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Review - Population Models

Simplest (linear) model - Malthusian or exponential growth
model
Logistic growth model is a quadratic model

Malthusian growth term and a term for crowding effects
Carrying capacity reflecting natural limits to populations
Quadratic updating function becomes negative for large
populations

Ecologists modified the logistic growth model with
updating functions that are more realistic for fluctuating
populations

Ricker’s model used in fishery management
Hassell’s model used for insects

Introduced qualitative analysis, which always starts
finding the equilibria
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Sockeye Salmon Populations 1

Sockeye Salmon Populations – Life Cycle

Salmon are unique in that they breed in specific fresh
water lakes and die

Their offspring migrate to the ocean and mature for about
4-5 years

Mature salmon migrate at the same time to return to the
exact same lake or river bed where they hatched

Adult salmon breed and die

Their bodies provide many essential nutrients that nourish
the stream of their young
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Sockeye Salmon Populations 2

Sockeye Salmon Populations – Problems

Salmon populations in the Pacific Northwest are becoming
very endangered with some becoming extinct

Human activity adversely affect this complex life cycle

Damming rivers interrupts the runs
Forestry allows the water to become too warm
Agriculture results in runoff pollution
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Sockeye Salmon Populations – Skeena River

The life cycle of the salmon is an example of a complex
discrete dynamical system

The importance of salmon has produced many studies

Sockeye salmon (Oncorhynchus nerka) in the Skeena river
system in British Columbia

Largely uneffected by human development
Long time series of data – 1908 to 1952
Provide good system to model

A simplified model combines 4 years
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Sockeye Salmon Populations 4

Sockeye Salmon Populations – Skeena River Table

Population in thousands

Year Population Year Population

1908 1,098 1932 278

1912 740 1936 448

1916 714 1940 528

1920 615 1944 639

1924 706 1948 523

1928 510

Four Year Averages of Skeena River Sockeye Salmon
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Ricker’s Model – Salmon

Ricker’s Model

Ricker’s model – formulated with salmon populations
and generally used in fish management

Ricker’s model satisfies

Pn+1 = R(Pn) = aPne
−bPn

with positive constants a and b fit to the data

Consider the Skeena river salmon data

The parent population of 1908-1911 is averaged to 1,098,000
salmon/year returning to the Skeena river watershed
The resultant offspring that return to spawn from this
group occurs between 1912 and 1915 and averages 740,000
salmon/year
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Model Updating Functions

The Skeena River popuation data are used to find best models.

Successive populations give data for updating functions

Pn is parent population, and Pn+1 is surviving offspring
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Nonlinear least squares fit of
Logistic model

Pn+1 = 1.3277Pn−0.0006146P 2
n

and Ricker’s model

Pn+1 = 1.5344Pne
−0.0007816Pn
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Least Squares Fit

Below is the MatLab function for minimizing the sum of square
errors for the Ricker’s updating function.

1 function J = sal ric(p0,pndata,pn1data)
2 % Least Squares fit to Logistic Growth
3 N = length(pndata);
4 err = [pn1data - p0(1)*pndata.*exp(-p0(2)*pndata)];
5 J = err*err'; % Sum of square errors
6 end

The data for Pn+1 vs. Pn is entered with an initial parameters
p0 = [a,b]:
p1 = fminsearch(@sal ric,p0,[],pndata,pn1data)

A similar process is followed to best fit the logistic updating
function.
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Model Simulations

Best fitting logistic and Ricker’s models are simulated and compared to data.
(P0 = 1096.8 for logistic and P0 = 1103.7 for Ricker’s)
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Summary of Models for Salmon

Summary of the Discrete Models for Skeena river
salmon

Both discrete models level off at a stable equilibrium
around 550,000

Model shows populations monotonically approaching the
equilibrium

There are a few fluctuations from the variations in the
environment

Low point during depression, suggesting bias from
economic factors

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Discrete Modeling II More Population Models
— (12/39)



Salmon Model
Qualitative Analysis of the Discrete Models

Study of a Beetle Population

Analysis of Ricker’s Model
Skeena River Salmon Example
Example of Logistic Growth

General Discrete Dynamical Model (Autonomous)

Consider the general autonomous discrete dynamical model:

pn+1 = f(pn)

The first step in any qualitative analysis is finding
equilibria.

Solve the algebraic equation

pe = f(pe).

