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Review

Review

Examined data from Gause on cultures of yeast

ODE models are readily solved

Monocultures of yeast fit to well the continuous logistic
growth model

Qualitative analysis is performed

Equilibria are found (extinction and carrying capacity)
Model is linearized and stability is determined

Created phase portraits, showing model behavior for a 1D
model

Remains to study mixed culture with the two species
competing for same resource
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Monoculture Yeast Experiments

Monoculture Yeast Experiments with best fitting logistic models

Below is a table combining two experimental studies of S. cerevisiae

Time (hr) 0 1.5 9 10 18 18 23
Volume 0.37 1.63 6.2 8.87 10.66 10.97 12.5

Time (hr) 25.5 27 34 38 42 45.5 47
Volume 12.6 12.9 13.27 12.77 12.87 12.9 12.7

Logistic model:
dP

dt
= 0.25864P

(
1 −

P

12.7421

)
, P0 = 1.2343.

Below is a table combining two experimental studies of S. kephir

Time (hr) 9 10 23 25.5 42 45.5 66 87 111 135
Volume 1.27 1 1.7 2.33 2.73 4.56 4.87 5.67 5.8 5.83

Logistic model:
dP

dt
= 0.057442P

(
1 −

P

5.8802

)
, P0 = 0.67807.

These models show that S. cerevisiae grows much faster than S. kephir
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Graph of Data and Logistic Model

The graphs of the data with the best fitting models are shown below.
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From the timescales, S. cerevisiae grows significantly faster, which is
also reflected in the parameter r in the models.
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Mixed Culture Yeast Experiments

Mixed Culture Yeast Experiments: Two yeast species are
competing for the same resource.

Time (hr) 0 1.5 9 10 18 18 23
Vol (S. cerevisiae) 0.375 0.92 3.08 3.99 4.69 5.78 6.15

Vol (S. kephir) 0.29 0.37 0.63 0.98 1.47 1.22 1.46

Time (hr) 25.5 27 38 42 45.5 47
Vol (S. cerevisiae) 9.91 9.47 10.57 7.27 9.88 8.3

Vol (S. kephir) 1.11 1.225 1.1 1.71 0.96 1.84

Both species show the initial Malthusian growth at low
densities with S. cerevisiae growing faster.

The limited nutrient causes the populations to level off.

Monocultures reached carrying capacity because of
intraspecies competition.

Two species adds the addition element of interspecies
competition, affecting the long term outcome.
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Two Species Competition Model 1

Two Species Competition Model: Let X(t) be the density of one
species of yeast and Y (t) be the density of another species of yeast.

Assume each species follows the logistic growth model for
interactions within the species.

Model has a Malthusian growth term.
Model has a term for intraspecies competition.

The differential equation for each species has a loss term for
interspecies competition.

Assume interspecies competition is represented by the
product of the two species.

If two species compete for a single resource, then
1. Competitive Exclusion - one species out competes the other and
becomes the only survivor
2. Coexistence - both species coexist around a stable equilibrium
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Two Species Competition Model 2

Two Species Competition Model: The system of ordinary differential
equations (ODEs) for X(t) and Y (t) :

dX

dt
= a1X − a2X

2 − a3XY = f1(X,Y )

dY

dt
= b1Y − b2Y

2 − b3Y X = f2(X,Y )

First terms with a1 and b1 represent the exponential or Malthusian
growth at low densities

The terms a2 and b2 represent intraspecies competition from crowding
by the same species

The terms a3 and b3 represent interspecies competition from the second
species

Unlike the logistic growth model, this system of ODEs does not have an analytic
solution, so we must turn to other analyses.
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Competition Model – Analysis 1

Competition Model: Analysis always begins finding equilibria, which requires:

dX

dt
= 0 and

dY

dt
= 0,

in the model system of ODEs.

Thus,

a1Xe − a2X
2
e − a3XeYe = 0,

b1Ye − b2Y
2
e − b3XeYe = 0.

Factoring gives:

Xe(a1 − a2Xe − a3Ye) = 0,

Ye(b1 − b2Ye − b3Xe) = 0.
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Competition Model – Analysis 2

The equilibria of the competition model satisfy:

Xe(a1 − a2Xe − a3Ye) = 0,

Ye(b1 − b2Ye − b3Xe) = 0.

This system of equations must be solved simultaneously. The first equation gives:
Xe = 0 or a1 − a2Xe − a3Ye = 0.

