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Introduction

Introduction

Diabetes is a disease, characterized by excessive glucose in the
blood stream.

Currently, there is an epidemic of diabetes.

Modern unhealthy lifestyles are dramatically different from
how humans survived when they evolved from small
nomadic hunter-gatherer societies.
Then food was difficult to find.

There are two forms of diabetes.

Type 1, often called juvenile diabetes.
Type 2, often referred to as adult onset diabetes (which
now occurs in children as young as 5).

Our studies concentrate on Type 1 diabetes, which is an
autoimmune disease and represents only 10% of all cases of
diabetes.
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Glucose Metabolism

Glucose Metabolism

Ingest food, which breaks down to simple sugars.
Blood absorbs sugar, which raises blood glucose concentration.
β cells in pancreas respond and insulin is released.

Cells increase glucose uptake.

Insulin facilitates glucose transport across cell membranes, especially

in skeletal muscles.

Glucose converted to glycogen, the preferred energy storage of cells.

Blood sugar level decreases.
Body tightly regulates glucose levels.
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Type 1 or Juvenile Diabetes - Overview

Diabetes mellitus results from the loss of β cells, an
auto-immune disease.

Hereditary disease - about 4-20 per 100,000 people.
Peak diagnosis occurs around age 14.

Insulin production is severely reduced.

10% of diabetes cases are Type 1, while 90% are Type 2 (where
cells become insulin resistant, mostly in obese individuals).

Treatment is regular injections of insulin - transplants are
usually attacked by immune system.

Modern modeling methods and implanted devices allow
continuous monitoring of the body glucose levels and computer
controlled release of insulin (still experimental).
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Type 1 or Juvenile Diabetes - Symptoms and Diseases

Classic Symptoms

Polyphagia (hungry)
Polydipsia (thirsty)
Polyuria (frequent urination)
Other symptoms

Blurred vision, fatigue, weight loss, poor wound healing

Diseases

Increased heart disease - Atherosclerosis from low insulin
Blindness (retinopathy) - Increased pressure in eye
Nerve damage (neuropathy)
Kidney damage (nephropathy)

Current prognosis is premature death.
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Modeling Glucose Metabolism

Modeling Glucose Metabolism: The regulation of glucose in the
blood begins with the ingestion of food.

Hormones: β-cells in the pancreas to release insulin into the blood
(along with a number of other hormones), where insulin facilitates of
glucose transport across cell membranes and conversion of glucose to
glycogen in the liver.

Other hormones include:

Epinephrine (adrenalin) is released to break down the
glycogen.
Glucocorticoids help metabolize carbohydrates.
Growth hormone can block the effects of insulin.

Many other hormones regulate glucose levels in the blood,
creating a complex regulatory system.
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Diabetes Detection: There are 3 common tests.

Type 1 diabetes runs in families, so family members are tested.

FPG (Fasting Plasma Glucose) examines blood after an 8-hour fast - over
126 mg/dL is diabetic, while under 100 mg/dL is normal.

A1C (Glycated Hemoglobin) examines blood after an 8-hour fast - over
6.5% is diabetic, while under 5.7% mg/dL is normal.

OGTT (Oral Glucose Tolerance Test) fast for 8 hr, then given large
amount of glucose and tested over 2 hrs - over 200 mg/dL on any test is
diabetic, while under 140 mg/dL is normal.

Glucose Tolerance Test is a more accurate follow-up test for diabetes.

Subject fasts for 12 hours.

Subject rapidly ingests a large amount of glucose (100 g of glucose, which is
about 2.5× a can of Coke).

The blood sugar is monitored for 3-6 hrs, and these data are fit to the
Ackerman model (below).
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Modeling GTT 1

Modeling GTT: Glucose in the blood, G(t), begins with the rapid
ingestion of glucose, J(t).

This stimulates the release of insulin, I(t), and other hormones to
regulate G(t).

This can be written as the model:

dG

dt
= f1(G, I) + J(t),

dI

dt
= f2(G, I).

