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Introduction

Introduction

Many physical or biological phenomena often have stochastic or
random effects, such as Brownian motion or a birth event.

These phenomena rarely are completely deterministic (accurately
modeled with difference or differential equations).

Variation in models is often introduced by some type of noise
entered into the model.

Many phenomena are modeled using Monte Carlo methods to
simulate unpredictable behavior.

Multiple Monte Carlo simulations allow randomness to solve
problems that might be deterministic in principle.
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Definitions

Random Variables

Definition (Random Variable)

A random variable, usually written X, is a variable whose possible
values are numerical outcomes of a random phenomenon.

Definition (Discrete Random Variable)

A discrete random variable X has a countable number of possible
values.

Definition (Continuous Random Variable)

A continuous random variable X takes all values in a given
interval of numbers.
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Definitions

Probability Distributions

Definition (Probability Distribution)

A probability distribution of a random variable X tells what the
possible values of X are and how probabilities are assigned to those
values.

Definition (Probability Density Function)

A probability density function, f(x), of a continuous random
variable is a function whose integral across an interval gives the
probability that the value of the variable lies within the same interval:

Pr{x1 ≤ X ≤ x2} =

∫ x2

x1

f(x)dx.
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Cell Death 1

Cell Death Example: Let age of cell death be A, which is a
random variable.

Let the age of death be described by the probability distribution
function, f(a),

Pr{a1 ≤ A ≤ a2} =

∫ a2

a1

f(a)da.

The cumulative density function is given by:

F (a) = Pr{A < a} =

∫ a

0

f(α)dα,

which satisfies f(a) = F ′(a).
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Cell Death 2

Cell Death (cont.): Let µ(a) be the age-dependent death rate.

It follows that if the cell is alive at age a, then

Pr{A ∈ (a, a+ ∆a)|A > a} = µ(a)∆a+ o(∆a).

However,

Pr{A > a} = Pr{A ∈ (a, a+ ∆a)}+ Pr{A > a+ ∆a}.

Law of Conditional Probability:

Pr{A ∈ (a1, a2)|A > a1} =
Pr{A ∈ (a1, a2)}
Pr{A > a1}

.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Markov Chain Monte Carlo Models— (7/68)

Probabilistic Models
Monte Carlo Method

More Complex MCMC Simulations

Cell Death
Stochastic Birth Process

Cell Death 3

Cell Death (cont.): From the information before:

Pr{A > a} = Pr{A ∈ (a, a+ ∆a)|A > a}Pr{A > a}+ Pr{A > a+ ∆a},

= Pr{A > a}µ(a)∆a+ o(∆a) + Pr{A > a+ ∆a},

which is rearranged to give

Pr{A > a+ ∆a} − Pr{A > a} = −Pr{A > a}µ(a)∆a+ o(∆a).

If p(a) = Pr{A > a}, then dividing by ∆a and taking the limit as
∆a→ 0 gives

dp

da
= −µ(a)p(a), p(0) = 1,

so
p(a) = e(−

∫ a
0
µ(α)dα).
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Cell Death 4

Cell Death (cont.): The cumulative density function for the
age of cell death

F (a) = 1− p(a).

The probability density for cell death satisfies:

f(a) = −p ′(a) = µ(a)e(−
∫ a
0
µ(α)dα).

If µ(a) = µ is constant, then there is an exponentially distributed
waiting time:

f(a) = µe−µa.
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Stochastic Birth Process 1

Example of a Stochastic Birth Process: Consider a basic stochastic birth
only process for a population.

Assume that the probability of one birth is proportional to ∆t = λ∆t, where
∆t is sufficiently small to allow only one birth event.

Thus, the probability of not giving birth is 1− λ∆t.

Let PN (t) be the probability of the population having N individuals.

Let νN be the probability that there are no births among N individuals.

Let σN−1 be the probability of one birth among N − 1 individuals.

Since there can be at most one birth in any time interval ∆t and this is a
birth only process, then

PN (t+ ∆t) = σN−1PN−1(t) + νNPN (t).

From our assumptions,

νN = (1− λ∆t)N and σN−1 ≈ 1− (1− λ∆t)N−1.
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Stochastic Birth Process 2

Stochastic Birth Process (cont): Since

νN = (1− λ∆t)N and σN−1 ≈ 1− (1− λ∆t)N−1,

for small ∆t (keeping only linear terms in ∆t and ignoring higher order terms), we
have:

νN ≈ 1− λN∆t and σN−1 ≈ λ(N − 1)∆t.

From the information above:

PN (t+ ∆t) ≈ λ(N − 1)∆tPN−1(t) + (1− λN∆t)PN (t)

PN (t+ ∆t)− PN (t) ≈ λ(N − 1)∆tPN−1(t)− λN∆tPN (t)

PN (t+ ∆t)− PN (t)

∆t
≈ λ(N − 1)PN−1(t)− λNPN (t).
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Stochastic Birth Process 3

Stochastic Birth Process (cont): From the difference equation,
take the limit as ∆t→ 0 and obtain the approximating
differential equation for the birth only stochastic process given
by the equation:

dPN (t)

dt
= λ(N − 1)PN−1(t)− λNPN (t).

If we assume an initial population of N0 individuals, then the DE has
the initial condition for the differential equation above is given by:

PN (0) =

{
0, N 6= N0

1, N = N0

Note that PN0−1(t) = 0, since this is a birth only process.
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Stochastic Birth Process 4

Stochastic Birth Process (cont): Let us consider the differential
equation with N = N0, starting with N0 individuals.

