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Introduction

Introduction

Our studies of the competition of two species and
predator-prey models showed the importance of parameters in
systems of ODEs.

The parameters determined some of the observed behaviors.

Often these parameters change for some reason or are governed
by slow time dynamics.

We return to examining one-dimensional ODEs and study
how behaviors change as a parameter varies.

The models depend on a parameter, λ, so

dy

dt
= f(t, y, λ),

which can have varying behavior.
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Population Models

With abundant resources, a population will grow exponentially,
satisfying the Malthusian growth law:

dP

dt
= rP,

where r is the growth rate.

With limited resources, the growth rate slows, and the next
approximation to population grow satisfies the logistic growth
equation given by:

dP

dt
= rP

(
1− P

M

)
,

where M is the carrying capacity.

Most populations tend to follow the classic S-shaped curves, which
are the solutions of the logistic growth model.
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Population Models with Harvesting

There are a number of methods that humans use to harvest various
animals or fish.

Constant Harvesting: One simple method is to set a limit for
harvesting.

Assume the animals grow according to the logistic growth model,
which are harvested at a constant rate, h:

dP

dt
= rP

(
1− P

M

)
− h = F (P, h), P (0) = p0.

We want to study how harvesting at different levels affects the
population.
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Population Model with Constant Harvesting

The logistic growth model with harvesting is:

dP

dt
= rP

(
1− P

M

)
− h = F (P, h), P (0) = p0.

If this ODE is inserted this into Maple to solve, then one obtains an
explicit solution, which is very messy:

P (t) =
1

2r

(
rM +K tanh

(
K

2M

(
t+

M

K
ln

(
2rp0 +K − rM
K + rM − 2rp0

))))
,

where K =
√
r2M2 − 4hrM .

Clearly, this solution is difficult to analyze, so we turn to a geometric
analysis of the model.
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Population Models with Constant Harvesting 3

A population model with constant harvesting satisfies:

dP

dt
= rP

(
1− P

M

)
− h = F (P, h), P (0) = p0,

The analytic solution gives little insight into the model behavior, so
geometric techniques are employed.

Earlier efforts showed that 1D-phase portraits are effective
tools for finding behavior of one-dimensional ODEs.

The technique for qualitative analysis of autonomous models
only requires graphing the function, F (P, h).

When F (P, h) crosses the P -axis, we find equilibria.
For F (P, h) > 0, the solutions are increasing, while for
F (P, h) < 0, the solutions are decreasing.
This geometric interpretation allows easy visualization
of the stability of the equilibria.
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Example with Constant Harvesting 1

Example: A population model with constant harvesting satisfies:

dP

dt
= 0.2P

(
1−

P

100

)
− h = F (P, h).

Below is a graph of F (P, h) with different harvesting levels.
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Example (cont): The population model given by:

dP

dt
= 0.2P

(
1− P

100

)
− h = F (P, h), P (0) = p0,

with h = 0 (no harvesting) is the logistic growth model.

All solutions with 0 < p0 < 100 grow away from the extinction
equilibrium or Pe = 0, so this equilibrium is unstable.

All solutions with p0 > 0 grow toward the carrying capacity,
Pe = M , so this equilibrium is stable.

The graph shows a parabola pointing down:

The vertex, (Pv, F (Pv)) = (50, 5), is the maximum growth of the
population.

The P -intercepts are the equilibria.

The constant harvesting, h, shifts the vertex downward with
increasing h.
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Example (cont): The equilibria for the population model with constant
harvesting satisfies:

0.2Pe

(
1−

Pe

100

)
− h = 0.

We interpret the dynamical system from a modeling perspective.

Suppose that 0 < h < 5.

There remain two equilibria with an unstable equilibrium satisfying
0 < P1e(h) < 50 and a stable equilibrium satisfying P2e(h) > 50.

Once again the stable equilibrium, P2e(h), will be the carrying capacity of
this population.

If the constant harvesting, h, is phased in where the population before
harvesting begins is near carrying capacity, then we expect a measured
decline of the population with increasing h with the new equilibrium, P2e(h).
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Example (cont): Continuing with the case 0 < h < 5.

The lower unstable equilibrium satisfies 0 < P1e(h) < 50, so
any initial condition p0 > P1e(h) will have the population
increase to the carrying capacity, P2e(h).

However, any initial population with 0 < p0 < P1e(h) has the
population declining.

Since there is no lower equilibrium, then the population must
decline with P (t)→ −∞, which is obvious nonsense.

