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Introduction

Introduction

Studied discrete dynamical population models

Have the potential to have chaotic dynamics
Closed form solutions are very limited
Qualitative analysis gave limited results

Extend models to continuous domain – ODEs

Differential equations often easier to analyze
Allows examining populations without discrete sampling
Qualitative analysis shows solutions are better behaved

Begin examining two yeast species competing for a limited
resource (nutrient)
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Yeast and Brewing

Competition Model: Competition is ubiquitous in ecological
studies and many other fields

Craft beer is a very important part of the San Diego economy

Researchers at UCSD created a company that provides brewers
with one of the best selections of diverse cultures of different
strains of the yeast, Saccharomyces cerevisiae

Different strains are cultivated for particular flavors

Often S. cerevisiae is maintained in a continuous chemostat for
constant quality - large beer manufacturers

Large cultures can become contaminated with other species of
yeast

It can be very expensive to start a new pure culture
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Chemostat Models

Chemostat Models

A chemostat is a controlled bioreactor

Fresh medium (nutrient) is added continuously

A desired microbial culture is maintained in a static environment

Bioreactor has culture, nutrients, metabolic end products, and waste

The culture volume is maintained by removing microrganisms, end

products, etc. at the same rate as nutrients enter

Brewer’s Yeast

Large breweries want to maintain consistent product

Grow their particular strain of brewer’s yeast in chemostat

Without contamination and constant nutrient, the yeast culture exits

the chemostat at a reliable concentration (carrying capacity)

Hard to keep a particular culture free from contamination from
bacteria and other yeast species
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Diagram of Chemostat
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Yeast Experiments

Yeast Experiments

G. F. Gause12 ran experiments on yeast cultures

Rather than a chemostat, changed nutrient every 3 hours
Used standard brewers yeast, Saccharomyces cerevisiae
Another experiment uses a common contaminant, a slower
growing yeast, Schizosaccharomyces kephir
A third experiment combined cultures to examine
competition between the species

Two repetitions were done of each experiment, and data are
combined and shifted to match described conditions

The volume measured were marks on a test tube from centrifuge
and not standard units

1G. F. Gause, Struggle for Existence, Hafner, New York, 1934
2G. F. Gause (1932), Experimental studies on the struggle for existence. I.

Mixed populations of two species of yeast, J. Exp. Biol. 9, p. 389
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Monoculture Yeast Experiments

Monoculture Yeast Experiments

Single species culture for Saccharomyces cerevisiae

Time (hr) Volume Time (hr) Volume Time (hr) Volume
0 0.37 18 10.97 38 12.77
1.5 1.63 23 12.5 42 12.87
9 6.2 25.5 12.6 45.5 12.9
10 8.87 27 12.9 47 12.7
18 10.66 34 13.27

Single species culture for Schizosaccharomyces kephir

Time (hr) Volume Time (hr) Volume Time (hr) Volume
9 1.27 42 2.73 87 5.67
10 1 45.5 4.56 111 5.8
23 1.7 66 4.87 135 5.83
25.5 2.33

The much slower growing Schizosaccharomyces kephir required
much longer to approach the carrying capacity.
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Mixed Culture Yeast Experiments

This experiment examines the competition of 2 yeast species
competing for the same resource.

Time (hr) 0 1.5 9 10 18 18 23
Vol (S. cerevisiae) 0.375 0.92 3.08 3.99 4.69 5.78 6.15
Vol (S. kephir) 0.29 0.37 0.63 0.98 1.47 1.22 1.46

Time (hr) 25.5 27 38 42 45.5 47
Vol (S. cerevisiae) 9.91 9.47 10.57 7.27 9.88 8.3
Vol (S. kephir) 1.11 1.225 1.1 1.71 0.96 1.84

The data show the populations increasing, but do these populations
move toward an equilibrium or does something else happen with the
populations?

What techniques do we have to fit models to the data?

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Continuous Models Logistic and Malthusian Growth
— (9/37)

Chemostat with Two Yeast Populations
Continuous Models

Qualitative Analysis

Malthusian Growth Model
Logistic Growth Model
Logistic Growth Model Solution

Malthusian Growth Model

Malthusian Growth Model: The discrete Malthusian growth
model has the form:

Pn+1 = (1 + r)Pn,

where Pn is the population at time n and r is the per capita growth
rate.

We want change this model into a continuous model.

Let Pn ≡ P (t) and assume a time step of ∆t, so Pn+1 ≡ P (t+ ∆t).

Assume that r is the per capita growth rate per unit time, then the
discrete model becomes:

P (t+ ∆t) = (1 + r∆t)P (t).