The initial value problem is given by:

dPN0
(t)

dt
= −λN0PN0(t), PN0(0) = 1.

This has the solution
PN0

(t) = e−λN0t,

which is an exponentially decaying solution in time.

As expected, as more time passes there is an increasing chance that a
birth has occurred.
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Stochastic Birth Process 5

Stochastic Birth Process (cont): Consider the differential equation with
N = N0 + 1.

The new initial value problem is given by:

dPN0+1(t)

dt
= λN0PN0 (t)− λ(N0 + 1)PN0+1(t), PN0+1(0) = 0.

or
dPN0+1(t)

dt
+ λ(N0 + 1)PN0+1(t) = λN0e

−λN0t, PN0+1(0) = 0.

This is a first order linear nonhomogeneous equation, which has the solution

PN0+1(t) = N0e
−λN0t(1− e−λt).

This solution begins with PN0+1(0) being zero at t = 0 and asymptotically
approaches zero as t→∞.
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Stochastic Birth Process 6

Stochastic Birth Process (cont): Using techniques from Calculus, it is easily
shown that there is a maximum at time

tmax =
1

λ
ln

(
N0 + 1

N0

)
,

which is the most likely time when the deterministic model reaches a population
of N0 + 1.

The maximum value satisfies

PN0+1(tmax) =

(
N0

N0 + 1

)N0+1

.

This process continues to give the next probability distribution

PN0+2(t) =
N0(N0 + 1)

2
e−λN0t(1− e−λt)2.

Mathematical induction can be used to show that

PN0+j(t) =
N0(N0 + 1) · ... · (N0 + j − 1)

j!
e−λN0t(1− e−λt)j .
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Example Stochastic Birth Process 1

Example Stochastic Birth Process: Consider the birth only process with
λ = 0.01 and N0 = 50. Below is the graph.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t

Pr
ob

ab
ili

ty

Stochastic Birth Model

 

 

P
50

(t)

P
51

(t)

P
52

(t)

P
53

(t)

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Markov Chain Monte Carlo Models —
(16/68)



Probabilistic Models
Monte Carlo Method

More Complex MCMC Simulations

Cell Death
Stochastic Birth Process

Example Stochastic Birth Process 2

Example Stochastic Birth Process: The graph shows the probability
distributions for each of the first 4 populations, 50, 51, 52, and 53.

The simulation begins with 50 individuals.

The chance of having exactly 50 individuals exponentially decreases with
time.

The probability of having exactly 51 individuals begins at zero, then rises to
a peak probability at tmax = 1.9803 with probability P51(tmax) = 0.3642.

This probability distribution subsequently decays to zero as other
population levels become more likely.

The time where it is most likely that the population has 52 individuals,
which occurs at tmax = 3.92215 with probability P52(tmax) = 0.2654.

Each of the distributions, PN0+j has its peak probability with larger times
as j increases.

The distributions become broader and the peaks are lower as j increases.

At each time, t, the sum of all PN0+j over j is one.
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Definitions

Often the individual steps in a complex modeling problem can be described easily
with each step determined by a probabilistic outcome.

Definition (Markov Chain)

A Markov chain is a mathematical system where transitions from one state to
another satisfy certain probabilistic rules. The key characteristic of a Markov
chain is given a current state in the system, the probability of transitioning to the
next state is dependent solely on this current state and time elapsed.

Definition (Monte Carlo Method)

Monte Carlo methods are a class of computational models that use repeated
random sampling to obtain numerical results. By using randomness based on
simple probabilistic individual events a more complex problem, which might be
deterministic, can be analyzed through extensive simulations.
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Example: Craps 1

Markov Chain Monte Carlo: Since the Monte Carlo method is named after a
city noted for gambling, we begin by using this modeling technique to explore
outcomes for the game of craps.

The shooter starts by throwing a pair of dice with 3 possible outcomes.

The shooter rolls a 7 or 11, which means he/she wins.

The shooter rolls a 2 (snake eyes), 12 (boxcars), or 3, which means

he/she loses.

The shooter rolls something else, which sets a mark.

If the shooter sets a mark, he/she continues to roll until one of the

following occurs.

The shooter rolls a 7, which means he/she loses.

The shooter rolls mark, which means he/she wins.
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Example: Craps 2

Craps: We begin with the assumption of fair dice, meaning there is an equal
probability of any of the numbers 1–6 will occur. (Below MatLab code.)

1 function x = dice
2 % Fair dice below
3 die1 = rand(1,1); % Random number in [0,1]
4 if (die1 < 0.166667);
5 x(1) = 1;
6 elseif (die1 < 0.333333)
7 x(1) = 2;
8 elseif (die1 < 0.5)
9 x(1) = 3;

10 elseif (die1 < 0.6666667)
11 x(1) = 4;
12 elseif (die1 < 0.8333333)
13 x(1) = 5;
14 else
15 x(1) = 6;
16 end
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Example: Craps 3

17 die2 = rand(1,1);
18 if (die2 < 0.166667)
19 x(2) = 1;
20 elseif (die2 < 0.333333)
21 x(2) = 2;
22 elseif (die2 < 0.5)
23 x(2) = 3;
24 elseif (die2 < 0.6666667)
25 x(2) = 4;
26 elseif (die2 < 0.8333333)
27 x(2) = 5;
28 else
29 x(2) = 6;
30 end
31 end

This randomly gives the values of two die in a single throw.
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Example: Craps 4

Craps: The rules listed above are put into a MatLab code.

