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Introduction

Discrete models for total population at discrete times tn:

Pn+1 = f(tn, Pn).

Continuous models for total populations, using ODEs:

dP

dt
= f(t, P ).

Leslie model divided population into discrete age classes:

Pn+1 = LPn.

Continuous PDE model, p(t, a):

Allow the population to vary in both time t and age a.
Model described by a PDE.
Dynamics better describe population, but harder to follow
from complexities of analysis.
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Age-Structured Model

Age-Structured Model: Modeling with a hyperbolic PDE.

Mathematical modeling of populations often needs information
about the ages of the individuals in the population.

This modeling approach was developed primarily by McKendrick
(1926) and Von Foerster (1959).

Key Elements in Model

Let n(t, a) denote the population at time t and age a.
The birth rate of individuals b(a) depends on the age of
the adult population.
Similarly, the death rate of individuals µ(a) depends on
the age of the individuals.
Must specify the initial age distribution of the
population, f(a).
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Age-Structured Population

Age-Structured Population: Consider a population, n(t, a),
dependent on time, t, and structured by age of individuals, a.

The dynamics in time must satisfy:

d

dt
n(t, a) =

∂n

∂t
+

da

dt

∂n

∂a
,

by the chain rule.

Most commonly, the age clocks along with time, so da
dt

= 1, so it
follows that

d

dt
n(t, a) =

∂n

∂t
+

∂n

∂a
.

The births all occur at a = 0 (the boundary), so the dynamics of the
population above is only deaths or

∂n

∂t
+

∂n

∂a
= −g(t, a, n).
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Age-Structured Model

Age-Structured Model: The McKendrick-Von Foerster equation is:

∂n

∂t
+

∂n

∂a
+ µ(a)n(t, a) = 0,

with the birth boundary condition (Malthusian):

n(t, 0) =

∫ ∞

0
b(a)n(t, a) da,

and the initial condition:
n(0, a) = f(a).

b(a)

a

Birth Function

a

µ(a)

Death Function

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Age-Structured Models — (6/82)

Age-Structured Model
Introduction - Hematopoiesis

Model for Erythropoiesis
Thrombopoiesis

Method of Characteristics
Birth Boundary Condition
Example

Age-Structured Model

Discussion for the Age-Structured Model

∂n

∂t
+

∂n

∂a
= −µ(a)n(t, a).

The PDE shows that age advances with time.

The right side shows that there is only a loss of population through death
with death increasingly likely with age.

The birth function:

Young individuals are incapable of giving birth
The birth function increases to peak fertility.
Births are Malthusian - proportional to the population.
After peak fertility, reproductive ability decreases, and it
could again decrease to zero.

The initial population distribution could be anything

However, in general the population distribution should decrease with
increasing time.
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Age-Structured Model - Method of Characteristics

t

a

n
(t
,0
)

n(0, a)

a
>
t

a
<
t

The Age-Structured Model:

∂n

∂t
+

∂n

∂a
= −µ(a)n(t, a).

can be written as an ODE:

d

dt
n(t, a) = −µ(a)n(t, a),

along the characteristic,

a(t) = t+ c.

This has the solution:

N(t) = N0 e
−

∫

t

0
µ(s) ds,

which follows the population of a particular age cohort.
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Age-Structured Model - Survival

We can define a survival function

L(a) = e−
∫

a

0
µ(s) ds,

which gives the fraction of individuals surviving from birth to age a.

The survival from a to b is given by

L(a, b) = e−
∫

b

a
µ(s) ds.

From the diagram above, we follow the characteristics to obtain the
solution of the age-structured model:

a < t : n(t, a) = n(t− a, 0)L(0, a),

a > t : n(t, a) = n(0, a− t)L(a− t, a).
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Age-Structured Model

The age-structured model gives the dynamics of a particular age
cohort following a characteristic.

The long term behavior depends significantly on the birth process
on the boundary.

Since this is a type of Malthusian growth (with no limiting
nonlinearities), we expect a type of exponential growth (or
decline) with some rate r and having the form:

n(t, a) = Cn∗(a)ert,

where n∗(a) is the stable age distribution and C depends on the
initial conditions.