Solve algebraically or numerically.

Geometrically, solutions are when f(p) crosses the identity
map.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Discrete Modeling II More Population Models
— (13/39)



Salmon Model
Qualitative Analysis of the Discrete Models

Study of a Beetle Population

Analysis of Ricker’s Model
Skeena River Salmon Example
Example of Logistic Growth

Behavior of Discrete Dynamical Model

Suppose the autonomous discrete dynamical model:

pn+1 = f(pn)

has an equilibrium, pe.

The second step in the qualitative analysis is taking the
derivative and evaluating at the equilibria.

The qualitative behavior depends on both the sign and
magnitude of the derivative at the equilibrium.

If the sign is positive, then solutions have a monotonic
behavior, i.e., solutions stay on the same side of the equilibrium.

If the sign is negative, then solutions have an oscillatory
behavior, so the solution jumps across to the other side of the
equilibrium.

If the magnitude of the derivative, |f ′(pe)| > 1, then the
qualitative behavior near the equilibrium is unstable with
solutions moving away.
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Summary of Behavior of Discrete Dynamical Models

If f ′(pe) > 1

Solutions of the discrete dynamical model grow away from the

equilibrium (monotonically)

The equilibrium is unstable

If 0 < f ′(pe) < 1

Solutions of the discrete dynamical model approach the equilibrium

(monotonically)

The equilibrium is stable

If −1 < f ′(pe) < 0

Solutions of the discrete dynamical model oscillate about the

equilibrium and approach it

The equilibrium is stable

If f ′(pe) < −1

Solutions of the discrete dynamical model oscillate about the

equilibrium but move away from it

The equilibrium is unstable
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Analysis of the Ricker’s Model 1

Analysis of the Ricker’s Model: General Ricker’s Model

Pn+1 = R(Pn) = aPne
−bPn .

Equilibrium Analysis

The equilibria are found by setting Pe = Pn+1 = Pn, thus

Pe = aPee
−bPe or Pe(ae

−bPe − 1) = 0.

The equilibria are

Pe = 0 and Pe =
ln(a)

b

with a > 1 required for a positive equilibrium.
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Analysis of the Ricker’s Model 2

Stability Analysis of the Ricker’s Model: Find the derivative of
the updating function

R(P ) = aPe−bP

Derivative of the Ricker Updating Function

R ′(P ) = a(P (−be−bP ) + e−bP ) = ae−bP (1− bP )

At the Equilibrium Pe = 0

R ′(0) = a

If 0 < a < 1, then Pe = 0 is stable and the population goes to
extinction (also no positive equilibrium)

If a > 1, then Pe = 0 is unstable and the population grows away
from the equilibrium
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Analysis of the Ricker’s Model 3

Since the Derivative of the Ricker Updating Function is

R ′(P ) = ae−bP (1− bP )

At the Equilibrium Pe = ln(a)
b

R ′(ln(a)/b) = ae− ln(a)(1− ln(a)) = 1− ln(a)

The solution of Ricker’s model is stable and monotonically
approaches the equilibrium Pe = ln(a)/b provided
1 < a < e ≈ 2.7183

The solution of Ricker’s model is stable and oscillates as it
approaches the equilibrium Pe = ln(a)/b provided
e < a < e2 ≈ 7.389

The solution of Ricker’s model is unstable and oscillates as it
grows away the equilibrium Pe = ln(a)/b provided
a > e2 ≈ 7.389
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Skeena River Salmon Example

The best Ricker’s model for the Skeena sockeye salmon population
from 1908-1952 is

Pn+1 = R(Pn) = 1.535Pne
−0.000783Pn

From the analysis above, the equilibria are

Pe = 0 and Pe =
ln(1.535)

0.000783
= 547.3

The derivative is

R ′(P ) = 1.535e−0.000783P (1− 0.000783P )

At Pe = 0, R ′(0) = 1.535 > 1

This equilibrium is unstable (as expected)

At Pe = 547.3, R ′(547.3) = 0.571 < 1

This equilibrium is stable with solutions monotonically
approaching the equilibrium, as observed in the simulation
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Skeena River Salmon Example

A similar analysis is performed for the logistic model, where

Pn+1 = F (Pn) = 1.3277Pn − 0.0006146P 2
n .