1 function y = craps(N)
2 % First roll is x, subsequent rolls q
3 for i = 1:N,
4 x=dice
5 totx = sum(x);
6 if (or((totx==7),(totx==11)))
7 w(i) = 1;
8 elseif (or((totx==12),(or((totx==2),(totx==3)))))
9 w(i) = -1;

10 else
11 test = 1;
12 while (test == 1),
13 q = dice
14 totq = sum(q);
15 if (totq == totx)
16 w(i) = 1;
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Example: Craps 5

17 test = 0;
18 elseif (totq == 7)
19 w(i) = -1;
20 test = 0;
21 end
22 end
23 end
24 end
25 y = w;

The user inputs the number of games N , then the program shows all the different
throws and outputs the wins with a 1 and loses with a −1.
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Example: Computing π 1
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1MCMC Computation of π:
The Monte Carlo method is designed
for solving more complex problems.

The diagram shows a quarter circle in the
first quadrant (radius = 1).

The area of the square is 1.

The area of the circle is π
4

.

The Monte Carlo method for this
problem uses a program to select a value
of x and y each independently selected
from uniformly distributed
numbers from [0, 1].

The diagram shows that the randomly selected numbers (x, y) will be inside the
quarter circle with probability of π

4
.
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Example: Computing Pi 2

The MatLab program allows selection of N random pairs of numbers.

It scores 1 for every hit inside the quarter circle.

π is estimated by adding all the hits inside the quarter circle, multiplying by 4,
and dividing by the total number of attempts.

1 N = input(' Number of darts: N = ');
2 % MCMC for computing pi
3 sum = 0;
4 for i = 1:N,
5 y = rand(1,2);
6 h = y(1)ˆ2 + y(2)ˆ2;
7 if h ≤ 1
8 sum = sum + 1;
9 end

10 end
11 p = 4*sum/N
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Example: Computing Integral 1

Riemann Integral: If f(x) is continuous for x ∈ [a, b] and the
interval [a, b] is partitioned into N intervals,

a = x0 < x1 < ... < xN−1 < xN = b,

then it can be shown that the Riemann integral gives:∫ b

a

f(x) dx = lim
||∆xi||→0

N∑
i=1

f(ci)∆xi,

where ci ∈ [xi−1, xi], ||∆xi|| = xi − xi−1, and ||∆xi|| → 0 as N →∞.

In Calculus, most learn the midpoint rule to approximate the
integral, so if h = b−a

N , a = x0 with xi = x0 + ih, and ci = xi−1+xi

2 ,
then the midpoint rule is:∫ b

a

f(x) dx ≈
N∑
i=1

f(ci)h.
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Example: Computing Integral 2

MCMC Computation of an Integral: The MCMC method
takes an alternate approach for approximating the value of the
integral.

Points, xi, i = 1...N , are randomly selected, and the function is
evaluated at these points.

The integral is approximated is given by:∫ b

a

f(x) dx ≈ 1

N

N∑
i=1

f(xi).

As with the midpoint rule, this MCMC method approximates the
integral better as N increases.
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Example: Computing Integral 3

The MatLab program and function are given by:

1 a = input(' Lower limit of integral, a = ');
2 b = input(' Upper limit of integral, b = ');
3 N = input(' Number of sample points, N = ');
4 sum = 0;
5 for i = 1:N,
6 y = rand(1);
7 x = a + (b - a)*y;
8 sum = sum + (b - a)*g(x);
9 end

10 sum = sum/N

1 function z = g(x)
2 z = x*exp(-x);
3 end
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Example: Decaying Population 1

MCMC Simulation of a Decaying Population: Create a
simulation of a population, where each individual has a certain
probability of surviving to the next discrete time.

Start with an initial population, P0 = N .

Set a probability of survival, p, for each discrete time step.

The MCMC method generates a random number, Xi, for each
individual i, and if Xi ≤ p, then individual i survives to the next
generation.

The simulation continues until all individuals die, i.e., the
population goes extinct.

Another program calls this first program and runs it M times,
collecting statistics about all the runs.

This process is equivalent to radioactive decay.
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Example: Decaying Population 2

The MatLab program describes a population of N individuals with a
survival probability of p.

1 function v=popx(p,N)
2 % MCMC simulation of dying population,
3 % P0 = N and probability p of survival.
4 pt = ones(1,N);
5 u = sum(pt);
6 v = u;
7 while u > 0
8 pt = (rand(1,N)≤p*pt);
9 u = sum(pt);

10 v = [v,u];
11 end
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Example: Decaying Population 3

The first program is called M times finding the mean and standard deviation for
the length of simulation and the numbers at the 2nd and 3rd generations.

1 function Mpopx(p,N,M)
2 % Multiple simulations (M) of MCMC
3 % for decaying populations
4 for i=1:M
5 v = popx(p,N);
6 sumLen(i) = length(v);
7 Pop2(i) = v(2);
8 Pop3(i) = v(3);
9 end

10 MeanLength = mean(sumLen)
11 STDLen = std(sumLen)
12 MeanPop2 = mean(Pop2)
13 STDPop2 = std(Pop2)
14 MeanPop3 = mean(Pop3)
15 STDPop3 = std(Pop3)
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Operations Research

The previous examples are very simple, but the Markov Chain
Monte Carlo method is particularly valuable for providing insight
into complex problems, which cannot be handled analytically or via
deterministic methods.

The area of operations research often uses MCMC model
simulations to find optimal solutions to complex problems.