If Xe = 0, then from the second equation we have either the extinction
equilibrium,

(Xe, Ye) = (0, 0)

or the competitive exclusion equilibrium (with Y winning):

(Xe, Ye) =

(
0,

b1

b2

)
,

where Ye is at carrying capacity.
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Competition Model – Analysis 3

Continuing the equilibria of the competition model: If
a1 − a2Xe − a3Ye = 0 from the first equation, then from the second
equation we have either the competitive exclusion equilibrium
(with X winning):

(Xe, Ye) =

(
a1
a2
, 0

)
,

where Xe is at carrying capacity or the nonzero equilibrium:

(Xe, Ye) =

(
a1b2 − a3b1
a2b2 − a3b3

,
a2b1 − a1b3
a2b2 − a3b3

)
.

If Xe > 0 and Ye > 0, then we obtain the cooperative equilibrium
with neither species going extinct.

Note: This last equilibrium could have a negative Xe or Ye,
depending on the values of the parameters.
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Maple Equilibrium

Maple can readily be used to find equilibria:

Later we find the numerical values of the parameters, so Maple easily finds all
equilibria:

Note: The positive equilibrium is close to the late data points.
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Nullclines 1

Equilibrium analysis shows there are always the extinction and
two competitive exclusion equilibria with the latter going to
carrying capacity for one of the species.

Provided a2b2 − a3b3 6= 0, there is another equilibrium, and it
satisfies: 1. Xe ≤ 0 and Ye > 0 or 2. Xe > 0 and Ye ≤ 0 or 3. Xe > 0
and Ye > 0.

We concentrate our studies on Case 3, where there exists a positive
cooperative equilibrium.

Finding equilibia can be done geometrically using nullclines.

Nullclines are simply curves where

dX

dt
= 0 and

dY

dt
= 0.
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Nullclines 2

For the competition model, the nullclines satisfy:

dX

dt
= X(a1 − a2X − a3Y ) = 0 and

dY

dt
= Y (b1 − b2Y − b3X) = 0,

where the first equation has solutions only flowing in the Y -direction and the
second equation has solutions only flowing in the X-direction.

Equilibria occur where the curves intersect.

The nullclines for the competition model are only straight lines:

The dX
dt

= 0 has X = 0 or the Y -axis preventing solutions in X from
becoming negative.

The dY
dt

= 0 has Y = 0 or the X-axis preventing solutions in Y from
becoming negative.

The other two nullclines are straight lines with negative slopes passing
through the positive quadrant, X > 0 and Y > 0.
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Nullclines 3

Example 1: Consider the competition model:

dX

dt
= 0.1X − 0.01X2 − 0.02XY,

dY

dt
= 0.2Y − 0.03Y 2 − 0.04XY.

Nullclines where dX
dt

= 0 are

1 X = 0.
2 0.1− 0.01X − 0.02Y = 0 or Y = 5− 0.2X.

Nullclines where dY
dt

= 0 are

1 Y = 0.
2 0.2− 0.03Y − 0.04X = 0 or Y = 20

3 −
4
3X.

Equilibria occur at intersections of a nullcline with dX
dt

= 0 and one with dY
dt

= 0.

The 4 equilibria are (0, 0),
(
0, 20

3

)
, (10, 0), and (2, 4).
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Nullclines 4

The figure below was generated with pplane8 and shows that Example 1
exhibits competitive exclusion with all solutions going to either the carrying
capacity equilibria, (Xe, Ye) =

(
0, 20

3

)
or (Xe, Ye) = (10, 0).
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Nullclines 5

Example 2: Consider the competition model:

dX

dt
= 0.1X − 0.02X2 − 0.01XY,

dY

dt
= 0.2Y − 0.04Y 2 − 0.03XY.

Nullclines where dX
dt

= 0 are

1 X = 0.
2 0.1− 0.02X − 0.01Y = 0 or Y = 10− 2X.

Nullclines where dY
dt

= 0 are

1 Y = 0.
2 0.2− 0.04Y − 0.03X = 0 or Y = 5− 0.75X.

Equilibria occur at intersections of a nullcline with dX
dt

= 0 and one with dY
dt

= 0.

The 4 equilibria are (0, 0), (0, 5), (5, 0), and (4, 2).
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Nullclines 6

The figure below was generated with pplane8 and shows that Example 2
exhibits cooperation with all solutions going toward the nonzero equilibrium,
(Xe, Ye) = (2, 4).
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Fitting the Competition Model 1

Fitting the Competition Model: Need to find the parameters for
model with the mixed culture data.

The examples above show the competition model has varying
behavior depending on the parameters of the specific system.

Unlike the monocultures, which only required curve fitting, this
system of ODEs doesn’t have an exact solution.