G I

J(t)
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Modeling GTT 2

Modeling GTT: Glucose regulation is complex, but we develop a
simple model that can be fit with a few parameters.

More complex models have been developed to match different types of
food intake for tighter regulation of people with diabetes.

Modeling Assumptions:

Assume the fasting for 8-12 hours takes the body into a
homeostasis.

The body is in a quasi-equilibrium with glucose at a level G0

and insulin at a level I0.

Assume the rapid ingestion of glucose makes J(t) like a
δ-function only affecting the initial conditions.

The quasi-equilibrium assumption allows a perturbation
analysis using

g(t) = G(t)−G0 and i(t) = I(t)− I0.
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Linearized GTT Model 1

For the model,

dG

dt
= f1(G, I) + J(t),

dI

dt
= f2(G, I),

the quasi-equilibrium assumption gives:

f1(G0, I0) = f2(G0, I0) = 0.

Expanding the general model to linear terms with these definitions gives the
linearized perturbation mode:

dg

dt
=

∂f1(G0, I0)

∂g
g +

∂f1(G0, I0)

∂i
i,

di

dt
=

∂f2(G0, I0)

∂g
g +

∂f2(G0, I0)

∂i
i,

where g(t) and i(t) are the linearized perturbed variables.
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Linearized GTT Model 2

Next we examine the partial derivatives of the functions, f1 and f2, with our
understanding of the physiology of glucose and insulin.

Physiologically, an increase in glucose in the blood stimulates tissue uptake of
glucose and glycogen storage in the liver:

∂f1(G0, I0)

∂g
= −m1 < 0.

An increase in insulin facilitates the uptake of glucose in tissues and the liver:

∂f1(G0, I0)

∂i
= −m2 < 0.

However, increases in blood glucose result in the release of insulin:

∂f2(G0, I0)

∂g
= m4 > 0.

Increases in insulin result increased metabolism of excess insulin:

∂f2(G0, I0)

∂i
= −m3 < 0.
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Linearized GTT Model 3

With these definitions, the linearized system is written:

(

ġ
i̇

)

=

(

−m1 −m2

m4 −m3

)(

g
i

)

,

where ġ = dg/dt and similarly for i(t).

The characteristic equation for this linear system is given by

det

∣

∣

∣

∣

−m1 − λ −m2

m4 −m3 − λ

∣

∣

∣

∣

= λ2 + (m1 +m3)λ +m1m3 +m2m4 = 0.

Since the mi > 0, all coefficients of the characteristic equation are positive.

From ODEs (think damped spring mass system), this implies that all the
eigenvalues, λ, are either complex with negative real parts or both eigenvalues
are negative.

A stable node is expected of a self-regulatory system.
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Linearized GTT Model 3

The characteristic equation is:

λ2 + (m1 +m3)λ+m1m3 +m2m4 = 0.

Only the blood glucose level in the GTT is measured, so only need the linearized
solution for g(t).

We expect the underdamped situation with complex eigenvalues.

Physiologically, think of the body’s response to a “sugar high” (maximum of blood
glucose), which is followed after an hour or two by a “sugar low” (minimum of
blood glucose below equilibrium) that encourages more eating.

Thus, the general solution satisfies:

g(t) = e−αt(c1 cos(ωt) + c2 sin(ωt)),

where

α =
m1 +m3

2
and ω =

1

2

√

4(m1m3 +m2m4)− (m1 +m3)2.
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Linearized GTT Model 4

From the general solution:

g(t) = e−αt(c1 cos(ωt) + c2 sin(ωt)),

if we take
c1 = A cos(ωδ) and c2 = A sin(ωδ),

then we can approximate the blood glucose level by

G(t) = G0 + Ae−αt cos(ω(t − δ)).

This solution has five unknown parameters to be fit to the data.

G0 represents the equilibrium blood sugar level.

α measures the ability of the system to return to equilibrium state after
being perturbed.

ω gives a frequency response to perturbations.