The equilibria are

Pe = 0 and Pe = 533.2

The derivative is

F ′(P ) = 1.3277− 0.001229P )

At Pe = 0, F ′(0) = 1.3277 > 1

This equilibrium is unstable (as expected)

At Pe = 533.2, F ′(533.2) = 0.6716 < 1

This equilibrium is stable with solutions monotonically
approaching the equilibrium, as observed in the simulation
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Skeena River Salmon Example

Both the Ricker’s and logistic models provide very similar
updating functions passing through the Skeena River salmon
data.

Using these updating functions with the best fitting P0, the
discrete dynamical model simulations give very similar solutions.

The carrying capacity equilibria are separated by only a few
percent with both showing the same monotonic stability. (The SSE
for the logistic simulation was 120,918, while the Ricker’s
simulation was 126,428.)

Yet the large Pn behavior of these models from their updating
functions is dramatically different.
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Example of the Logistic Growth Model 1

Example: Consider the discrete logistic growth model

pn+1 = F (pn) = pn + r pn

(
1− pn

1000

)
,

with r = 0.5, 1.85, 2.3, and 2.65.

We perform a qualitative analysis of this model and observe the
dynamic behavior.

From information before, we know the equilibria are
pe = 0 (extinction) and pe = 1000 (carrying capacity).

The stability analysis requires the derivative,

F ′(p) = 1 + r − 2rp

1000
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Example of the Logistic Growth Model 2

With F ′(p) = 1 + r − 2rp
1000 , for pe = 0,

F ′(0) = 1 + r > 1,

provided r > 0.

It follows that pe = 0 is an unstable equilibrium with solutions
monotonically growing away. (If the net growth rate is
negative, the population monotonically declines to extinction.)

At the carrying capacity equilibrium, pe = 1000, the derivative
satisfies:

F ′(1000) = 1 + r − 2r(1000)

1000
= 1− r,

so this behavior depends on r.
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Example of the Logistic Growth Model 3

Since F ′(1000) = 1− r, we have the following:

When r = 0.5, then F ′(1000) = 0.5.

pe = 1000 is a stable equilibrium with solutions
monotonically approaching it

When r = 1.85, then F ′(1000) = −0.85.

pe = 1000 is a stable equilibrium with solutions oscillating
and approaching it

When r = 2.3, then F ′(1000) = −1.3.

pe = 1000 is an unstable equilibrium with solutions
oscillating and moving away

When r = 2.65, then F ′(1000) = −1.65.

pe = 1000 is an unstable equilibrium with solutions
oscillating and moving away
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Example of the Logistic Growth Model 4

Graphing the updating functions for discrete logistic model
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Example of the Logistic Growth Model 5

Simulation of the logistic growth model
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MatLab for Logistic Growth Example

1 n = 0:50;
2 pnr1(1) = [50]; pnr2(1) = [50];
3 pnr3(1) = [50]; pnr4(1) = [50];
4 for i= 1:50
5 pnr1(i+1) = 1.5*pnr1(i) - (0.5/1000)*pnr1(i).ˆ2;
6 pnr2(i+1) = 2.85*pnr2(i) - ...

(1.85/1000)*pnr2(i).ˆ2;
7 pnr3(i+1) = 3.3*pnr3(i) - (2.3/1000)*pnr3(i).ˆ2;
8 pnr4(i+1) = 3.65*pnr4(i) - ...

(2.65/1000)*pnr4(i).ˆ2;
9 end

10

11 plot(n,pnr1,'b-','LineWidth',1.5);
12 hold on
13 plot(n,pnr2,'r-','LineWidth',1.5);
14 plot(n,pnr3,'-','color',[0,0.5,0],'LineWidth',1.5);
15 plot(n,pnr4,'m-','LineWidth',1.5);
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Insect Populations

Insect populations are often seasonal or generational, making their
study good for discrete dynamical models.

The most common models remain Malthusian and logistic
growth models (possibly with immigration or emigration).

The Beverton-Holt and Ricker’s models with their positive
updating functions are also common:

Pn+1 =
aPn

1 + Pn

b

and Pn+1 = aPne
−bPn .