The Monte Carlo method (or method of statistical trials)
consists of solving various problems of computational
mathematics by means of some random process.

The Monte Carlo method uses knowledge from past
experience to assign probabilities to individual events.

A set of rules for a simulation are established.

A series of simulations are performed to determine optimal
solutions to the problem or identification of unknown parameters
in the system.
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Hospital Simulation 1

Hospital Simulation: A hospital expansion at Deaconesse Hospital
in 1970 was planned, where 144 new beds would be added.1

The question arose as to how this would affect the surgery
facilities at the hospital.

Specifically, how many more surgical procedures will be
performed based on this increase in bed capacity.

How will this affect the operating and recovery room facilities at
the hospital?

Monte Carlo methods are used to determine:

1 How many operating rooms were needed?
2 How long the recovery rooms needed to be staffed?
3 How many beds would be needed in the recovery rooms?

1
H. H. Schmitz and N. K. Kwak, Operations Research 20, 1171-1180 (1970).
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Hospital Simulation 2

Hospital Simulation: The study requires detailed statistics on operations and
surgical procedures.

The data in 1970 indicate that 42% of the patients staying at the hospital
required surgery.

This implies that 60 of the 144 new beds are used primarily for surgery
patients, assuming that the new mix of patients admitted to the hospital
came in the same proportions.

This assumption could fail as new facilities would likely encourage more
“non-essential” surgical procedures.

However, it makes a reasonable first assumption for modeling purposes.

Past history of surgical procedures showed that the 60 new beds would
result in 3376 new surgical cases, giving the hospital a total yearly load of
9669 surgery cases.

If these cases are spread evenly over the entire year, then the daily case load
would be 27.

If one omitted Sundays and 10 holidays, then this case load would increase
to 32 cases per day.
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Hospital Simulation 3

Hospital Simulation: More details are needed to answer our
questions about the number operating rooms.

More information is needed on the types of procedures
performed.

The length of time of the different types operations must be
detailed.

Information on how these operations affect the recovery room
facilities need gathering.

With this information, can the hospital determine how it should
schedule its surgeries and staff its recovery rooms?
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Hospital Simulation 4

Hospital Simulation: An analysis was made on the surgeries
performed on 445 patients.

Gathering good data at the beginning allows better analysis.

The length of stay in the operating room is exponentially
distributed with an inter-arrival time mean of 1.03 hours.

This indicates that if 4 operating rooms were used, then
operations would occupy the operating rooms for about 7 hours
per day.

If 5 operating rooms were used, then operations would drop to
about 6 hours per day.

Monte Carlo simulations can be used to show more about
the variation in use of the operating room facilities.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Markov Chain Monte Carlo Models —
(36/68)



Probabilistic Models
Monte Carlo Method

More Complex MCMC Simulations

Hospital Simulation
Modeling a Chain Reaction
Chain Reaction – Deterministic

Hospital Simulation 5

Hospital Simulation: The key to a good MCMC simulation is having
collected good data about a problem, then simple ordered rules can be readily
programmed for a simulation.

Schmitz and Kwak assume that if the procedure lasts from 0.0-0.5, then
they use 0.5 hours.

Other procedures are assumed to last the length of time which matches the
midpoint of the interval.

The last case is assumed to last exactly 4 hours.

This assumption does violate the exponential form that was found holds
for surgical procedures.

A more complicated simulation could be performed by subdividing the
random numbers to more closely match the exponential form of the
distribution function for time of surgery.

Note that often more detailed complications have little affect on the results
from the simulation.
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Hospital Simulation Rules 1

Hospital Simulation Rules: Below is a list the rules that are applied in the
Monte Carlo simulation.

1 The daily case load is assumed to be fixed at 27 cases.
2 Random numbers are generated independently for each day.
3 All ENT, urology, and ophthalmology cases last 0.5 hours.
4 Half the urology cases and all ophthalmology cases do not go to the recovery

room.
5 All ENT and the other half of urology cases go to the recovery room and are

assumed to stay for 1.5 hours.
6 Any operation over 0.5 hours is considered major and requires 3 hours in

the recovery room.
7 Surgery begins at 7:30 AM.
8 Preparation time is 0.25 hours in the operating room.
9 It takes 0.08 hours to transport patients from operating room to the

recovery room.
10 It takes 0.25 hours to prepare the recovery room for the next occupant.
11 Operating rooms are used continuously as need arises with the first one

vacated being the first one used.
12 The first vacated recovery bed is the first one filled as needed.
13 If no bed available in the recovery room, then a new one is created.
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Hospital Simulation Rules 2

Hospital Simulation Rules: Below is a table of the types of operations, their
duration, the frequency, and the associated random numbers for the cases.

Type of Surgery Time Relative Random
Interval Frequency Numbers

Ear-Nose-Throat 0.0− 0.5 15.8 000− 157
Urology (To RR) 0.0− 0.5 8.4 158− 241
Urology (No RR) 0.0− 0.5 8.5 242− 326
Opthalmology (No RR) 0.0− 0.5 5.8 327− 384
Other Surgery 0.5− 1.0 23.6 385− 620
Other Surgery 1.0− 1.5 14.6 621− 766
Other Surgery 1.5− 2.0 9 767− 856
Other Surgery 2.0− 2.5 5.5 857− 911
Other Surgery 2.5− 3.0 3.4 912− 945
Other Surgery 3.0− 3.5 2.1 946− 966
Other Surgery 3.5− 4.0 1.3 967− 979
Other Surgery > 4.0 2 980− 999
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Hospital Simulation 1

Hospital Simulation:

The simulation is run with 5 Operating Rooms.