For convenience, assume n∗(0) = 1, so that n∗(a) is the fraction of age
a individuals surviving to age a relative to age 0.
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Age-Structure Model - Birth Function

The boundary condition of births is

n(t, 0) =

∫

∞

0

b(a)n(t− a, 0)L(a) da.

Inserting the assumed stable form, n(t, a) = Cn∗(a)ert, gives

Cert =

∫

∞

0

b(a)Cer(t−a)L(a) da,

1 =

∫

∞

0

e−raL(a)b(a) da.

Whether r is positive or negative determines if the overall population
grows or decays.

If r > 0, then the total population grows like Cert
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Age-Structure Model - R0

Ecologists and epidemiologists define an important constant R0,
which is used to determine if a population (or disease) expands or
contracts.

For this population, define

R0 =

∫

∞

0

L(a)b(a) da,

where R0 represents the average number of (female) offspring from an
individual (female) over her lifetime (integral of births times lifespan).

Note that if R0 < 1, then r < 0 and if R0 > 1, then r > 0. The latter
condition indicates that each female during her lifetime must produce
more than one female offspring for the population to grow.

Since n(t, a) = n(t− a, 0)L(a), the stable age distribution satisfies

Certn∗(a) = Cer(t−a)n∗(0)L(a) = Cer(t−a)L(a),

n∗(a) = e−raL(a).
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Age-Structured Model - Example

We can define the average generation time, T , to satisfy:

erT = R0,

so on average a mother replaces herself with R0 offspring.

The value

T =
1

R0

∫

∞

0

aL(a)b(a) da,

gives the average age of reproduction.

Example: Let us examine the age-structured model

∂n

∂t
+

∂n

∂a
+ µ(a)n(t, a) = 0,

with the birth boundary condition:

n(t, 0) =

∫

∞

0

b(a)n(t, a) da.
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Age-Structured Model

In order to perform calculations (with the help of Maple), we take birth and
death functions

b(a) =

{

0.3, 3 < a < 8,
0, otherwise,

and µ(a) = 0.02 e0.25a.

The birth function assumes a constant fecundity of 0.3 between the ages of 3 and
8, while the death function assumes an ever increasing function with age.
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Note: These functions are very crude approximations to the forms displayed
earlier.
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Age-Structured Model

The age-structured model had a survival function

L(a) = e−
∫

a

0
µ(s) ds = e−0.08(e0.25a−1),

which gives the fraction of individuals surviving from birth to age a.
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Age-Structured Model

The basic reproduction number, R0, was given by

R0 =

∫ ∞

0
L(a)b(a) da =

∫ 8

3
0.3e−0.08(e0.25a−1)da = 1.1678,

which is the average number of (female) offspring from an individual (female) over
her lifetime.

With the help of Maple, we can determine the average overall growth rate, r, for
this example.

Maple solves the equation for r:

1 =

∫ ∞

0
e−raL(a)b(a) da =

∫ 8

3
0.3e−rae−0.08(e0.25a−1)da,

and obtains
r = 0.02925985.

This shows the overall population is growing about 3% per unit time.
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Age-Structured Model

The Malthusian growth would not be sustainable over long periods of time, so
nonlinear terms for crowding and other factors would need to be included in the
model, e.g., logistic growth.

With the overall population growth rate, we can obtain the steady-state age
distribution of this population:

n∗(a) = e−raL(a) = e−0.02926ae−0.08(e0.25a−1).
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Stable Age Distribution
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Age-Structured Model

The average generation time, T , satisfies:

erT = R0 or e0.02926T = 1.1678.

so on average a mother replaces herself with R0 offspring in
T = 5.3024 time units.

The value,

T =
1

R0

∫

∞

0

aL(a)b(a) da =
1

1.1678

∫ 8

3

0.3a e−0.08(e0.25a−1)da = 5.33205,

gives the average age of reproduction.

In summary, the method of characteristics allows solutions for the
age-structured model, which can provide interesting information
about the behavior of a population.