A gives the amplitude of the response.

δ represents a delay in the response.
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Ackerman Model

The Ackerman model is given by:

G(t) = G0 + Ae−αt cos(ω(t − δ)).

α was found to have large errors from the many subjects tested by
Ackerman et al.

A more robust measure was the natural frequency of the system, ω0.

The natural frequency from forced damped oscillators is defined

ω2
0 = ω2 + α2 and T0 =

2π

ω0
,

where T0 is the natural period of the system.

The natural period is a good predictor of diabetes.

Ackerman found that if T0 < 4, then a person was generally normal, while if
T0 > 4, then the person is likely to have diabetes.

Physiologically, this relates to the idea that normally people get hungry
every 3-4 hours.
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Example: We examine the theory with a normal and a diabetic subject given the
GTT.

t (hr) Subject A Subject B t (hr) Subject A Subject B
0 70 100 2 75 175
0.5 150 185 2.5 65 105
0.75 165 210 3 75 100
1 145 220 4 80 85
1.5 90 195 6 75 90

Table: Data from the Glucose Tolerance Test. Subject A is a normal subject, while
Subject B has diabetes.

A nonlinear least squares best fit is performed with the Ackerman model.

Parameter Subject A Subject B Parameter Subject A Subject B
G0 79.1814 95.2124 ω 1.81274 1.03037
α 0.99272 0.63349 δ 0.90056 1.51604
A 171.5474 263.1528 LSSE 225.6757 718.6180

Table: Best Fitting Parameters to GTT Model. Subject A is a normal subject, while
Subject B has diabetes.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Modeling Diabetes — (17/50)



Introduction
Modeling GTT

Diabetes in NOD Mice

Linearized GTT Model
Example

Example 2

Example: MatLab is used to find the best fitting parameters to fit the GTT
data with the program fminsearch , using

[p1,J, flag ] = fminsearch(@diabetes err,p,[],td,gn)

1 function J = diabetes err(p,td,gd)
2 % Least squares error
3 y = GTT(td,p);
4 err = y - gd;
5 J = err * err';
6 end

1 function y = GTT(t,p)
2 % GTT function
3 y = p(1)+p(2) * exp (-p(3) * t). * cos (p(4) * (t-p(5)));
4 end
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Example: The graph is produced with

1 td = [0 0.5 0.75 1 1.5 2 2.5 3 4 6];
2 gn = [70 150 165 145 90 75 65 75 80 75];
3 gd = [100 185 210 220 195 175 105 100 85 90];
4

5 xlab = '$t$ (hr)' ; % X-label
6 ylab = 'Glucose (mg/dl)' ; % Y-label
7 mytitle = 'GTT Model' ; % Title
8

9 xx = linspace (0,6,200);
10 pn = [79.1814 171.5474 0.99272 1.81274 0.90056];
11 pd = [95.2124 263.1528 0.63349 1.03037 1.51604];
12 yn = pn(1)+pn(2) * exp (-pn(3) * xx)...
13 . * cos (pn(4) * (xx-pn(5)));
14 yd = pd(1)+pd(2) * exp (-pd(3) * xx)...
15 . * cos (pd(4) * (xx-pd(5)));
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Example 4

17 plot (xx,yn, 'b-' );
18 hold on;
19 plot (xx,yd, 'r-' );
20 plot (td,gn, 'ob' ,td,gd, 'or' );
21 grid
22 xlim([0 6]);
23 ylim([0 250]);
24 fontlabs = 'Times New Roman' ;
25 xlabel (xlab, 'FontSize' ,14, 'FontName' ,fontlabs,...
26 'interpreter' , 'latex' );
27 ylabel (ylab, 'FontSize' ,14, 'FontName' ,fontlabs,...
28 'interpreter' , 'latex' );
29 title (mytitle, 'FontSize' ,16, 'FontName' ,...
30 'Times New Roman' , 'interpreter' , 'latex' );
31 set ( gca , 'FontSize' ,12);
32

33 print -depsc GTT modelA. eps
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Example 5

The graph below shows that the best parameter fit does very well matching the
model to the data.

