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United States Census

United States Census

Constitution requires census every 10 years

Census used for budgeting federal payments and representation
in Congress

Process can be politically charged

Accurately predicting demographic data are important for
planning communities in the future

Calculations for the future populations uses sophisticated
mathematical models

Models are constantly improved and revised
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Census Data

Census Data

1790 3,929,214 1870 39,818,449 1950 150,697,361
1800 5,308,483 1880 50,189,209 1960 179,323,175
1810 7,239,881 1890 62,947,714 1970 203,302,031
1820 9,638,453 1900 76,212,168 1980 226,545,805
1830 12,866,020 1910 92,228,496 1990 248,709,873
1840 17,069,453 1920 106,021,537 2000 281,421,906
1850 23,191,876 1930 122,775,046 2010 308,745,538
1860 31,443,321 1940 132,164,569

History of the Census Bureau shows that these numbers are collected
in various ways, including information only from the heads of
households, the Bureau depending on only 183 clerks for over 30M
people, failure to count slaves, and other irregularities such as recent
undercounting minorities.
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Growth Rate of U. S.

Growth Rate in Early U. S.
The growth rate for the decade of 1790-1800

Population in 1800

Population in 1790
=

5, 308, 483

3, 292, 214
= 1.351

The growth rate for the decade of 1800-1810

Population in 1810

Population in 1800
=

7, 239, 881

5, 308, 483
= 1.364

The growth rate for the decade of 1810-1820

Population in 1820

Population in 1810
=

9, 638, 453

7, 239, 881
= 1.331

These growth rates are relatively constant, averaging 0.349/decade,
and are typical of agrarian societies.
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Malthusian Growth Model

Malthusian Growth Model

Simplest growth model uses a constant rate of growth, r

Start with the population in 1790, P0

Population in the next decade is current population plus the
population times the average growth rate

Pn+1 = Pn + rPn = (1 + r)Pn

Sequence of predicted populations based solely on population
from preceding population

The Malthusian Growth Model is easily solved to give:

Pn = P0(1 + r)n.
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Malthusian Growth Model

Table for U. S. Population (early years), assuming a constant
growth rate of 0.349

Year Census Model Pn+1 = 1.349Pn % Error
1790 3, 929, 214 3, 929, 214
1800 5, 308, 483 5, 300, 510 −0.15
1810 7, 239, 881 7, 150, 388 −1.24
1820 9, 638, 453 9, 645, 873 0.08
1830 12, 866, 020 13, 012, 282 1.14
1840 17, 069, 453 17, 553, 569 2.84
1850 23, 191, 876 23, 679, 765 2.10
1860 31, 433, 321 31, 944, 002 1.59
1870 39, 818, 449 43, 092, 459 8.22

The Malthusian Growth Model tracks early U. S. population well
until the Civil war.
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Malthusian Growth Model

Graph of the Malthusian Growth Model and Census Data for
the U. S.
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Error remains small until 1870, as U. S. is primarily an Agrarian
society with a constant growth rate around 35%

Civil War dramatically increased the death rate, but more
significantly, society moved into the industrial revolution
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Programming Discrete Models

Programming Discrete Models: Discrete dynamical models are one of the
easiest models to program:

xn+1 = f(xn)

Spreadsheet software

Excel is designed for discrete dynamical models

The pull-down or updating feature automatically uses the value in

the cell above to insert into the “updating function” in the new cell

MatLab or other programming languages

Discrete dynamical models are iterated processes, which naturally

program with for loops
In MatLab if we want to iterate the model above N times creating a
solution vector x from a given function f(x), we write:

1 x = [x0];
2 for i = 1:N
3 x0 = f(x0);
4 x = [x,x0];
5 end
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Malthusian Growth Model

1 clear
2 xlab = 'Year';
3 ylab = 'Population ($\times 10ˆ6$)';
4 mytitle = 'U. S. Population';
5 pcensus = [3.929 5.308 7.240 9.638 12.866 17.069 ...

23.192 31.433 39.818];
6 tt = [1790]; pmal = [3.929];
7 for i=1:8
8 t = tt(i) + 10;
9 mal = pmal(i) + 0.349*pmal(i);

10 tt = [tt,t];
11 pmal = [pmal,mal];
12 formatSpec = 'Year is %d, Population is %8.3f ...