Needless to say, these models must be significantly expanded to
manage more realistic populations, which in turn significantly
complicates the mathematical analysis.
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Introduction - Hematopoiesis

Hematopoiesis for Erythrocytes and Platelets

All cells in bloodline begin as undifferentiated stem cells (Multipotential
Hematopoietic Stem Cells)

Different hormonal signals cause differentiation (Common Myeloid
Progenitor (CMP))

Further signals for differentiation

Erythropoiesis – Proerythroblast

Thrombopoiesis – Megakaryoblast

Proliferation via cell doubling

Specialization

Erythropoiesis – Reticulocytes with hemoglobin

Thrombopoiesis – Endomitosis forming Megakaryocytes

Maturation producing Erythrocytes and Platelets

Cell number and volume monitored by body with negative feedback –
Erythropoietin and Thrombopoietin
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Erythropoiesis

Erythropoiesis is the process for producing Erythrocytes or Red
Blood Cells (RBCs).

RBCs are the most numerous cells that we produce in our
bodies, accounting for almost 85% by numbers.

Critical for carrying O2 to our other cells, using the protein
hemoglobin (Hb).

By volume, RBCs are about 40% of blood (∼ 3% body wt).
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Erythropoiesis

Erythrocytes or Red Blood Cells

RBCs begin from undifferentiated stem cells (multipotent
progenitors), then based on erythropoietin (EPO) levels
multiply and specialize.

The body senses O2 levels in the body and releases
erythropoietin (EPO) inversely to the O2 in the blood
(negative feedback).

Progenitor cells specialize though a series of cell divisions and
intracellular changes (taking about 6 days), building
hemoglobin (Hb) levels and becoming RBCs.

RBCs circulate in the bloodstream for about 120 days, then are
actively degraded.
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Model for Erythropoiesis

Age-Structured Model for Erythropoiesis

S0(E) p(t,µ)

∂p

∂t
+ V (E) ∂p

∂µ
= β(µ, E)p

V (E) −→

m(t, ν)

⊖

⊕

⊕

∂m
∂t

+ ∂m
∂ν

= −γ(ν)m

E(t)
Ė = a

1+KM r − kE

M(t) =
∫ νF
0 m(t, ν)dν

0 µ1 µF 0 νF
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Model for Erythropoiesis

Age-Structured Model viewed as a conveyor system
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Active Degradation of RBCs

Active Degradation of RBCs

RBCs are lost from normal leakage (breaking capillaries), which
is simply proportional to the circulating numbers

RBCs age - Cell membrane breaks down (no nucleus to repair)
from squeezing through capillaries

Aged membrane is marked with antibodies

Macrophages destroy least pliable cells based on the antibody
markers

Model assumes constant supply macrophages

Saturated consumption of Erythrocytes

- Satiated predator eating a constant amount per unit time
Constant flux of RBCs being destroyed
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Constant Flux Boundary Condition

Constant Flux Boundary Condition

Let Q be rate of removal of erythrocytes

Erythrocytes lost are Q∆t

Mean Value Theorem - average number RBCs

m(ξ, νF (ξ)) for ξ ∈ (t, t+∆t)

Balance law

Q∆t = W∆t m(ξ, νF (ξ))

−[νF (t+∆t)− νF (t)]m(ξ, νF (ξ))

As ∆t → 0,
Q = [W − ν̇F (t)]m(t, νF (t))
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Constant Flux Boundary Condition

If macrophages consume a constant amount of RBCs at the end
of their, we obtain the natural BC

Q = [W − ν̇F (t)]m(t, νF (t))

This results in the lifespan of the RBCs either lengthening or
shortening from the normal 120 days

This implies that the lifespan of the RBCs depends on the state
of the system
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Model Reduction

Model Reduction: Several simplifying assumptions are made:

Assume that both velocities of aging go with time, t,

V (E) = W = 1.

Assume the birth rate β satisfies:

β(µ,E) =

{

β, µ < µ1,

0, µ ≥ µ1,

Assume that γ is constant.