The 27 cases scheduled for the day are assigned 27 random
numbers.

The random numbers decide the type of surgery, which in turn
determines how long the patient has surgery and if the patient
goes to the recovery room and for how long.

The surgeries start at 7:30 AM filling the 5 operating rooms.

Immediately after surgery each patient is transported, and the
operating room is cleared for the next patient waiting.

The rules are followed until all 27 patients are seen, and the
operating rooms and ICU beds are cleared.

The next slide shows a typical simulation.
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Hospital Simulation 2

Case Rand Time Op Time OR ICU Recovery Bed Free
1 889 2.25 7.50-9.75 1 Y 9.83-12.83 7 13.08
2 396 0.75 7.50-8.25 2 Y 8.33-11.33 1 11.58
3 358 0.5 7.50-8.00 3 N - - -
4 715 1.25 7.50-8.75 4 Y 8.83-11.83 3 12.08
5 502 0.75 7.50-8.25 5 Y 8.33-11.33 2 11.58
6 68 0.50 8.25-8.75 3 Y 8.83-10.33 4 10.58
7 604 0.75 8.50-9.25 2 Y 9.33-12.33 5 12.58
8 270 0.50 8.50-9.00 5 N - - -
9 228 0.50 9.00-9.50 4 Y 9.58-11.08 6 11.33
10 782 1.75 9.00-10.75 3 Y 10.83-13.83 4 14.08
11 379 0.50 9.25-9.75 5 N - - -
12 93 0.50 9.50-10.00 2 Y 10.08-11.58 8 11.83
13 11 0.50 9.75-10.25 4 Y 10.33-11.83 9 12.08
14 648 1.25 10.00-11.25 1 Y 11.33-14.33 6 14.58
15 527 0.75 10.00-10.75 5 Y 10.83-13.83 10 14.08
16 987 4.15 10.25-14.40 2 Y 14.48-17.48 5 17.73
17 214 0.50 10.50-11.00 4 Y 11.08-12.58 11 12.83
18 474 0.75 11.00-11.75 3 Y 11.83-14.83 2 15.08
19 238 0.50 11.00- 11.50 5 Y 11.58-13.08 1 13.33
20 45 0.50 11.25-11.75 4 Y 11.83-13.33 8 13.58
21 408 0.75 11.50-12.25 1 Y 12.33-15.33 3 15.58
22 116 0.50 11.75-12.25 5 Y 12.33-13.83 9 14.08
23 209 0.50 12.00-12.50 3 Y 12.58-14.08 5 14.33
24 48 0.50 12.00-12.50 4 Y 12.58-14.08 12 14.33
25 393 0.75 12.50-13.25 1 Y 13.33-16.33 1 16.58
26 550 0.75 12.50-13.25 5 Y 13.33-16.33 7 16.58
27 306 0.50 12.75-13.25 3 N - - -
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Hospital Simulation 3

Hospital Simulation: The previous slide shows one simulation.

The simulation was run with 5 Operating Rooms, which Schmitz and
Kwak found was the optimal solution.

This simulation shows that surgery (a major surgery) in Operating Room
2 ended at 14:24.

This is also the last patient remaining in the recovery room until 17:44.

Around 1, the ICU was busiest with 12 beds, and from about 11 AM until
14 PM there were about 11 beds occupied.

Another simulation of the 5 OR simulation had the latest surgery lasting
to 17:30 with the recovery room clearing by 20:36.

Ideally, the MCMC simulation is run thousands of times to collect means
and variances to learn likely scenarios to be encountered from this
operation.

Schmitz and Kwak determined that the use of 4 operating rooms made for
days going too long, while 6 operating rooms often completed all surgery
before noon.
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Modeling a Chain Reaction 1

Modeling a Chain Reaction – Walt Disney Style

Walt Disney studios created a film in 1957 about the benefits
of nuclear energy – Our Friend the Atom.

Around time 36 min into the film, there is a demonstration of a
chain reaction using mousetraps.

There are a large number of cocked mousetraps (around
200) 2.
These mousetraps each have 2 ping pong balls, representing
the neutrons released from a split atom.
The mousetraps are densely packed into a mirrored room to
enhance the effect.

A single ball is thrown into the room to start the chain
reaction.

2
It has been said that high school students at a Science Fair set up this experiment for

Disney Studios.
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Modeling a Chain Reaction 2

Modeling a Chain Reaction – Walt Disney Style

Each trap, when it was sprung, it would throw two ping pong
balls into the air, representing the release of two neutrons
from a split atom.

Flying ping pong balls that landed on unsprung traps would
spring the traps and thereby set more balls flying.

This design provides a simple model for nuclear reactions
(critical mass) or for some epidemics (threshold
phenomenon).

How should the simulation be designed so that the duration of
the chain reaction will be reasonable, i.e., the audience must be
able to see the process, but it shouldn’t last too long?
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Modeling a Chain Reaction 3

Modeling a Chain Reaction – Simulation3

Model should determine at the peak of the simulation how many
balls are in the air.

The simulation needs the right dramatic effect on the audience.

There are three obvious ways to influence the duration of the
simulation:

1 Change the flight time of the balls.
2 Change the number of traps per square foot.
3 Change the size of the room (keeping the density of the

traps the same.

Each of these are addressed separately.