This can be rearrranged to give

P (t+ ∆t)− P (t) = r∆tP (t) or
P (t+ ∆t)− P (t)

∆t
= rP (t).
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Continuous Growth Model

Continuous Growth Model: The discrete Malthusian growth
model was rearranged to give:

P (t+ ∆t)− P (t) = r∆tP (t),

so consider the limiting case as ∆t→ 0,

lim
∆t→0

P (t+ ∆t)− P (t)

∆t
= rP (t).

The left hand side is the definition of the derivative, so this equation
becomes:

dP

dt
= rP (t), P (0) = P0,

which is the continuous Malthusian growth model.

This is a first order linear differential equation.
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Malthusian Growth Model

Malthusian Growth Model: The continuous Malthusian
growth model:

dP

dt
= rP (t), P (0) = P0,

has the solution:
P (t) = P0e

rt.

The early stages of the yeast cultures both show this exponential
growth.

How might we match this model to the first 10 hours (4 data points)
of the growing culture of Saccharomyces cerevisiae?

There are multiple methods for fitting this model to these data.
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Fitting the Malthusian Growth Model 1

The Malthusian growth model is given by:

P (t) = P0e
rt,

and we want to fit the data (ti, Pi):

(0, 0.37), (1.5, 1.63), (9, 6.2), and (10, 8.87).

If we are simply fitting these data to obtain an estimate on the value
of r, then an algebraic fit through the first and third points is
sufficient with P0 = 0.37 and

P (9) = 0.37e9r = 6.2 or r = ln(16.76)/9 = 0.3132,

which gives:
P (t) = 0.37e0.3132t.
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Fitting the Malthusian Growth Model 2

The Malthusian growth model, P (t) = P0e
rt, is fit through the

data (ti, Pi): (0, 0.37), (1.5, 1.63), (9, 6.2), and (10, 8.87).

Frequently, exponential models are fit with the linear least
squares best fit to the logarithm of data:

ln(P (t)) = ln(P0) + rt,

which has slope, r, and intercept, ln(P0).

The linear least squares best fit to the logarithm of data gives
the equation:

ln(P (t)) = 0.2690 t− 0.5034,

which gives the best continuous Malthusian growth model,

P (t) = 0.6045 e0.2690 t.
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Fitting the Malthusian Growth Model 3

Alternately, the Malthusian growth model, P (t) = P0e
rt, is fit

through the data (ti, Pi): (0, 0.37), (1.5, 1.63), (9, 6.2), and (10,
8.87), using a nonlinear least squares best fit to the data.

The nonlinear least squares best fit to the data gives the best
continuous Malthusian growth model,

P (t) = 0.6949 e0.2511 t.

1 function J = yst lstm(p, tdata, pdata)
2 % Least Squares fit to Logistic Growth
3 N = length(tdata);
4 yst = p(1)*exp(p(2)*tdata);
5 err = pdata - yst;
6 J = err*err'; % Sum of square errors
7 end

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Continuous Models Logistic and Malthusian Growth
— (15/37)

Chemostat with Two Yeast Populations
Continuous Models

Qualitative Analysis

Malthusian Growth Model
Logistic Growth Model
Logistic Growth Model Solution

Fitting the Malthusian Growth Model 4
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Yeast Data
Exponential Model
Nonlinear Fit
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Logistic Growth Model 1

These models fit the initial data reasonably well, but are inadequate
for describing the complete set of data.

The data show a leveling off of the populations, so different
models are required.

The experiments supply a fixed amount of nutrient, so maximum
population is limited.

The Malthusian growth model simulates the early exponential
growth of populations, but suppression of growth later in time is
required to fit the data.

The two data sets, S. cerevisiae and S. kephir, show
significantly different growth rates and carrying capacity.
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Logistic Growth Model 2

The general continuous growth model satisfies the differential
equation:

dP

dt
= f(t, P (t)).

However, yeast populations should not depend on time, so the
appropriate model is:

dP

dt
= f(P (t)).

The Malthusian growth model is:

dP

dt
= rP (t),

which has f(P ) = rP , a linear function of P , giving the exponential
growth for a solution.
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Logistic Growth Model 3

The Maclaurin series expansion of f(P ) is

f(P ) = f(0) + f ′(0)P +
f ′′(0)

2!
P 2 +O

(
P 3
)
,

where O
(
P 3
)

means order P 3.

The yeast (chemostat) problem is a closed system, so when the
population is at extinction or 0, which implies:

f(0) = 0.

The linear term comes from the Malthusian growth, so

f ′(0) = r.
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Logistic Growth Model 4

The population growth rate declines for larger populations, so we
expect the next term in the series expansion must be negative.

In biology, this is known as intraspecies competition.