The model satisfies the age-structured partial differential
equations:

∂p

∂t
+

∂p

∂µ
= β(µ)p,

∂m

∂t
+

∂m

∂ν
= −γm.
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Model for Erythropoiesis

The boundary conditions for the age-structured PDEs are:

Recruitment of the precursors based on EPO concentration circulating in
the blood:

p(t, 0) = S0(E).

Continuity of precursors maturing and entering the bloodstream as mature
RBCs:

p(t, µF ) = m(t, 0).

Active destruction of mature RBCs:

(1− ν̇F (t))m(t, νF (t)) = Q.

The negative feedback by EPO satisfies the ODE:

Ė =
a

1 +KMr
− kE,

where the total mature erythrocyte population is

M(t) =

∫ νF (t)

0
m(t, ν)dν.
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Method of Characteristics

The precursor equation generally has maturing depending on EPO, E(t), but
we assume that V (E) = 1, so time and age are in lockstep.

If we define P (s) = p(t(s), µ(s)), then

dP

ds
=

∂p

∂t

dt

ds
+

∂p

∂µ

dµ

ds
= β(µ(s))P (s).

t

µ

p
(t
,0
)
=

S
0
(E

)

p(t,µ
F
)
=

m
(t,0)

p(0,µ)

µ
>
t

µ
<
t

The method of characteristics
suggests we want

dt

ds
= 1

or
t(s) = s+ t0,

and
dµ

ds
= 1

or
µ(s) = s+ µ0.
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Method of Characteristics

With the method of characteristics, the precursor equation,

dP

ds
= β(µ(s))P (s),

is a birth only population model.

The model assumes that the body uses apoptosis at the early
recruitment stage (CFU-E) to decide how many precursor cells are
allowed to mature.

The solution to the ODE above is

P (s) = p(t, µ) = P (0)e
∫

s

0
β(µ(r))dr,

which is valid for 0 < µ < µF , focusing on the larger time solution.
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Method of Characteristics

This aging process of the precursor cells is primarily a time of amplification in
numbers before the final stages of simply add hemoglobin.

The model shows how recruited cells amplify, then enter the mature
compartment (bloodstream) to circulate and carry O2:

p(t, µF ) = p(t0, 0)e
∫ s
0 β(µ(r))dr

= p(t− µF , 0)eβµ1 = eβµ1S0(E(t− µF )).

From the method of characteristics on the mature RBCs, a similar result gives:

m(t, ν) = m(t − ν, 0)e−γν .

The continuity between the precursors and the mature RBCs gives:

m(t − ν, 0) = p(t− ν, µF ) = eβµ1S0(E(t − µF − ν)).
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Total RBCs

The O2 carrying capacity of the body depends on the total number of RBCs,
which is the integral over all m(t, ν) in ν:

M(t) =

∫ νF (t)

0
m(t − ν, 0)e−γνdν

=

∫ νF (t)

0
eβµ1S0(E(t− µF − ν))e−γνdν,

= e−γ(t−µF )eβµ1

∫ t−µF

t−µF−νF (t)
S0(E(w))eγwdw.

We apply Leibnitz’s rule for differentiating an integral:

Ṁ(t) = −γe−γ(t−µF )eβµ1

∫ t−µF

t−µF−νF (t)
S0(E(w))eγwdw,

+eβµ1

[

S0(E(t − µF ))− S0(E(t − µF − νF (t)))e−γνF (t)(1 − ν̇F (t))
]

= −γM(t) + eβµ1S0(E(t − µF )) −Q,
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Model for Erythropoiesis with Delays

After reduction of PDEs, the state variables become total mature
erythrocytes, M , EPO, E, and age of RBCs, νF .

dM(t)

dt
= eβµ1S0(E(t− µF ))− γM(t)−Q

dE(t)

dt
= f(M(t))− kE(t)

dνF (t)

dt
= 1−

Qe−βµ1eγνF (t)

S0(E(t− µF − νF (t)))

This is a state-dependent delay differential equation.
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Model for Erythropoiesis with Delays

Properties of the Model: Integrating along the characteristics
shows that the maturation process acts like a delay, changing the
age-structured model into a delay differential equation.

The state-dependent delay model has a unique positive
equilibrium.