Hassell modified the Beverton Holt model for insects, adding an
additional parameter, to obtain

Pn+1 =
aPn(

1 + Pn

b

)c
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Study of a Beetle Population 1

Study of Oryzaephilus surinamensis, the saw-tooth grain beetle

In 1946, A. C. Crombie studied several beetle populations

The food was strictly controlled to maintain a constant supply

10 grams of cracked wheat were added weekly

Regular census of the beetle populations recorded

Week Adults Week Adults Week Adults Week Adults
0 4 8 147 16 405 24 420
2 4 10 285 18 471 26 475
4 25 12 345 20 420 28 435
6 63 14 361 22 430 30 480
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Study of a Beetle Population 2

Study of Oryzaephilus surinamensis, the saw-tooth grain
beetle
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Study of a Beetle Population 3

Updating functions - Least squares best fit to data

Plot the data, Pn+1 vs. Pn, to fit an updating function

Logistic growth model fit to data (SSE = 13,273)

Pn+1 = Pn + 0.9615Pn

(
1− Pn

439.2

)
Beverton-Holt model fit to data (SSE = 10,028)

Pn+1 =
3.010Pn

1 + 0.00456Pn

Hassell’s growth model fit to data (SSE = 9,955)

Pn+1 =
3.269Pn

(1 + 0.00745Pn)0.8126
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Study of a Beetle Population 4

Graph of Updating functions and Grain Beetle data
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Study of a Beetle Population 5

Time Series - Least squares best fit to data, P0

Use the updating functions from fitting data before

Adjust P0 by least sum of square errors to time series data
on beetles

Logistic growth model fit to data gives P0 = 12.01 with SSE =
12,027

Beverton-Holt model fit to data gives P0 = 2.63 with SSE =
8,578

Hassell’s growth model fit to data gives P0 = 2.08 with SSE
= 7,948

Beverton-Holt and Hassell’s models are very close with both
significantly better than the logistic growth model
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Study of a Beetle Population 6

Time Series graph of Models with Beetle Data
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Study of a Beetle Population 7

The graphs of the updating functions and time series
simulations show very good fit of all models presented.

However, the Beverton-Holt and Hassell’s models are clearly
better according to the SSE.

From a programming perspective, the curve fitting of the
updating functions is numerically more robust, so has a larger
region of stability.

This is why often one first fits the updating functions, then
finds the best initial condition.

Trying to fit directly all parameters of the model and the initial
population is a significantly more complicated computational
problem, which makes it inherently less stable numerically.

One can select various numerical algorithms to fit this highly
nonlinear problem, but good initial guesses improves
performance.
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Study of a Beetle Population 8

The graphs and the SSE indicate that Beverton-Holt and
Hassell’s models and superior to the logistic model.

We apply the Bayesian Information Criterion (BIC) and
Akaike Information Criterion (AIC) to the time-series
solutions above:

Model SSE BIC AIC
Logistic 12027 111.5 155.4

Beverton-Holt 8578 106.1 150.0
Hassell’s 7948 107.6 150.7

Since the Beverton-Holt model has one fewer parameter, than the
Hassell’s model, the Information Criteria indicate that the best
choice of models is the Beverton-Holt model.
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Return to U. S. Logistic Models 1

Previously, we found the best fitting logistic model by varying the
3 parameters, growth rate, r, carrying capacity, M , and initial
population, P0.

The result by performing a least squares best fit to the time
series with the census data was:

Pn+1 = Pn + 0.2245Pn

(
1− Pn

451.7

)
with P0 = 8.575,

which had a SSE = 557.4.

This least squares computation is very complex, which also means it
is more likely to be unstable and fail to converge.
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Return to U. S. Logistic Models 2

For the salmon and beetle populations, we began with the population
data and considered fitting the updating function with different
models.

The population data are organized into Pn and Pn+1, where a simple
curve fitting algorithm is applied to the updating function.

A least squares best fit to the census data organized into Pn+1 vs.
Pn by taking successive decades finds the best fitting quadratic
below:

Pn+1 = Pn + 0.20466Pn

(
1− Pn

523.5

)
.

Subsequently, a nonlinear least squares fit to the time series by
varying only the initial condition, P0, is performed, giving

p0 = 10.2886 with SSE = 667.1.

These two least squares computations are relatively simple, which also
means the results are more likely to be stable and converge easily.
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General Discrete Least Squares

The computation is more stable with the two step process, but how does this
affect our model?

The graphs below show that over the range of data, the two models perform very
similarly, so it would be very hard to select which model is better.

They predict significantly different carrying capacities, but neither is very
reliable given these are human populations.
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