This suggests that the model needs serious revision to account
for lower populations.

It should be clear that one cannot keep harvesting a fixed limit,
h, when there are low populations.
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Example (cont): Considering the case h = 5.

When h = 5, the two equilibria coalesce, so P1e(5) = P2e(5) = 50.

This results in a degenerate equilibrium, which is half stable.

Any initial condition with p0 > 50 will see the population move to the single
equilibrium, so P (t)→ P2e(5) = 50.

Any initial condition with p0 < 50 will see the population move away from
P1e(5), so P (t)→ −∞, which is obvious nonsense.

This value of the parameter h = 5 is called a saddle node bifurcation.

The ODE model has a distinct change of behavior from two equilibria to
no equilibria as the parameter h changes from below 5 to above.

When h > 5, then the harvesting is too intense and the animal population cannot
survive.

However, the model is unrealistic in its harvesting assumption, as it shows

P (t)→ −∞.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉 Bifurcation Analysis 1D ODEs — (12/44)



Population Model with Constant Harvesting
Population Models with Proportional Harvesting

Fluxgate Magnetometer
Modeling Spruce Budworm

Saddle Node Bifurcation

Saddle Node Bifurcation 1

Saddle Node Bifurcation: The classic form of the saddle node
bifurcation is the 1D ODE:

ẏ = µ− y2,

where µ is the bifurcation parameter.

As the parameter, µ, varies, the behavior of the system changes
or bifurcates at µ = 0.

At the bifurcation point equilibria either appear or disappear,
depending on the parameter, µ.

This bifurcation is often called a blue sky bifurcation because
the appearance of equilibria appear out of nowhere.
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Saddle Node Bifurcation 2

Saddle Node Bifurcation: The bifurcation diagram for the equation:

ẏ = µ− y2,

the horizontal axis as the parameter, µ, and the vertical axis shows the value of
the equilibria for a particular value of µ.
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Saddle Node Bifurcation

The solid line indicates a stable equilibrium, and the dotted line indicates an
unstable equilibrium.
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Population Model with Proportional Harvesting 1

Population Model with Proportional Harvesting

Often one puts in a constant effort into harvesting, such as netting
fish, which yields harvesting proportional to the population.

The logistic growth model with proportional harvesting is:

dP

dt
= rP

(
1− P

M

)
− hP = G(P, h), P (0) = p0.

If this ODE is inserted this into Maple to solve, then one obtains an
explicit solution:

P (t) =
p0M(r − h)

p0r + (M(r − h)− p0r) e−(r−h)t
.

Assuming r > h, then one readily shows that

lim
t→∞

P (t) =
M(r − h)

r
.
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Population Model with Proportional Harvesting 2

A population model with constant harvesting satisfies:

dP

dt
= rP

(
1−

P

M

)
− hP = G(P, h), P (0) = p0,

The analytic solution gives some insight into the model behavior, but geometric
techniques provide more intuition.

Equilibrium analysis, where G(Pe, h) = 0, gives

Pe = 0 or Pe =
M(r − h)

r
.

Pe = 0 is the unstable, extinction equilibrium, while Pe =
M(r−h)

r
is the

stable, carrying capacity equilibrium, provided r > h.

The qualitative analysis uses graphing the function, G(P, h), where for
G(P, h) > 0, the solutions are increasing, while for G(P, h) < 0, the solutions
are decreasing.

This geometric interpretation allows easy visualization of the stability of
the equilibria.
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Example with Proportional Harvesting 1

Example: A population model with proportional harvesting satisfies:

dP

dt
= 0.2P

(
1−

P

100

)
− hP = G(P, h).

Below is a graph of G(P, h) with different harvesting levels.
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Example with Proportional Harvesting 2

Example (cont): The proportional harvesting model given by:

dP

dt
= 0.2P

(
1−

P

100

)
− hP = G(P, h),

has the equilibria, where G(Pe, h) = 0,

Pe = 0 or Pe = 500(0.2− h).

The graph shows a parabola pointing down:

If 0 ≤ h < 0.2, then there is a positive carrying capacity equilibrium,
Pe = 500(0.2− h).

All solutions with p0 > 0 grow toward this equilibrium.

If h > 0.2, then there is a negative equilibrium and the extinction
equilibrium, Pe = 0 becomes a stable equilibrium.

This scenario has harvesting exceeding reproduction.

At h = 0.2, Pe = 0 is the only equilibrium (and it is half-stable) leading to a
transcritical bifurcation at this h.
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Transcritical Bifurcation 1

Transcritical Bifurcation: The classic form of the transcritical bifurcation is
the 1D ODE:

ẏ = µy − y2,

where µ is the bifurcation parameter.