The delay µF accounts for maturing time.

The state-dependent delay in equation for νF (t) comes from
the varying age of mature cells.

The νF (t) differential equation is uncoupled from the differential
equations for M and E.

Stability is determined by equations for M and E
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DDE with One Delay

Consider the delay differential equation (DDE) with one delay:

ẏ(t) = ay(t) + by(t − r)

If one tries the solution, y(t) = ceλt, then

cλeλt = aceλt + bceλ(t−r),

which gives the characteristic equation

λ− a = be−λr

The boundary of stability is a subset of solutions to the characteristic equation
with λ = iω or

iω − a = be−iωr = b (cos(ωr) − i sin(ωr)) ,

or for λ = 0, the real root crossing satisfies:

a = −b.
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DDE with One Delay

From the characteristic equation with λ = iω, the real and
imaginary parts give the parametric equations:

a(ω) = −b(ω) cos(ωr),

ω = −b(ω) sin(ωr).

Solving these equations for a(ω) and b(ω) gives

a(ω) = ω cot(ωr),

b(ω) = −
ω

sin(ωr),

which are clearly singular at any nπ
r
, n = 0, 1, ...

This creates distinct curves ω ∈
(

(n−1)π
r

, nπ
r

)

for n = 1, 2, ...
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Stability Region - DDE with One Delay

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Stability Region

Stable Region

(1/r, −1/r)

a

b

Real root crossing solid blue line (λ = 0 with a = −b).

“Hopf bifurcation” crossing solid red line.

Curves above create a D-partitioning of the complex plane into distinct
regions with distinct integer number of eigenvalues with real positive parts.
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Comments DDE with One Delay

The characteristic equation of a delay differential equation (DDE) is an
exponential polynomial, which can rarely be solved exactly.

Stability of the DDE is demonstrated by showing all roots (infinite) have negative
real parts.

The analysis above finds the stability region for the DDE

ẏ(t) = ay(t) + by(t − r)

Region with a < 0 and |b| < |a| is stable independent of the delay

As r → 0, the DDE approaches the ODE with stability region a+ b < 0

Stability region comes to a point at
(

1
r
,− 1

r

)

Imaginary root crossings are distinct, non-intersecting curves, leaving this
stability boundary generated by the parametric equations with ω ∈

(

0, π
r

)

.
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Argument Principle

The Argument Principle from complex variables is one technique
for locating the eigenvalues.

Theorem (Argument Principle)

If f(z) is a meromorphic function inside and on some closed

contour C, with f having no zeros or poles on C, then the following

formula holds:
∮

C

f ′(z)

f(z)
dz = 2πi(N − P ),

where N and P denote respectively the number of zeros and poles of

f(z) inside the contour C, with each zero and pole counted as many

times as its multiplicity and order, respectively. This assumes that the

contour C is simple and is oriented counter-clockwise.
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Argument Principle: Stability Analysis

Since the characteristic equation, f(λ), is an analytic function, then the
Argument Principle finds the zeroes of f(λ).

A geometric method of employing the Argument Principle is to consider a
contour, C, (counterclockwise), then create a map f(C) with the analytic
function, f(λ).

The map f(C) creates a curve in the complex plan, and the Argument
Principle states that this map will encircle the origin N times
(counterclockwise), where N is the number of zeroes inside C.

Stability analysis for differential equations with the Argument Principle

(sometimes called Nyquist criterion) uses an appropriate contour in the

right half of complex plane.

For ODEs, create semi-circle radius R with diameter on imaginary

axis, then let R → ∞.

For DDEs, often sufficient to take rectangle from [−π
r
, π
r
] on

imaginary axis and real part arbitrarily large.
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MatLab Application for ODEs

We want to show stability of examples from ODEs

1 ÿ + ẏ − 6y = 0

- Characteristic equation: λ2 + λ− 6 = 0
- Shows 1 encirclements (Unstable)

2 ÿ − 2ẏ + 2y = 0

- Characteristic equation: λ2 − 2λ+ 2 = 0
- Shows 2 encirclements (Unstable)

3 ÿ + 2ẏ + 2y = 0

- Characteristic equation: λ2 + 2λ+ 2 = 0
- Shows no encirclements (Stable)
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Contour

The graph below is the contour to which we apply our
characteristic equations.