Mathematically, this implies:

f ′′(0)

2!
= − r

M
,

where r is from the Malthusian growth and as we’ll see later M is the
carrying capacity.

Ignoring the higher order terms of f(p) gives the logistic growth
model:

dP

dt
= rP

(
1− P

M

)
, P (0) = P0.
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Logistic Growth Model Solution 1

The logistic growth model:

dP

dt
= rP

(
1− P

M

)
, P (0) = P0,

can be solved using separation of variables.

Alternately, we can use Bernoulli’s method. Consider

dP

dt
− rP = −rP

2

M
, and let u = P−1,

then du
dt = −P−2 dP

dt .

If we multiply the equation above by −P−2, then

−P−2 dP

dt
+ rP−1 =

r

M
, so

du

dt
+ ru =

r

M
.

The u equation is rewritten:

d

dt

(
ertu

)
=
rert

M
.
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Logistic Growth Model Solution 2

The u equation is solved by integration, so :

d

dt

(
ertu

)
=
rert

M
gives u(t) =

1

M
+ ce−rt =

1

P (t)
.

The initial condition gives:

c =
1

P0
− 1

M
=
M − P0

MP0
.

When the initial condition is inserted, a little algebra yields:

P (t) =
MP0

P0 + (M − P0)e−rt
.
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Logistic Growth Model Solution 3

The exact functional form of the solution:

P (t) =
MP0

P0 + (M − P0)e−rt
,

has 3 parameters and can be readily fit to the Gause data.

The sum of square errors formula for fitting data, Pd(ti), is:

J(P0, r,M) =

N∑
i=0

(
Pd(ti)−

MP0

P0 + (M − P0)e−rti

)2

,

which we minimize in Matlab with fminsearch.

An initial guess for the parameters p0 = [P0, r,M ] would be to take
P0 = Pd(t0), r equal the value from the Malthusian growth model,
and M = Pd(tN ).
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Logistic Growth Model Solution 4

The sum of square errors code, which is used to find the best
parameter fit, is:

1 function J = yst lst(p, tdata, pdata)
2 % Least Squares fit to Logistic Growth
3 N = length(tdata);
4 yst = p(1)*p(2)./(p(1) + ...

(p(2)-p(1))*exp(-p(3)*tdata));
5 err = pdata - yst;
6 J = err*err'; % Sum of square errors
7 end

The best fitting parameters come from executing fminsearch:
p1 = fminsearch(@yst lst,p0,[],tdata,pdata)
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Logistic Growth Model Solution 4

The best fitting parameters for Saccharomyces cerevisiae and
Schizosaccharomyces kephir are given by:

P0 = 1.2343, r = 0.25864, M = 12.7421,

and
P0 = 0.67807, r = 0.057442, M = 5.8802

with least SSE = 4.9460 and SSE = 1.3850, respectively.

This produces the best fitting solutions:

P (t) =
12.742

1 + 9.323 e−0.2586t
and P (t) =

5.880

1 + 7.672 e−0.05744t
.
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Logistic Growth Model Solution 5

The graphs of the data with the best fitting models are shown below.

0 10 20 30 40 50
t (hrs)

0

5

10

15

P
(t
)
(V

ol
u
m
e)

Saccharomyces cerevisiae

0 50 100 150
t (hrs)

0

1

2

3

4

5

6

P
(t
)
(V

ol
u
m
e)

Schizosaccharomyces kephir

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Continuous Models Logistic and Malthusian Growth
— (26/37)

Chemostat with Two Yeast Populations
Continuous Models

Qualitative Analysis

Equilibria and Linearization
Direction Field
Phase Portrait

Equilibria 1

Qualitative Analysis of continuous models provides information
about types of possible behaviors of the models, such as

dP

dt
= f(P ).

It is important to learn the local behavior of the continuous
dynamical model near its Equilibria.

Like discrete dynamical models, the analysis of continuous models
with differential equations begins with finding Equilibria.

Equilibria of differential equations are found by setting the
derivative equal to 0 or

f(Pe) = 0,

which for population models means no growth.
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Equilibria 2

For the logistic growth model,

dP

dt
= rP

(
1− P

M

)
,

the equilibria satisfy:

rPe

(
1− Pe

M

)
= 0 or Pe = 0 or M.

Like the discrete model, the logistic growth model has the
extinction or trivial equilibrium, Pe = 0, and the carrying
capacity equilibrium, Pe = M .

We expect that locally solutions “near” the extinction equilibrium
should move away and be unstable, while solutions “near” the
carrying capacity equilibrium should approach and be stable.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Continuous Models Logistic and Malthusian Growth
— (28/37)



Chemostat with Two Yeast Populations
Continuous Models

Qualitative Analysis

Equilibria and Linearization
Direction Field
Phase Portrait

Linearization 1

The local behavior of the continuous dynamical model near its
equilibria depends on the linear terms of the function f .