Note that ye = 0 is always an equilibrium.

The other equilibrium occurs at ye = µ.

Geometrically, the equation f(y, µ) = µy − y2 is a parabola pointing down,
intersecting the µ-axis at 0 and µ.

Thus, from before the larger equilibrium is stable, while the smaller
equilibrium is unstable.

For µ < 0, ye = 0 is stable, while ye = µ is unstable. The reverse holds for
µ > 0 (ye = 0 (unstable) and ye = µ (stable)).

At µ = 0, ye = 0 changes stability leading to what is called a transcritical
bifurcation.
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Transcritical Bifurcation 2

Transcritical Bifurcation: The transcritical diagram for the equation:

ẏ = µy − y2,

the horizontal axis as the parameter, µ, and the vertical axis shows the value of
the equilibria for a particular value of µ.
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Transcritical Bifurcation

The solid line indicates a stable equilibrium, and the dashed line indicates an
unstable equilibrium.
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Fluxgate Magnetometer 1

Fluxgate Magnetometer: A number of models that have a
switching mechanism use the hyperbolic tangent function.

A one dimensional model that has been used for a fluxgate
magnetometer (and nerve impulse models) satisfies the equation:

ẏ = −y + tanh(cy) = H(y, c),

where c is a temperature dependent parameter that controls the
behavior of the potential function from which this ODE is derived.

The equilibria are found by solving:

ye = tanh(cye).

This always has the solution ye = 0.

If c < 1, then ye = 0 is the only solution.

If c > 1, then there are always three equilibria.
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Fluxgate Magnetometer 1

The fluxgate magnetometer model satisfies:

ẏ = −y + tanh(cy) = H(y, c),

where again we use geometric analysis to study the qualitative
theory of this ODE.

The equilibria occur where H(y, c) crosses the y-axis.

If H(y, c) > 0, then the solution, y(t) is increasing in time, while
if H(y, c) < 0, then the solution, y(t) is decreasing.

An equilibrium is stable if the solution is increasing to the
left and decreasing to the right.

Simlarly, an equilibrium is unstable if the solution is
increasing to the left and decreasing to the right of ye.
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Fluxgate Magnetometer 2

Below is a graph of H(y, c). The equilibria (H(ye, c) = 0) are on the y-axis with
solutions increasing for H(y) > 0 and decreasing for H(y) < 0.
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Magnetometer
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This graph show ye = 0 losing stability at c = 1 with two new equilibria
appearing.
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Pitchfork Bifurcation 1

Pitchfork Bifurcation: The classic form of the pitchfork bifurcation is the 1D
ODE:

ẏ = µy − y3,

where µ is the bifurcation parameter.

Note that ye = 0 is always an equilibrium.

The other equilibria occur at ye = ±√µ, provided µ > 0.

Geometrically, the equation f(y, µ) = µy − y3 is a cubic polynomial
intersecting the µ-axis at 0 and ±√µ if µ > 0.

For µ < 0, ye = 0 is stable, as y(t) increases for y < 0 and decreases for
y > 0 (cubic is monotonic).

For µ > 0, ye = 0 becomes unstable and the two new stable equilibria
(ye = ±√µ) arise.

At µ = 0 we have what is called a pitchfork bifurcation.
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Pitchfork Bifurcation: The pitchfork diagram for the equation:

ẏ = µy − y3,

the horizontal axis as the parameter, µ, and the vertical axis shows the value of
the equilibria for a particular value of µ.
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Pitchfork Bifurcation

The solid line indicates a stable equilibrium, and the dashed line indicates an
unstable equilibrium.
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Spruce Budworm 1

Most species of spruce budworm are serious pests that destroy
coniferous forests.

Juvenile Adult
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Spruce Budworm 2

Spruce Budworm:

There are about a dozen species of the genus Choristoneura that range
through the boreal forests of U. S. and Canada.

The species, Choristoneura fumiferana or eastern spruce budworm, is one of
the most destructive native insect species in northern spruce and fir forests,
particularly affecting balsam fir trees in Eastern U. S. and Canada.

There are periodic outbreaks of this pest with the first recorded outbreak
occurring in Maine around 1807.

Another another outbreak in 1878.

From tree ring studies, scientists have determined that outbreaks of the
spruce budworm have occurred every 40-60 years, since at least the 16th

century.