From the definitions of ω0 and T0, Subject A has:

ω0 = 2.0668 and T0 = 3.0401,

so according to the criterion by the Ackerman model, this subject is normal.

For Subject B,
ω0 = 1.2095 and T0 = 5.1947,

so according to the criterion by the Ackerman model, this subject is diabetic.
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0

50

100

150

200
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Diabetes in NOD Mice

Diabetes in NOD Mice

With diabetes a significant disease in humans we need an animal
model.

An important animal with a diabetic tendency is the non-obese
diabetic (NOD) mouse.

Type 1 diabetes arises in NOD mice when T cells from the
immune system become primed to specifically target and kill
β-cells.

These cytotoxic T cells belong to a class of lymphocytes
displaying a surface marker called CD8 (denoted CD8+ T
cells).
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T Cell Activation

T cells mature in the thymus.

Cross-react with self-protein to prevent autoimmunity.

T cells migrate to Lymph nodes.

Interact with antigen presenting cells (APCs).

APCs present antigen protein fragment (about 9 AAs) inside MHC

(major histocompatibility complex).

The peptide-MHC complex interacts with T cells surface receptors.

T cells with appropriate specificity become activated.

Most antigens are foreign proteins from viruses and bacteria.
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T Cell Immune Response

T Cell Immune Response

Activated T cells proliferate about 6 cell divisions.

Most become Effector cells (cytotoxic T-lymphocytes or CTLs).

CTLs are efficient specific killers, destroying target cells.
Relatively short-lived.

Some become Memory cells.

No immediate effect.
Long-lived cells.
New exposure to same antigen, rapidly activated.
Strategy for vaccines.

Type 1 diabetes when CTLs attack β cells in pancreas.

Other autoimmune diseases are similar.
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T Cell Immune Response
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Animal Model for Diabetes

Animal Model for Diabetes

Non-Obese Diabetic or NOD mice undergo apoptosis or
programmed cell death of β cells in the pancreas shortly after
birth.

Clearance of apoptotic cells by macrophages is reduced.

Possibly forms self-antigen.
Experiments suggest a fragment from IGRP
(glucose-6-phosphate catalytic subunit-related protein)
produces a dominant antigen.

Experiments designed to find autoreactive CD8+ T cells in
pancreas of NOD mice.

Observed three waves of CD8+ T cells before mice became
diabetic around 16 weeks.
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NOD Mice Data

Pooled data had mice aligned to time of high blood sugar onset at 16-weeks.

Link to Model Simulation
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Simple Model Schematic

p

M

E

A

f1

f1
f

1−f
2

2

B

A = Activated T cells

M = Memory cells

E = Effector or killer T cells

p = peptide

B = Fraction of remaining β cells
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Feedback Functions

1k2k

activationmemory

1f  (p)2f   (p)

p

Activation function

f1(p) =
pn

kn
1
+ pn

Inhibition function

f2(p) =
akm2

km
2

+ pm
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Complete Model

Complete Model

dA

dt
= (σ + αM)f1(p) − (β + δA)A− ǫA2

dM

dt
= β2m1f2(p)A− f1(p)αM − δMM

dE

dt
= β2m2 (1 − f2(p))A− δEE

dp

dt
= REB − δpp

dB

dt
= −κEB

with nonlinear feedback functions

f1(p) =
pn

kn1 + pn

f2(p) =
ak2

m

km2 + pm
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Activated T cells

Activated T cells

dA

dt
= (σ + αM)f1(p)− (β + δA)A− ǫA2−(β + δA)A−ǫA2

dM

dt
= β2m1f2(p)Aβ2m1f2(p)A− f1(p)αM − δMM

dE

dt
= β2m2(1− f2(p))Aβ2m2(1 − f2(p))A− δEE

dp

dt
= REB − δpp

dB

dt
= −κEB

The production of activated T cells, A, from naive T cells and
memory cells.
The loss of activated T cells, A, becoming effector and memory T
cells, decaying, and competing with others.
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Effector T Cells and β Cells