Must fit data using an numerical ODE solver.

The yeast competition model has 6 unknown parameters and
2 unknown initial conditions.

Need to use known information to reduce the number of
parameters to be fit numerically.
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Fitting the Competition Model 2

In the absence of the other yeast species and assuming the same
experimental conditions, the competition model should match
the monoculture logistic models.

This assumption implies that the rate constants, a1, a2, b1, and
b2, come from fitting the logistic growth data.

Thus, we have:

a1 = 0.25864, a2 = 0.020298, b1 = 0.057442, b2 = 0.0097687.

Thus, the parameter search reduces to the initial conditions and
a3 and b3, which is only 4 parameters.
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Fitting the Competition Model 3

Since the system of ODEs does not have an exact solution, we
employ a MatLab ODE solver.

MatLab has a Runge-Kutta-Fehlberg ODE solver.

This solver fairly accurately solves the model system in the range
of parameters of interest.

We need the solution at the times the data are recorded;
however, there is a quirk that the ODE23 solver is unable to
handle two data points recorded at the same time.

This requires adjustments in the sum of square errors program to
account for the repeated data point.
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Fitting the Competition Model 4

Outline of Program

Load the data from the experiments.

Simulate the competition model with a reasonable set of
parameters and initial conditions, recording the model values at
the times matching the experimental times.

Compute the sum of square errors between the experimental
data and the simulated data.

Use the MatLab program fminsearch to find the least sum
of square errors by changing the unknown parameters a3 and
b3 and initial conditions X(0) and Y (0).

Complications are introduced in the program to manage the
repeated data at t = 18.
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MatLab Code for Fitting the Competition Model 1

The primary MatLab script is the following:

1 load yeast
2 global A1 A2 B1 B2;
3 A1 = 0.25864; A2 = 0.020298;
4 B1 = 0.057442; B2 = 0.0097687;
5 p = [0.4 0.63 0.057 0.0048];
6 p1 = fminsearch(@leastcomp2,p,[],tdmix,scdmix,skdmix)

This script downloads the data, sets up Global variables from the
monoculture logistic models, gives a good initial guess for the
parameters, and calls the fminsearch routine.
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MatLab Code for Fitting the Competition Model 2

Primary MatLab program computes the sum of square errors:

1 function J = leastcomp2(p,tdata,xdata,ydata)
2 global A1 A2 B1 B2
3 [td,M] = reduct(tdata);
4 n1 = length(td);
5 [t,y] = ...

ode23(@compet,td,[p(1),p(2)],[],A1,A2,p(3),B1,B2,p(4));
6 xd = [xdata(1:M),xdata(M+2:n1+1)];
7 yd = [ydata(1:M),ydata(M+2:n1+1)];
8 errx = y(:,1)-xd(1:n1)';
9 erry = y(:,2)-yd(1:n1)';

10 J = errx'*errx + erry'*erry;
11 J = J + (y(M,1)-xdata(M+1))ˆ2 + ...

(y(M,2)-ydata(M+1))ˆ2;
12 end

Data sets with unique values for each time would remove lines 3, 4, 6,
7, and 11 and simplify lines 8 and 9.
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MatLab Code for Fitting the Competition Model 3

The MatLab function for the competition model is:

1 function dydt = compet(t,y,a1,a2,a3,b1,b2,b3)
2 % Competition Model for Two Species
3 tmp1 = a1*y(1) - a2*y(1)ˆ2 - a3*y(1)*y(2);
4 tmp2 = b1*y(2) - b2*y(2)ˆ2 - b3*y(1)*y(2);
5 dydt = [tmp1; tmp2];
6 end

This system of ODEs is inserted into the MatLab
Runge-Kutta-Fehlberg ODE solver with the appropriate parameters.

The ODE23 solver finds the simulated solution at the times
corresponding to the experimental data, which are used for the sum
of square errors.
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MatLab Code for Fitting the Competition Model 4

MatLab function that sorts data and finds the repeated time:

1 function [td,i] = reduct(tdata)
2 % Data reduction - Repeat t-values
3 % Finds index and removes time for ODE23
4 n = length(tdata);
5 temp = sort(tdata);
6 td = [temp(1)]; i = [];
7 for k = 1:n-1
8 if (temp(k)==temp(k+1))
9 i = [i,k];

10 else
11 td = [td,temp(k+1)];
12 end
13 end
14 end

The code is substantially simpler without this quirk!
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Competition Model with Best Parameters 1

The MatLab code above gives the best fitting interspecies
competition parameters for the competition model are:

a3 = 0.057011 and b3 = 0.0047576

and initial conditions:

X(0) = 0.41095 and Y (0) = 0.62578.