M\n';
13 fprintf(formatSpec,t,mal)
14 end
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Malthusian Growth Model

15 plot(tt,pmal,'r-','LineWidth',1.5);
16 hold on
17 plot(tt,pcensus,'o','MarkerSize',6);
18 grid
19 legend('Malthusian Model','Census ...

Data','Location','Northwest');
20

21 ax = [1790 1870 0 50];
22 fontlabs = 'Times New Roman';
23 xlabel(xlab,'FontSize',14,'FontName',fontlabs,'interpreter','latex');
24 ylabel(ylab,'FontSize',14,'FontName',fontlabs,'interpreter','latex');
25 title(mytitle,'FontSize',16,'FontName','Times New ...

Roman','interpreter','latex');
26 set(gca,'FontSize',12);
27 print -depsc uspopmal.eps

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Discrete Modeling U. S. Population —
(11/34)



Discrete Modeling – Population of the United States
Variation in Growth Rate

Autonomous Models

General Discrete Dynamical Population Model
Linear Growth Rate U. S. Population Model
Nonautonomous Malthusian Growth Model

Analysis of the Growth Rate

Variation in Growth Rate

Assume this Malthusian growth model were extended

In 1920, model predicts 192,365,343 (population in 1960s),
which is 82% too high
In 1970, model predicts 859,382,645, which is 323% too high

Growth rate of U. S. has generally decreased over the
Census history

Average growth rate over census history is 22.3%
In 1800, 1900, and 2000, the growth rates were 36.4%,
21.0%, and 9.71%, showing the general decline
The Great Depression gave lowest growth rate of 7.2%
Obvious time variation in growth rate
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Modeling the Growth Rate

Malthusian growth model is too simplistic except early
population growth with plenty of resources

Crowding and limited resources are usually next dominant term
in modeling (logistic growth)

Crowding/squalor leads to declining birth rates and
increased death rates
Improved health decreases death rates and significantly
drops birth rates(greatest birth rate decline comes from
educating women)

Clearly, human populations have important contributions from
time varying historical, societal, and technological changes
(temporal variation)

Animal population models usually ignore these time-varying
factors (autonomous)
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General Discrete Dynamical Population Models

If the population at the next discrete time period depends only
on the current population, then given initial population, P0,

Pn+1 = f(Pn),

for some function f(P )

This first order difference equation is autonomous
Malthusian growth uses a linear growth with
f(P ) = P + rP , while logistic growth uses a quadratic
growth with f(P ) = P + rP (1− P/M)
Many different nonlinear forms of f(P ) are used with
different interpretations and mathematical behaviors
Animal populations often use these models
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General Discrete Dynamical Population Model

General Discrete Dynamical Population Models (cont)

If the population at the next discrete time period depends on the
current population and time, then given initial population, P0,

Pn+1 = f(tn, Pn),

for some function f(t, P )

This first order difference equation is
nonautonomous
The inclusion of time complicates analysis of this type of
model
Human populations have significant time-varying changes,
which make this type of model preferable
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Malthusian Growth Model

Malthusian Growth Model: This model has the solution:

Pn = (1 + r)nP0,

which has two parameters, r and P0.

If a nonlinear least squares best fit of this model to the U. S.
census data is applied, the best fitting model is

Pn = 16.35(1.1460)n,

where P0 = 16.35 and r = 0.1460

The SSE = 2875

This model poorly fits the early and late census data, but it is
extremely simple with only two parameters
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Malthusian Growth Model - MatLab

Use MatLab to find the nonlinear least squares fit to the census data
(tdata, pdata) with p0 = [P0, r]

1 function J = mal lst(p0,tdata,pdata)
2 % Least Squares fit to Malthusian Growth
3 N = length(tdata);
4 p = p0(1);
5 pop = [p];
6 err = [pdata(1) - p];
7 for i = 2:N % Malthusian iteration
8 p = p*(1+p0(2));
9 pop = [pop,p];

10 err = [err, pdata(i) - p];
11 end
12 J = err*err'; % Sum of square errors
13 end

p1 = fminsearch(@mal lst,p0,[],tdata,pdata)
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Nonautonomous Malthusian Growth Model

Linear Growth Rate: Earlier saw that over U. S. history the
growth rate generally declined

Human populations vary with technology and many other time
varying factors

Modify the Malthusian growth model to include a linear
growth rate:

Pn+1 = Pn + (a + btn)Pn

Begin by computing the growth rate from all of the census data

Find the best fitting line through these growth rates

The best fitting line satisfies:

r(t) = 0.37441− 0.014390n,

where n is in decades after 1790

If this model is fit to the census data by adjusting P0, then the
best P0 = 3.758 with a SSE = 740.3
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Linear Growth Rate

Linear Growth Rate: Directly from the Census data the best
fitting linear model is found from the decade growth rates.
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Nonautonomous Malthusian Growth Model

Nonautonomous Malthusian Growth Model: Alternately,
consider

Pn+1 = Pn + (a + btn)Pn,

with initial population, P0

This model has 3 parameters

Run a nonlinear least squares best fit for the parameters, a,
b, and P0

The best fitting nonautonomous Malthusian growth model
satisfies:

Pn+1 = (1.3058− 0.009674n)Pn,

with P0 = 6.305 and n is in decades after 1790

This model fits the census data quite well, and the SSE = 326.8

Over the range of the census data, this model does better, but it
is further off initially

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Discrete Modeling U. S. Population —
(20/34)



Discrete Modeling – Population of the United States
Variation in Growth Rate

Autonomous Models

General Discrete Dynamical Population Model
Linear Growth Rate U. S. Population Model
Nonautonomous Malthusian Growth Model

Nonautonomous Malthusian Growth Model - MatLab

Use MatLab to find the nonlinear least squares fit to the census data (tdata,
pdata) with p0 = [P0, a, b]

1 function J = nonmal lst(p0,tdata,pdata)
2 % Least Squares fit to Nonautonomous Malthusian ...

Growth
3 N = length(tdata);
4 p = p0(1);
5 pop = [p];
6 err = [pdata(1) - p];
7 for i = 2:N % Nonautonomous iteration
8 p = p*(1 + p0(2) + p0(3)*(i-1));
9 pop = [pop,p];

10 err = [err, pdata(i) - p];
11 end
12 J = err*err'; % Sum of square errors
13 end

p1 = fminsearch(@nonmal lst,p0,[],tdata,pdata)
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Logistic Growth Model

Logistic Growth Model is an autonomous model, which is often applied to
animal populations

This model has the Malthusian linear growth and includes a negative quadratic
term for crowding:

Pn+1 = Pn + rPn

(
1 −

Pn

M

)
,

with initial population, P0

This model has 3 parameters, including the initial population, P0

Nonlinear least squares program gives the best fitting parameters, r, M ,
and P0

The best fitting logistic growth model satisfies P0 = 8.575 and:

Pn+1 = Pn + 0.2245Pn

(
1 −

Pn

451.7

)
,

This model fits the census data quite well, and the SSE = 557.4

This model is only a slightly worse fit than the nonautonomous
Malthusian growth model
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Beverton-Holt Model

Beverton-Holt Model, commonly used in ecology, is an autonomous model,
which uses a different nonlinear updating function:

Pn+1 =
aPn

1 + Pn
b

,

with initial population, P0

This nonlinear function remains positive for all Pn, unlike the logistic growth
updating function

This model has 3 parameters, including the initial population, P0

Nonlinear least squares program gives the best fitting parameters, a, b,
and P0

The best fitting logistic growth model satisfies P0 = 8.261 and:

Pn+1 =
1.23065Pn

1 + Pn
2110.5

,

This model fits the census data quite well, and the SSE = 519.5

This model compares well to the logistic growth model, despite a very
different updating function
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Autonomous Models – MatLab

The nonlinear least squares best fit of the logistic and
Beverton-Holt models use almost identical algorithms to the
nonautonomous Malthusian growth model with 3 parameters to
fit; however, the iteration formulas vary with the model

7 for i = 2:N % Logistic iteration
8 p = p + p0(2)*p*(1 - p/p0(3));

7 for i = 2:N % Beverton Holt iteration
8 p = p0(2)*p/(1 + p/p0(3));

The use of fminsearch is also very similar
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Graph of U. S. Population Models
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General Discrete Population Models

Discrete population models are generally written in one of two forms

A discrete growth population model is written in the form:

Pn+1 = Pn + g(tn, Pn),

which says the population at the new discrete time, n + 1, is equal to the old
population, Pn, plus the net growth, g(tn, Pn), which depends on the previous
time, tn, and the population at the previous time, Pn.

A more general discrete population model is written in the form:

Pn+1 = f(tn, Pn),

which says the population at the new discrete time, n + 1, is equal to some
updating function, f(tn, Pn), which depends on the previous time, tn, and the
population at the previous time, Pn.