Effector T Cells and β Cells

dA

dt
= (σ + αM)f1(p)− (β + δA)A− ǫA2

dM

dt
= β2m1f2(p)A − f1(p)αM − δMM

dE

dt
= β2m2(1− f2(p))A− δEE

dp

dt
= REB − δpp

dB

dt
= −κEB

The effector T cells, E, destroy β cells producing the protein that
activates T cells.
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Complete Model - Discussion

Complete Model - Discussion

5-Dimensional Model

Highly nonlinear
Difficult to analyze

17 Physiological parameters

Many are known or have good estimates
Constrains possible solutions

Time Scale

The peptide, p, has fast reaction kinetics
This allows Quasi-Steady State Approximations
The β cells, B, have slow dynamics
This allows consideration of slow changing parameter
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Quasi-Steady State Model 1

The model for analysis consists of three equations:

dA

dt
= (σ + αM)f1(p)− (β + δA)A− ǫA2

dM

dt
= β2m1f2(p)A − f1(p)αM − δMM

dE

dt
= β2m2(1− f2(p))A− δEE

together with the Quasi-Steady State peptide expression

p ≈ (RB/δp)E

3-D system of differential equations permits a more complete analysis.
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Quasi-Steady State Model 2

With p = (RB/δp)E, the model is written:

dA

dt
= (σ + αM)f̃1(E)− (β + δA)A− ǫA2 = F1(A,M,E),

dM

dt
= β2m1 f̃2(E)A− f̃1(E)αM − δMM = F2(A,M,E),

dE

dt
= β2m2(1− f̃2(E))A − δEE = F3(A,E),

where f̃1(E) and f̃2(E) are the appropriately scaled nonlinear
functions.

From the positive feedback form of f̃1(E), it is easy to see that there
exists the disease-free equilibrium,

(Ae,Me, Ee) = (0, 0, 0).
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Quasi-Steady State Model – Equilibria 3

Equilibria are found by solving the three highly nonlinear equations:

F1(Ae,Me, Ee) = 0, F2(Ae,Me, Ee) = 0, F3(Ae, Ee) = 0,

which beyond the disease-free equilibrium may have 0–4 other
equilibria.

There are relatively stringent biological constraints on the parameters.

In the biological parameter range, there are 2 additional equilibria.

These are found numerically, having no analytic solution.
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Quasi-Steady State Model – Linear Analysis 4

Linear Analysis of this model uses the Jacobian matrix at the equilibria, where

J(A,M,E) =









∂F1(A,M,E)
∂A

∂F1(A,M,E)
∂M

∂F1(A,M,E)
∂E

∂F2(A,M,E)
∂A

∂F2(A,M,E)
∂M

∂F2(A,M,E)
∂E

∂F3(A,E)
∂A

0 ∂F3(A,E)
∂E









From the Quasi-Steady State Model,

J(A,M,E) =









−(β + δA)− 2ǫA αf̃1(E) (σ + αM)f̃ ′
1(E)

β2m1 f̃2(E) −(αf̃1(E) + δM ) β2m1Af̃ ′
2(E)− αMf̃ ′

1(E)

β2m2 (1− f̃2(E)) 0 −(β2m2Af̃ ′
2(E) + δE)









Provided n > 1 (which is expected, since f̃1(E) is a type of switch), then
f̃1(0) = f̃ ′

1(0) = 0 and

J(0, 0, 0) =









−(β + δA) 0 0

β2m1 f̃2(0) −δM 0

β2m2 (1 − f̃2(0)) 0 −δE








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Quasi-Steady State Model – Linear Analysis 5

Characteristic Equation: At the disease-free equilibrium,
(Ae,Me, Ee) = (0, 0, 0), it is easy to solve

det |J(0, 0, 0)− λI| = −(λ+ β + δA)(λ+ δM )(λ+ δE) = 0.