The least sum of square errors is 19.312.

The Gause mixed culture data are best fit by the competition
model:

dX

dt
= 0.25864X − 0.020298X2 − 0.057011XY ,

dY

dt
= 0.057442Y − 0.0097687Y 2 − 0.0047576XY .
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Competition Model with Best Parameters 2

The best fitting competition model is readily simulated and compared to the
Gause mixed culture data:
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Competition Model Analysis

Competition Model Analysis:

dX

dt
= f1(X,Y ) = 0.25864X − 0.020298X2 − 0.057011XY ,

dY

dt
= f2(X,Y ) = 0.057442Y − 0.0097687Y 2 − 0.0047576XY ,

X(0) = 0.41095 and Y (0) = 0.62578.

Begin by finding all equilibria.

Draw the nullclines and study behavior.

Linearize at each of the equilibria.

Interpret the results and simulate long term behavior.
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Equilibria for Competition Model

Equilibria for Competition Model: Let the equilibria for
S. cerevisiae and S. kephir be Xe and Ye, respectively

Xe(0.25864 − 0.020298Xe − 0.057011Ye) = 0

Ye(0.057442 − 0.0097687Ye − 0.0047576Xe) = 0

Must solve the above equations simultaneously, giving 4
equilibria

Extinction equilibrium, (Xe, Ye) = (0, 0)

Carrying capacity equilibria, (Xe, Ye) = (12.742, 0) and
(Xe, Ye) = (0, 5.8802)

Coexistence equilibrium, (Xe, Ye) = (10.257, 0.88482)
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Linearization of Competition Model

Linearization of Competition Model: With equilibria Xe and Ye,
let u = X −Xe and v = Y − Ye(

u̇
v̇

)
=

 ∂f1(Xe,Ye)
∂u

∂f1(Xe,Ye)
∂v

∂f2(Xe,Ye)
∂u

∂f2(Xe,Ye)
∂v

( u
v

)
so the linear system is(

u̇
v̇

)
=

(
a1 − 2a2Xe − a3Ye a3Xe

b3Ye b1 − 2b2Ye − b3Xe

)(
u
v

)
,

where

a1 = 0.25864 a2 = 0.020298 a3 = 0.057011

b1 = 0.057442 b2 = 0.0097687 b3 = 0.0047576
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Local Stability of Competition Model

Local Stability of Competition Model: At the equilibrium,
(Xe, Ye) = (0, 0)(

u̇
v̇

)
=

(
0.25864 0

0 0.057442

)(
u
v

)
,

which has eigenvalues λ1 = 0.25864 and λ2 = 0.057442, so this
equilibrium is an Unstable Node

At the equilibrium,
(Xe, Ye) = (12.742, 0)(

u̇
v̇

)
=

(
−0.25863 0.72643

0 −0.0031793

)(
u
v

)
,

which has eigenvalues λ1 = −0.25863 and λ2 = −0.0031793, so this
equilibrium is a Stable Node
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Local Stability of Competition Model

Local Stability of Competition Model: At the equilibrium,
(Xe, Ye) = (0, 5.8802)(

u̇
v̇

)
=

(
−0.076596 0
0.027976 −0.057442

)(
u
v

)
,

which has eigenvalues λ1 = −0.076596 and λ2 = −0.057442, so this
equilibrium is a Stable Node

At the equilibrium,
(Xe, Ye) = (10.257, 0.88482)(

u̇
v̇

)
=

(
−0.20820 0.58476
0.0042096 −0.0086438

)(
u
v

)
,

which has eigenvalues λ1 = −0.21985 and λ2 = 0.0030111, so this
equilibrium is a Saddle Node (weak in the repelling direction)
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Competition Model

Competition Model Phase Portrait: Plot shows nullclines and
solution trajectory
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Competition Model

Competition Model Time Series: Plot shows the solution
trajectories
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Behavior of Yeast Competition Model

Competition Model Summary

The local analysis suggests that the least squares best fit to
the Gause data would result in the competitive exclusion of
one species over time.

Competitive exclusion is very common among similar species.

The phase portrait plot with nullclines suggests that S.
kephir has a competitive advantage over long time.

The phase portrait shows that rapid growth of S. cerevisiae
has solutions moving quickly in the horizontal direction, yet
ultimately, the slower growing S. kephir can dominate the
culture.

The eigenvalue analysis helps explain the local behavior,
including a local attraction of the cooperative equilibrium
before ultimately repelling of this saddle node.
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