Eastern Canada has seen three major outbreaks between 1910-1920,
1940-1950, and 1970-1980.

Every 30-60 years there is a serious outbreak of the pest that results in
devastation of a forest, particularly the balsam firs in about four years.
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Spruce Budworm Modeling 1

Spruce Budworm Modeling:

There are mathematical and ecological models for these periodic outbreaks.

One theory considers spatially synchronized population oscillations caused
by delayed density-dependent feedback that has high amplitude oscillations
from entrainment.

Another theory uses cusp-catastrophe theory with populations jumping
between endemic and epidemic levels.

This study combines a one-dimensional nonlinear ODE with a slow varying
parameter.

The spruce budworm is always present, but it is usually controlled by birds
predating on the insect.

Our model examines the rapid dynamics of the predator-prey interactions of
birds (a smart predator) and its prey the spruce budworm.

The growth of the spruce is on a slow time scale, and it is the primary food
of the spruce budworm.
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Spruce Budworm Modeling 2

Spruce Budworm Modeling: Below are some facts and
assumptions in the model.

The model examines the complicated interaction of the spruce budworm
population with its host, the coniferous trees, and its primary predator,
birds.

There are significant differences in time scales between these particular

species.

Spruce budworms reproduce very rapidly with the ability to increase

5-fold in a single year.

The balsam fir can replace its foliage in about 7 years and can live for

about 100 years.

Assume that the birds are smart opportunistic predators with plenty of
different sources of food.

Assume birds maintain a relatively constant population.

Assume that the needles of the balsam fir are the primary source of food for
the spruce budworms, and these leaves provide both nourishment and hiding
for the spruce budworms.
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Spruce Budworm Modeling 3

This spruce budworm model is based on work of Ludwig, Jones,
and Hollings (1978), which became important through a Nature
article of Robert May (1977).

It is a simple ODE that tracks the population of the spruce budworm.

Parameters account for their interactions with their food source, the

balsam firs.

And their predators, the birds.

The bird population is assumed to be constant because of limitations on
territorial factors and not food sources.

Its predatory behavior is considered a learned behavior, which satisfies a
Holling’s Type III interaction.

The foliage coverage of the trees is a slow dynamic compared to the spruce

budworm generation time.

It is a slow dynamic in the model.

Often referred to as a slow moving parameter.
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Spruce Budworm Model 1

The Ludwig, Jones, and Holling model has the following form:

dB

dt
= rBB

(
1−

B

KB

)
− g(B).

rB is the intrinsic growth rate of the spruce budworm.
KB is the carrying capacity, which depends on the availability of the foliage
of the balsam firs.

The rate of predation, g(B), is from avian predators, which associate reward

with prey, a learned behavior.

They focus on their best sources of prey, which allows a low density

prey to escape notice.
The functional form of this type of predation follows the Holling’s
Type III S-shaped response given by:

g(B) = β
B2

α2 +B2
.

β represents the saturation level of the predator (constant population

only eats so much prey).

α determines the densities of spruce budworm that cause avian
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Spruce Budworm Model 2

The spruce budworm model satisfies:

dB

dt
= rBB

(
1− B

KB

)
− β B2

α2 +B2
.

This model above has 4 parameters.

We analyze the behavior of this equation when the slow varying
parameters are held constant.

It is convenient to scale out two of the parameters and analyze
the model depending on only two scaled parameters.

The two parameters are scaled out by changing the population
scale and the time scale.
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Scaling the Variables 1

Scale the population and time by:

µ = sB and τ = qt.

A scaled differential equation is written:

dµ

dτ
=

s

q

dB

dt
=

s

q

(
rBB

(
1−

B

KB

)
− β

B2

α2 +B2

)
=

s

q

(
rB

µ

s

(
1−

µ

sKB

)
− β

(µ/s)2

α2 + (µ/s)2

)

Let s = 1/α, then

dµ

dτ
=
rB

q
µ

(
1−

αµ

KB

)
−

β

αq

(
µ2

1 + µ2

)
.

Take q = β/α, then

dµ

dτ
=
αrB

β
µ

(
1−

αµ

KB

)
−

µ2

1 + µ2
.
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Scaling the Variables 2

If we define the new scaled parameters,

R =
αrB
β

and Q =
KB

α
,

then the scaled model is given by:

dµ

dτ
= Rµ

(
1− µ

Q

)
− µ2

1 + µ2
.

