussion of the Simulation

Advantages

This method is exact and mathematically rigorous, designed to simulate
stochastic events in the spatially homogeneous master equation.

Not approximations of continuous changes with finite time steps, so allows
sudden molecular changes.

Easily coded independent of how complicated and coupled the chemical
equations.

Minimal computer memory required because of the Markov process.

Can easily obtain averages and variation to collect statistics on the
reactions.

Disadvantages

Uses lots of computer time, so need high speed processors.

Only a limited number of molecules and reactions are possible from a
practical standpoint.

Need high quality random number generators because of the huge
number of random numbers being used.

Statistical averages are computationally expensive.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Stochastic Models — (25/36)

Markov Chain Theory
Gillespie’s Method

Master Equation
Specific Simulation Algorithm
Gillespie Algorithm for Lotka Reactions

Gillespie Algorithm for Lotka Reactions

Gillespie Algorithm4 for Lotka Reactions: The Lotka chemical reactions
(developed by Lotka in 1920) that result in the famous Lotka-Volterra predator
prey model.

The chemical reactions are written:

X̄ + Y1

c1
−→ 2Y1

Y1 + Y2

c2
−→ 2Y2

Y2

c3
−→ Z

The ODE or classic Lotka-Volterra model satisfies:

dY1

dt
= c1XY1 − c2Y1Y2,

dY2

dt
= c2Y1Y2 − c3Y2,

4
Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions, J.

Phys. Chem., 81, 2340-2361.
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Gillespie Algorithm for Lotka Reactions

MatLab Code for the Gillespie Algorithm simulates the Lotka chemical
reactions:

c1
X̄ + Y1 −→ 2Y1,

c2
Y1 + Y2 −→ 2Y2,

c3
Y2 −→ Z,

with the parameters, c1X = 10, c2 = 0.01, and c3 = 10.

The nonzero equilibrium is Y1e = Y2e = 1000, and these values are used as
starting values for the simulation.
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Gillespie Algorithm for Lotka Reactions

Gillespie Algorithm Simulations for t = 10 sec: These simulations require
hundreds of thousands of time steps because of the small size of the time steps
from the algorithm.

Below is the composite of Y1 and Y2 along with a phase portrait.
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Gillespie Algorithm for Lotka Reactions

Gillespie Algorithm Simulation with c2 = 0.02 in the Lotka Reactions.

The interaction of the two chemical species is increased, which affects the
simulation by rapidly increasing the amplitude of oscillation and changing the
equilibrium value.

Below is the time series for Y1 and Y2.
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Gillespie Algorithm for Lotka Reactions

Below is a code created by Desmond J. Higham to perform the Gillespie
Algorithm for Lotka Reactions

1 % LV gill.M
2 % Simple implementation of the Stochastic ...

Simulation Algorithm
3 % (or Gillespies algorithm) for the ...

Lotka-Volterra system.
4 %
5 % rand('state',100) % Can fix rand # pattern
6 % stoichiometric matrix for rxs
7 V = [1 -1 0; 0 1 -1];
8 %%%%%%% Parameters and Initial Conditions
9 X = zeros(2,1);

10 X(1) = 1000; % initial molecules of X1
11 X(2) = 1000; % initial molecules of X2
12 Y1(1) = X(1); % store # of molecules
13 Y2(1) = X(2);
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Gillespie Algorithm for Lotka Reactions

MatLab code for the Gillespie Algorithm for Lotka Reactions continued.

14 % set chem rx coefficients
15 c(1) = 10; c(2) = 0.01; c(3) = 10;
16 t = 0; % initial time
17 T(1) = t;
18 tfinal = 10; % final time
19 i = 1;
20 while t < tfinal
21 % rx combination functions
22 a(1) = c(1)*X(1);
23 a(2) = c(2)*X(1)*X(2);
24 a(3) = c(3)*X(2);
25 asum = sum(a); % total a
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Gillespie Algorithm for Lotka Reactions

MatLab code for the Gillespie Algorithm for Lotka Reactions continued.

26 % generate rand # and find rx occurring
27 j = min(find(rand<cumsum(a/asum)));
28 % 2nd rand # for time until rx
29 tau = log(1/rand)/asum;
30 X = X + V(:,j); % Stochastic matrix adjusts X
31 t = t + tau;
32 i = i + 1;
33 T(i) = t;
34 Y1(i) = X(1);
35 Y2(i) = X(2);
36 end
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Gillespie Algorithm for Lotka Reactions

MatLab code for the Gillespie Algorithm for Lotka Reactions continued.

38 figure(101)
39 plot(T,Y1,'b-',T,Y2,'r-');grid;
40 xlim([0,10]);
41 fontlabs = 'Times New Roman'; % Font type used in ...

labels
42 xlabel('$t$','FontSize',14,'FontName',fontlabs,...
43 'interpreter','latex');
44 ylabel('Molecules','FontSize',14,'FontName',fontlabs);
45 set(gca,'FontSize',12);
46

47 figure(102)
48 plot(Y1,Y2,'b-');grid;
49 xlabel('$Y 1$','FontSize',14,'FontName',fontlabs,...
50 'interpreter','latex');
51 ylabel('$Y 2$','FontSize',14,'FontName',fontlabs,...
52 'interpreter','latex');
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ODE for Lotka Reactions

The ODE or classic Lotka-Volterra model satisfies:

dY1

dt
= c1XY1 − c2Y1Y2,

dY2

dt
= c2Y1Y2 − c3Y2,

MatLab code for solving the ODE Lotka Reactions uses the function below.

1 function yp = lv ode(t,y)
2 % LV model for ODE
3 yp = [10*y(1) - 0.01*y(1)*y(2);
4 -10*y(2) + 0.01*y(1)*y(2)];
5 end
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ODE for Lotka Reactions

MatLab script for solving the ODE Lotka Reactions satisfies.

1 % Simulate LV Model
2 % Requires Stiff Solver ode15s
3 [t1,y]=ode15s(@lv ode,[0,10],[1000,600]);
4

5 figure(101)
6 plot(t1,y);grid;
7 xlim([0,10]);
8 fontlabs = 'Times New Roman';
9 xlabel('$t$','FontSize',14,'FontName',fontlabs,...

10 'interpreter','latex');
11 ylabel('Molecules','FontSize',14,'FontName',fontlabs);
12 set(gca,'FontSize',12);
13 print -depsc lv ode ts.eps
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ODE for Lotka Reactions

The solution for the ODE Lotka Reactions should be a perfect periodic
solution, but numerical differences in the coefficients and large numbers of
molecular species make this a stiff ODE system.
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