Most of our analysis will consider autonomous updating functions of the form,
f(Pn), having no time dependence.
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Analysis of Autonomous Models

We begin the basics of qualitative behavior of discrete dynamical
models:

Pn+1 = f(Pn)

Equilibria: First step of any analysis is finding equilibria, where
there is no change in the variable or population from one iteration to
the next.

Mathematically, this is solving the algebraic equation

Pe = f(Pe).

Graphically, this is equivalent to f(Pn) crossing the identity map,
Pn+1 = Pn.

Note: Any closed population model, meaning no migration into or
out from another population source, must have an equilibrium of
Pe = 0.
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U. S. Population Models

The best fitting discrete logistic population model for the U. S.
satisfies:

Pn+1 = Pn + 0.2245Pn

(
1− Pn

451.7

)
,

while the best fitting Beverton-Holt population model for the
U. S. satisfies:

Pn+1 =
1.23065Pn

1 + Pn

2110.5

.

These are closed discrete autonomous population models, so
have one equilibrium at Pe = 0.

We show there is another equilibrium, often called the carrying
capacity equilibrium, where the population of these models
eventually approach with sufficient iterations.
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Logistic Population Model

Consider the logistic population model:

Pn+1 = Pn + rPn

(
1− Pn

M

)
.

The equilibria are found algebraically by solving:

Pe = Pe + rPe

(
1− Pe

M

)
or rPe

(
1− Pe

M

)
= 0.

Solving this (factored) quadratic gives the extinction equilibrium,
Pe = 0 and the carrying capacity equilibrium, Pe = M .

The best fitting logistic population model from the census data
shows a carrying capacity equilibrium, Pe = 451.7.

Thus, this model predicts that the U. S. population will level off at
451.7M. (The current population from the Census Bureau website is
approximately 326M.)
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Beverton-Holt Model

Consider the Beverton-Holt model:

Pn+1 =
aPn

1 + Pn

b

.

The equilibria are found algebraically by solving:

Pe =
aPe

1 + Pe

b

or Pe

(
Pe

b
+ 1− a

)
= 0.

Solving this (factored) quadratic gives the extinction equilibrium,
Pe = 0 and the carrying capacity equilibrium, Pe = b(a− 1).

The best fitting Beverton-Holt model from the census data shows a
carrying capacity equilibrium, Pe = 2110.5(0.23065) = 486.8.

Thus, this model predicts that the U. S. population will level off at
486.8M, similar to the logistic population model
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Graphing Updating Functions

Intersections of the updating functions for the logistic and
Beverton-Holt population models with the identity map give
the equilibria for the models.
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Stability of Equilibria

For very low populations, the population has plenty of resources and
should grow according to the Malthusian growth model
(exponentially).

It follows that often the extinction equilibrium has populations
growing away from this equilibrium, so it is unstable.

On the other hand, populations tend to approach the stable
carrying capacity equilibrium.

We want to develop analytic tools for determining the stability of
the equilibria.

The primary analytic tool is taking the derivative at the equilibria.
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Stability of Logistic Population Model

The updating function of the best fitting logistic population
model for the U. S. satisfies:

Pn+1 = f(Pn) = Pn + 0.2245Pn

(
1− Pn

451.7

)
,

which has a derivative that satisfies:

f ′(P ) = 1.2245− 0.4490P

451.7
.

At the extinction equilibrium, Pe = 0, we have

f ′(0) = 1.2245 > 1,

which we’ll see shows this equilibrium is unstable.

At the carrying capacity equilibrium, Pe = 451.7, we have

f ′(451.7) = 0.7755 < 1,

which we’ll see shows this equilibrium is stable.
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Stability of Beverton-Holt Model

The updating function of the best fitting Beverton-Holt model
for the U. S. satisfies:

Pn+1 = b(Pn) =
1.23065Pn

1 + Pn

2110.5

,

which has a derivative that satisfies:

b ′(P ) =
1.23065(

1 + P
2110.5

)2 .
At the extinction equilibrium, Pe = 0, we have

b ′(0) = 1.23065 > 1,

which we’ll see shows this equilibrium is unstable.

At the carrying capacity equilibrium, Pe = 486.8, we have

b ′(486.8) = 0.81257 < 1,

which we’ll see shows this equilibrium is stable.
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