A simple linearization near the equilibrium, µe = 0, gives

dµ

dτ
= Rµ,

which is Malthusian growth and gives the natural result that at low
densities the spruce budworm population grows exponentially.
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Scaling the Variables 3

The scaled model satisfies:

dµ

dτ
= Rµ

(
1− µ

Q

)
− µ2

1 + µ2
.

The non-extinction equilibria satisfy the equation:

f(µ) = R

(
1− µ

Q

)
=

µ

1 + µ2
= g(µ).

We give an ecological perspective of this equation.

The left hand side of the equation, f(µ), is the per capita growth
rate of the scaled population variable, µ, (with respect to the
scaled time, τ = βt/α).

The scaled equation on the right hand side, g(µ), is the per
capita death rate of the spruce budworms due to avian predation.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉 Bifurcation Analysis 1D ODEs — (35/44)

Population Model with Constant Harvesting
Population Models with Proportional Harvesting

Fluxgate Magnetometer
Modeling Spruce Budworm

Ludwig, Jones, and Hollings Model
Dimensionless Variables
Bifurcation Analysis

Scaling the Variables 3

The non-extinction equilibria satisfy the equation:

f(µ) = R

(
1− µ

Q

)
=

µ

1 + µ2
= g(µ).

Points of intersection of the curves formed by the two sides of
the equation above produce non-zero equilibria for the
differential equation for µ.

The equation on the left hand side is a straight line with
intercepts at µ = Q and a y-intercept at R.

The right hand side intersects the origin and has a horizontal
asymptote of y = 0.

The function, g(µ), has a maximum at
(
1, 12

)
.
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Bifurcation Analysis 1

Bifurcation Analysis: The scaled differential equation for the
spruce budworm population model satisfies:

dµ

dτ
= Rµ

(
1− µ

Q

)
− µ2

1 + µ2
.

The parameter Q is approximately constant.

The carrying capacity KB scales with the parameter α.
α measures the densities for predators to change prey
sources.

The parameter R is a more complex combination of parameters.

It slowly increases at low densities.
It decreases when there is an outbreak of the spruce
budworm that causes massive defoliation of the forests.
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Bifurcation Analysis 2

Equilibria: Clearly, there is the trivial or extinction equilibrium,
µe = 0.

Linear analysis shows that this equilibrium is unstable.

When dµ
dτ = 0, the other equilibria satisfy:

f(µ) = R

(
1− µ

Q

)
=

µ

1 + µ2
= g(µ),

which has one to three solutions.

The solutions to this equation are seen by graphing the f(µ) and g(µ)
for different values of R (Q fixed).
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Bifurcation Analysis 3

Begin with a small value of R, say R = 0.25. (Q = 10)

The graph shows there is only one additional equilibrium at µe = 0.260.

This equilibrium is stable.

Biologically, this scaled population represents an endemic population of
spruce budworms in a healthy forest.
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Bifurcation Analysis 4

As the budworm population grows and R increases.

The line, f(µ), becomes tangent to the curve, g(µ), at R = 0.38397.

This is a saddle node (blue sky) bifurcation with a new equilibrium
appearing at µe = 4.828.
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Bifurcation Analysis 5

As R increases, two new equilibria appear with the lower one being unstable and
the upper one being stable.

The solution of the model remains trapped near the lower stable equilibrium.

The spruce budworm population remains endemic, and the forest remains
healthy and can grow with the bird population keeping the budworms
sufficiently in check.
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Bifurcation Analysis 6

As R increases to R = 0.5595, another saddle node (blue sky) bifurcation in the
reverse direction results in the lower two equilibrium points vanishing.

This results in only having a single stable equilibrium with a high value.

Now there is an outbreak of the spruce budworms in large numbers as they
saturate the ability of the predators to control their population.
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Bifurcation Analysis 7

After R exceeds 0.5595, the population goes to a carrying capacity.

This causes massive defoliation of the forests.

The change in the model results in the slow dynamics of the parameter R
with R beginning to decrease.

As defoliation continues, the solution passes through the saddle node
bifurcation at R = 0.5595.

Now the solution remains at the larger equilibrium.

The health of the forest continues to decline.

This continues until the budworms so severely damage the forest that their
population collapses.

At R = 0.38397, a second saddle node bifurcation occurs.

The only remaining equilibrium is the stable endemic equilibrium.

From this point, the cycle between the growth of the forest and the outbreak
of spruce budworms continues in a cyclical manner.
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Bifurcation Analysis 8

This dynamical model has fast dynamics for the population of the spruce
budworm, µ, and includes a slowly varying parameter, R.

This type of model fits something called Catastrophe theory.
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