Since f(Pe) = 0, the Taylor series expansion is:

f(P ) = f ′(Pe)(P − Pe) +O
(
(P − Pe)

2
)
.

If f ′(Pe) > 0, then locally the solution grows exponentially
(positive eigenvalue) and the equilibrium at Pe is unstable.

If f ′(Pe) < 0, then locally the solution decays exponentially
(negative eigenvalue) and the equilibrium at Pe is stable.

If f ′(Pe) = 0, then more information must be obtained to
determine the stability of the equilibrium at Pe.
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Linearization 2

Stability of Logistic Growth Model: The equilibria are Pe = 0
and M .

The function and its derivative satisfy:

f(P ) = rP

(
1− P

M

)
, so f ′(P ) = r − 2rP

M
,

where r > 0 is the Malthusian growth rate at low density and M is
the carrying capacity.

At the extinction equilibrium, Pe = 0, we have f ′(0) = r, which is
positive and makes this equilibrium unstable.

At the carrying capacity equilibrium, Pe = M , we have
f ′(M) = −r, which is negative and makes this equilibrium stable.

These results suggest that differential equation governing the
logistic growth model has an initial exponential growth before
moving smoothly toward the carrying capacity.
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Direction Field 1

Consider the general differential equation with initial value:

dy

dt
= f(t, y), y(t0) = y0.

The function f(t, y) provides the slope of the solution.

The slope of the solution is easily found by computer programs on
a grid, so the program can generate arrows showing the direction of
the solution.

The direction field is this graphical representation in the y vs. t
plane with arrows showing the direction of the solution.
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Maple Simulation

We demonstrate the use of Maple for examining the logistic growth
model for Saccharomyces cerevisiae.

Enter the differential equation for the model:

> de := diff (P (t), t) = 0.2586 · P (t) ·
(

1− P (t)
12.742

)
;

This equation is solved with the following:
> dsolve({de, P (0) = 1.234}, P (t));

Maple can plot the direction field with any number of solutions
using its package DEtools as shown below:
> with(DEtools) :
> DEplot(de, P (t), t = 0..30, [[P (0) = .2], [P (0) = 1.234], [P (0) =
2], [P (0) = 5], [P (0) = 9], [P (0) = 12], [P (0) = 16]], P = 0..16, colour =
blue, linecolour = t, title = LogisticGrowthModel);

(Plot appears on the next slide.)
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Maple Direction Field Plot

From the previous slide, Maple produces the following plot:
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Existence and Uniqueness

The differential equation:

y ′ = f(t, y), with y(t0) = y0, (1)

with reasonable conditions on f has the existence and uniqueness
of its solutions.

Theorem

If f and ∂f/∂y are continuous in a rectangle
R : |t− t0| ≤ a, |y − y0| ≤ b, then there is some interval
|t− t0| ≤ h ≤ |a| in which there exists a unique solution y = φ(t) of
the initial value problem (1).

This theorem guarantees that solutions don’t cross on a graph.

Thus, geometrically it is easy to trace the direction of the solution
from any starting point in the direction field.
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AutonomousDirection Field

We examine the direction field of the autonomous differential
equation

dy

dt
= f(y).

In the y vs. t-plane, the direction field is constant for each value of
y.

Equilibria, ye, have slope 0 in the direction field.

Between equilibria, the direction field has only slopes with the
same sign.

It follows that solutions monotonically go toward or away from
equilibria.

The qualitative behavior of the autonomous differential
equation is captured in a 1D-line, where equilibria are marked and
solution directions are noted with arrows pointing right or left.
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Phase Portrait 1

The qualitative dynamics of a scalar autonomous differential
equation is given by a 1D-phase portrait.

For dy
dt = f(y), graph f(y)

Equilibria occur when f(y) = 0.
Solutions increase when f(y) > 0 and decrease when
f(y) < 0.

When arrows of the phase portrait point toward an
equilibrium, then it is stable and is indicated with a solid
circle.

When arrows of the phase portrait point away from an
equilibrium, then it is unstable and is indicated with an open
circle.

When arrows of the phase portrait go in the same direction
through an equilibrium, then it is semi-stable and is indicated
with a half open circle.
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Phase Portrait 3

Logistic growth model

> > > > <<

Horizontal axis is the
Phase Portrait.

Extinction equilibrium,
Pe = 0 ,
is unstable.

Carrying capacity,
Pe = M ,
is a stable equilibrium.

Positive initial conditions
result in all solutions
tending in time to the
carrying capacity.
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