This characteristic equation shows that the disease-free
equilibrium has purely negative eigenvalues:

λ1 = −β − δA, λ2 = −δM , λ3 = −δE.

It follows that the disease-free equilibrium is a stable node.

Since the origin is an attractor, a sufficiently weak disturbance that
provokes the immune system should be resolved.
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Quasi-Steady State Model – Linear Analysis 6

Linear Analysis: A second equilibrium represents the diseased state.

This equilibrium corresponds to a state of elevated immune cell levels.

Effector T cells are continuously killing β-cells.

This corresponds to an autoimmune attack, leading to diabetes.

This equilibrium has various stability properties that depend on the

parameters.

For some parameters this equilibrium is a stable node.

This equilibrium can undergo a supercritical Hopf bifurcation

leading to an unstable node and a stable periodic orbit.

This equilibrium can simply be an unstable node with only the origin

being an attractor.

Other more exotic behaviors occur away from physiological relevant

parameters.
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Quasi-Steady State Model – Linear Analysis 7

Linear Analysis: The third equilibrium is a saddle node.

It has a 2D stable manifold, which for some parameters
separates the healthy and diseased equilibria.

For these parameters, stimuli that fall on the wrong side of this
separatrix will be attracted to the diseased equilibrium.

For other parameter values, the unstable manifold of the
diseased state connects to the stable manifold of the saddle
point.

In this case, almost all positive initial conditions asymptotically,
approach the healthy state.

This would represent a normal state, where the immune
system is damped and no autoimmune response persists.
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Quasi-Steady State Model – Simulation 8

Simulation: The QSS Model is simulated where stable oscillations occur around
the diseased state.
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Quasi-Steady State Model – Simulation 9

Simulation: Zooming in on the previous plot the stable oscillations around the
diseased state are readily seen.
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Parameters and Bifurcation 1

Parameter study

Experimental data compiled by Marée, Santamaria, and
Edelstein-Keshet.

Physiological range of parameters limited by their study for most
parameters in the model.

Several parameters remain unknown, so varied to obtain desired
behavior.

Sensitivity of the parameters was studied.

Bifurcation Analysis

Many parameters investigated using AUTO with XPP.

Chose peptide clearance rate δp as it is believed that poor
clearance could induce diabetes.
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Bifurcation Study 2

Bifurcation Study: Steady-state of M as the peptide clearance rate δp is varied.

Normal range of δp is likely between 2.5 and 3.5, while the diseased state is
likely less than half that value.
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Bifurcation Study 3

Bifurcation Study: Extending the peptide clearance rate δp shows other
bifurcations. However, the higher range is unrealistic.
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Bifurcation Study 4

Bifurcation Study: Most solutions approach the Origin in the normal range.

Suspected that δp is less than half normal in the diseased state.

With p ≈
RB
δp

E, the red arrow shows increasing δp, which is similar to B

decreasing or β-cells dying.
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Homoclinic Bifurcation 5

Homoclinic Bifurcation: 2D cartoon illustrating model behavior as δp increases.
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Complete NOD Mouse Model (Normal) 1

Simulated complete model for a normal mouse.

- Assumed an initial response of Effector T cells

- Normal parameter values

- Some β cells die, but levels at high equilibrium
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Complete NOD Mouse Model (Diabetic) 2

Simulated complete model for a diabetic mouse with lower peptide clearance

- Assumed an initial response of Effector T cells
- Increasing spikes of Activated T cells
- Waves of short-lived Effector T cells
- High Memory cell populations allow new response
- Slow decline of β cells until diabetic
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Conclusions

Conclusions

Designed a reasonable model for NOD mice.

Parameters fit physiological data.

Simulations indicate parameters and initial conditions may be
too sensitive.

Excellent qualitative behavior of the model.

Good example of a homoclinic bifurcation.

Model supports biological theory of defective clearance after
apoptosis.
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