3
Example is a modified version taken from Ed Bender, Introduction to Mathematical

Modeling.
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Modeling a Chain Reaction 4

Modeling a Chain Reaction – Assumptions

The flight times of the balls for a given brand of mousetrap are nearly the
same, so assumed for simplicity that they’re identical.

After hitting a trap, very few balls are able to rebound enough to hit
another trap with sufficient force to spring it.

Thus, a ball that hits a sprung trap or an unsprung trap becomes dead in
most cases.

A ball that hits the bare floor may or may not rebound enough to be able to
set off a trap, depending on the floor material.

There is a probability p that a random ball will land on a trap with enough
force to spring it (if it is still cocked).

The value of p depends only on how far apart the traps are and on the
nature of the floor.

Adjusting p has the same effect as changing the spacing of the traps.
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Modeling a Chain Reaction: Analysis 1

Modeling a Chain Reaction – Analysis of Model: Early times.

The assumptions of identical traps and the balls only being able to spring
one trap are weaknesses in the model.

It allows reasonable predictions (and methods exist to compensate for these
weaknesses in the stochastic model).

Identical traps allows the flight time of a ball to work as a unit of time.

To increase the simulation time by this parameter would result in the loss of
some of the synchrony from distributed flight times.

Let n be the length of time from the start of the simulation until bn balls
are in the air.

Assume that bn is much less than the total number of balls.

A first ball is thrown into the room and either 0 or 2 balls are released.

The expected value for this first generation is b1 = 2p balls.

At the second, generation the expected value is b2 ≈ (2p)2.

At the nth generation, bn ≈ (2p)n is the expected number of balls in the air.

This implies that n ≈ ln(bn)/ ln(2p), which is valid for small times where
only a small percentage of the traps have been sprung.
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Modeling a Chain Reaction: Analysis 2

Modeling a Chain Reaction – Analysis of Model: Early times.

To have the same percentage of balls in the air for two rooms of differing
size, then it requires increasing the original room bn times to increase the
time by ln(bn)/ ln(2p) units.

This means that at time n, if bn/B balls are in the air for the first room,
then for the same percentage of balls to be in the air for a room bn times
larger it requires a time 2n.

Suppose it takes k units of time for x balls to be in the air in the first room,
which is 100x/B percent of the balls.

For the second room 100x/B = 100bnx/bnB, which implies bnx balls are in
the air.

Consider bnx = (2p)n(2p)k, which gives n+k = ln(bn)/ ln(2p) + ln(x)/ ln(2p)
or an increase of ln(bn)/ ln(2p) time units.

These calculations are only valid for initial times when few traps have
sprung.
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Modeling a Chain Reaction: Analysis 3

Modeling a Chain Reaction – Analysis of Model: Intermediate times.

Let N be the number of balls in flight at the time t = n and U be the
number of unsprung traps out of a total of M .

The conditional probability of having exactly 2B balls in flight at time
n+ 1, given T traps are hit, is:

P (B|T ) =

(
T
B

)(
U

M

)B (
1−

U

M

)T−B
,

where

(
T
B

)
= T !

B!(T−B)!
.

This expression is a direct result of the fact that if N balls hit T traps, then

U/M is the probability that an unsprung trap is hit, while
(

1− U
M

)
is the

probability that the ball hits a trap that has already been hit.

To release 2B balls then B unsprung traps must be hit, which is a binomial
distribution.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Markov Chain Monte Carlo Models —
(49/68)

Probabilistic Models
Monte Carlo Method

More Complex MCMC Simulations

Hospital Simulation
Modeling a Chain Reaction
Chain Reaction – Deterministic

Modeling a Chain Reaction: Analysis 4

Modeling a Chain Reaction – Analysis of Model: Intermediate
times.

If we assume that no trap is hit by more than one of the N balls
(which would be valid for N �M), then a binomial distribution
gives that the probability of T traps being hit satisfies:

H(T ) =

(
N
T

)
pT (1− p)N−T .

These probabilities can show that what is likely for the next
generation, but analysis is difficult for determining how actual
simulations might proceed to completion.

These probabilities are easily coded into MatLab for running
simulations of this “chain reaction.”
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Modeling a Chain Reaction: MatLab 1

Modeling a Chain Reaction – Simulation: MatLab code for the simulation.

1 % Mousetrap simulation
2 %
3 %User input for probability of hitting a trap.;
4 p = input('Probability of a hit: p = ');
5 %Initialize the number of balls in the air, b, ...

the generation time, i,;
6 %and the matrix and vector of unsprung traps, mt ...

and xmt, respectively;
7 b = 1;
8 i = 0;
9 mt = ones(10,10)

10 xmt = mt(:);
11 %Compute the total number of unsprung traps.;
12 u = sum(xmt);
13 fprintf(' Unsprung Traps = %3.0f, Balls in the ...

Air = %2.0f\n',u,b)
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Modeling a Chain Reaction: MatLab 2

Modeling a Chain Reaction – Simulation: MatLab code for the simulation.

14 pause %Strike any key to continue.
15 %Loop for continuing the process until no balls ...

are in the air.;
16 while b > 0
17 %Increase the generation time.;
18 i = i+1;
19 %Use a random number generator to determine ...

how many traps are hit.;
20 th1 = (rand(1,b)≤p*ones(1,b));
21 th2 = th1(:);
22 th = sum(th2);
23 %Use the random number generator to determine ...

exactly which traps are;
24 %hit between 1 and 100.;
25 c1 = ceil(100*rand(1,th));
26 c2 = c1(:);
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Modeling a Chain Reaction: MatLab 3

Modeling a Chain Reaction – Simulation: MatLab code for the simulation.

27 %Compare how many balls are released based on ...
unsprung traps and;

28 %transform those traps to ones which are sprung.;
29 b = 2*sum(xmt(c2));
30 xmt(c2) = 0*xmt(c2);
31 mt = reshape(xmt,10,10)
32 u = sum(xmt);
33 fprintf(' Unsprung Traps = %3.0f, Balls in ...

the Air = %2.0f\n',u,b)
34 pause %Strike any key to continue.
35 end
36 fprintf(' Generations = %2.0f\n',i)
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Modeling a Chain Reaction 1

Modeling a Chain Reaction – Simulations

MatLab program is modified and run 100 times with different probabilities, p.

Below are tables, which summarize some statistical results of the 100 simulations
along with the run which has the peak number of balls in the air and the longest
simulation of each set.

p = 0.8 Mean Median σ2 Peak Long
u 51.9 35 31.6 25 32

bmax 17.2 20 11.4 40 12
i 11.3 14 6.67 12 22

p = 0.9 Mean Median σ2 Peak Long
u 34 23 28.6 13 31

bmax 28.6 32 13.4 50 20
i 11.5 13 4.68 11 22
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Modeling a Chain Reaction 1

MatLab program is run 100 times with higher probabilities, p.

p = 0.95 Mean Median σ2 Peak Long
u 20.8 19 12.8 16 33

bmax 37 38 8.49 62 26
i 12.5 12 2.33 10 18

p = 0.99 Mean Median σ2 Peak Long
u 15.6 14 9.71 9 14

bmax 42.4 42 9.14 72 30
i 12 12 1.78 11 16

Higher probabilities have a more dramatic rise with more balls in the air,
while the lower probabilities have slightly longer duration on average
(especially considering the higher failure rate to start).

The variation increases as the probability of a hit drops, which is skewed
from early failures.

The simulations do not show how the duration would change if the number
of mousetraps were increased, which could be easily added to the program.
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Modeling a Chain Reaction – Deterministic 1

Modeling a Chain Reaction – Deterministic

Monte Carlo simulations are easy to implement, but can become
very computationally intensive when there are a large number of
events, such as one would find in a nuclear reaction in trying to
determine critical mass.

Can we develop a deterministic scheme which would describe the
situation for very large numbers of traps and balls?

For large unsprung traps, U , and balls in the air, N , the
binomial distributions of P (probability of 2B balls in flight
given T traps hit) and H (probability of T traps hit) can be
approximated by normal distributions.

The means for P and H are UT/M and pN , respectively.

The variances of P and H are given by UT (M − T )/M2 and
Np(1− p), respectively.
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Modeling a Chain Reaction – Deterministic 2

Modeling a Chain Reaction – Deterministic

If Nn is the expected average number of balls in the air at time n,
then

Nn+1 = 2pNnUn/M,

Un+1 = Un −
1

2
Nn+1.

These formulae are recursive formula for the average number of
balls in the air (Nn) and the number of unsprung traps (Un).

These recursive formulae give a local answer but fail to show the
more general behavior of the scheme.
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Modeling a Chain Reaction – Deterministic 3

Modeling a Chain Reaction – Deterministic

Let f(n) be the fraction of unsprung traps at time n, then from the
previous recursive formulae:

Un+1

M
=
Un
M
− Nn+1

2M
or f(n+ 1)− f(n) = −Nn+1

2M
.

However,

Nn+1 =
2pNnUn
M

= 2pNnf(n) and
Nn
2M

= −
(
f(n)− f(n− 1)

)
,

so

f(n+ 1)− f(n) = −2pf(n)
Nn
2M

= 2pf(n)
(
f(n)− f(n− 1)

)
.

This is a nonlinear second order difference equation.
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Modeling a Chain Reaction – Deterministic 4

Modeling a Chain Reaction – Deterministic

This nonlinear second order difference equation is:

f(n+ 1)− f(n) = 2pf(n)
(
f(n)− f(n− 1)

)
,

which has the initial conditions f(0) = 1 and f(1) = 1− p/M .

This problem is readily solved numerically with different values of p and M .

Simulations are run until balls in the air drop below 1 with M = 100 and compared
to the medians (because of the very high variances) of the MCMC simulations.

Discrete MCMC (medians)
p u bmax i u bmax i

0.80 30.8 20.1 16 35 20 14
0.90 20.4 29.4 13 22 32 13
0.95 16.3 35.4 12 19 38 12
0.99 13.3 39.5 12 14 42 12
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Modeling a Chain Reaction – Deterministic 5

MatLab program to simulate the second order discrete mousetrap model
approximation of means from the Markov chain Monte Carlo model using
arbitrary probability of hitting a trap, p, and number of mousetraps, M .

1 % Simulation of discrete mousetrap problem
2 % Input probability of a trap hit, p,
3 % and number of traps, M
4 % N = number of balls in the air
5 % U = unstrung traps
6 % f = fraction of unsprung traps
7 p = input(' Probability: p = ');
8 M = input(' Number of traps: M = ');
9 f(1) = 1; f(2) = 1 - p/M;

10 N(1) = 1; U(1) = M;
11 N(2) = 2*M*(f(1) - f(2));
12 U(2) = U(1) - N(2)/2;
13 i = 3;
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Modeling a Chain Reaction – Deterministic 6

Matlab code for discrete mousetrap model continued.

14 while ( N(i-1) ≥ 1 )
15 f(i) = f(i-1) + 2*p*f(i-1)*(f(i-1)-f(i-2));
16 N(i) = 2*p*N(i-1)*f(i-1);
17 U(i) = U(i-1) - N(i)/2;
18 i = i + 1;
19 end
20 j = i-2; k = i-1;
21 Bmax = norm(N,inf);
22 fprintf('Unsprung = %6.2f, bmax = %6.2f, time = ...

%2.0d \n', ...
23 U(k),Bmax,j);
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Modeling a Chain Reaction – Deterministic 7

Modeling a Chain Reaction – Deterministic

The values computed by the second order discrete
mousetrap model compared favorably to the medians of the
MCMC mousetrap model.

Note: The high variation from the failed first ball makes the
medians a better comparison than the means.

The simulation of the discrete model requires substantially
less computation.

The values are all lower than the MCMC mousetrap model,
which could be from M too small.

The simulation of the discrete model is quite easy, but still
no analytical results are easy to find.
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Modeling a Chain Reaction – ODE 1

Modeling a Chain Reaction – ODE: The second order
discrete mousetrap model,

f(n+ 1)− f(n) = 2pf(n)
(
f(n)− f(n− 1)

)
,

can be approximated with a Taylor series to tranformed into a
second order ODE.

Expand f(n+ 1) and f(n− 1) with the approximations:

f(n+ 1) ≈ f(n) + f ′(n) + 1
2
f ′′(n), and f(n− 1) ≈ f(n)− f ′(n) + 1

2
f ′′(n),

which gives:

f(n)+f ′(n)+ 1
2f
′′(n)−f(n) = 2pf(n)

(
f(n)−f(n)+f ′(n)− 1

2f
′′(n)

)
,

or
f ′′(n)

(
1 + 2pf(n)

)
= 2
(
2pf(n)− 1

)
f ′(n).
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Modeling a Chain Reaction – ODE 2

Modeling a Chain Reaction – ODE: The second order ODE is
rewritten:

f ′′(n) =

(
4pf(n)− 2

)
f ′(n)

2pf(n) + 1
=

(
2− 4

2pf(n) + 1

)
f ′(n).

With the initial conditions, f(0) = 1 and f ′(0) = − p
M , the equation

for the fraction of unsprung traps above is integrated giving:

f ′(n) = 2f(n)− 2

p
ln
(
2pf(n) + 1

)
+ C,

where C = 2
p ln

(
2p+ 1

)
− 2− p

M .

This first order ODE has no analytical solution, so is best solved
numerically.
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Modeling a Chain Reaction – ODE 3

Modeling a Chain Reaction – ODE: The ODE mousetrap
model:

f ′(n) = 2f(n)− 2

p
ln
(
2pf(n) + 1

)
+ C,

where C = 2
p ln

(
2p+ 1

)
− 2− p

M and f(0) = 1, is solved numerically
with MatLab’s ode23 solver and compared to the second order
discrete mousetrap model

Simulations are run until balls in the air drop below 1 with M = 100.

Discrete ODE
p u bmax i u bmax i

0.80 30.8 20.1 16 30.3 20.2 16
0.90 20.4 29.4 13 19.7 29.6 13
0.95 16.3 35.4 12 15.5 34.2 12
0.99 13.3 39.5 12 12.5 36.6 12
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Modeling a Chain Reaction – ODE 4

MatLab program to simulate the ODE mousetrap model and collect
information on the length of the simulation, number of unsprung traps at the end
of the simulation, and the maximum number of balls in the air, using arbitrary
probability of hitting a trap, p, and number of mousetraps, M .

1 % Simulate the mousetrap ODE for different
2 % Probabilities, p, and mousetraps, M
3 % Find length of simulation, unstrung
4 % traps, and max number balls in air
5 ts = [0:100]; % 100 units of time simulated
6 p = 0.99; M = 100;
7 [t,y] = ode23(@mouseODE,ts,1,[],p,M);
8 time = 1;
9 for i = 1:100

10 b(i) = 2*M*(y(i)-y(i+1));
11 if ((time == 1) && (b(i) < 1))
12 time = i;
13 unspr = M*y(i+1);
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Modeling a Chain Reaction – ODE 5

Matlab code for ODE mousetrap model continued.

14 end
15 end
16 bmax = norm(b,inf);
17 fprintf('Unsprung = %6.2f, bmax = %6.2f, time = ...

%2.0d \n', ...
18 unspr,bmax,time);

1 function yp = mouseODE(t,y,p,M)
2 % Mousetrap ODE (with M traps)
3 C = (2/p)*log(2*p+1)-2-p/M;
4 yp = 2*y - (2/p)*log(2*p*y + 1) + C;
5 end
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Modeling a Chain Reaction – Summary

The film clip from the Walt Disney’s My Friend the Atom showed a
dramatic “chain reaction” using a room of mousetraps and ping pong balls.

We imposed simple realistic rules, which allowed the creation of a MCMC
mousetrap model.

This model was readily simulated and information could easily be gathered
about the length of the simulation, number of unsprung traps at the end,
and the maximum number of balls in the air.

Using the probabilistic means of the MCMC mousetrap model, a second
order discrete mousetrap model was created and simulated.

The simulation of the discrete model compared favorably with the
MCMC mousetrap model with much easier simulations.

With the help of Taylor’s theorem the discrete mousetrap model was
readily transformed into a second order ODE, which was easily integrated
to a first order ODE.

The first order ODE mousetrap model is easily solved numerically, and
the results were very similar to the ones obtained by the second order
discrete mousetrap model.
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