0 2 4 6 8 10
-5

0

5

(p, q)

λ = µ+ iν

µ

ν

>

<

<

>
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Argument Principle for Polynomial

Consider the polynomial equation

p(λ) = λ2 + aλ + b.

1 function poly (a,b,p,q)
2 % Polynomial xˆ2 + ax + b
3 % p = x max, q = y max
4

5 h=p/100;
6 k=q/50;
7 x(1) = 0;
8 y(1) = q;
9 u1(1) = x(1)ˆ2-y(1)ˆ2+a * x(1)+b;

10 w1(1) = 2 * x(1) * y(1)+a * y(1);
11 for i=2:101
12 x(i) = 0;
13 y(i) = y(i-1)-k;
14 u1(i) = x(i)ˆ2-y(i)ˆ2+a * x(i)+b;
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Argument Principle for Polynomial

15 w1(i) = 2 * x(i) * y(i)+a * y(i);
16 end
17 for i=102:201
18 x(i) = x(i-1)+h;
19 y(i) = -q;
20 u2(i-101) = x(i)ˆ2-y(i)ˆ2+a * x(i)+b;
21 w2(i-101) = 2 * x(i) * y(i)+a * y(i);
22 end
23 for i=202:301
24 x(i) = p;
25 y(i) = y(i-1)+k;
26 u3(i-201) = x(i)ˆ2-y(i)ˆ2+a * x(i)+b;
27 w3(i-201) = 2 * x(i) * y(i)+a * y(i);
28 end
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Argument Principle for Polynomial

29 for i=302:401
30 x(i) = x(i-1)-h;
31 y(i) = q;
32 u4(i-301) = x(i)ˆ2-y(i)ˆ2+a * x(i)+b;
33 w4(i-301) = 2 * x(i) * y(i)+a * y(i);
34 end
35 plot (u1,w1, 'b-' ,u2,w2, 'r-' ,u3,w3, 'g-' ,u4,w4, 'm-' ); grid
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MatLab Application for DDEs

Eigenvalues for Examples from DDEs

1 ẏ(t) = −y(t)− 3y(t− 1)

- Characteristic equation: λ+ 1 = −3e−λ

- Shows 2 encirclements (Unstable)

2 ẏ(t) = −y(t)− 3y(t− 0.5)

- Characteristic equation: λ+ 1 = −3e−0.5λ

- Shows no encirclements (Stable)

3 ẏ(t) = −y(t) + 6y(t− 1)

- Characteristic equation: λ+ 1 = 6e−λ

- Shows 3 encirclements (Unstable)
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Argument Principle for DDE

Consider the characteristic equation

f(λ) = λ− a− b e−rλ.

1 function delay 1abr(a,b,r,p,q)
2

3 % One-delay z - a - b * eˆ(-r * z)
4 % p = x max, q = y max
5

6 h=p/100;
7 k=q/50;
8 x(1) = 0;
9 y(1) = q;

10 u1(1) = x(1)-a-b * exp (-r * x(1)) * cos (r * y(1));
11 w1(1) = y(1)+b * exp (-r * x(1)) * sin (r * y(1));
12 for i=2:101
13 x(i) = 0;
14 y(i) = y(i-1)-k;
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Argument Principle for DDE

15 u1(i) = x(i)-a-b * exp (-r * x(i)) * cos (r * y(i));
16 w1(i) = y(i)+b * exp (-r * x(i)) * sin (r * y(i));
17 end
18 for i=102:201
19 x(i) = x(i-1)+h;
20 y(i) = -q;
21 u2(i-101) = x(i)-a-b * exp (-r * x(i)) * cos (r * y(i));
22 w2(i-101) = y(i)+b * exp (-r * x(i)) * sin (r * y(i));
23 end
24 for i=202:301
25 x(i) = p;
26 y(i) = y(i-1)+k;
27 u3(i-201) = x(i)-a-b * exp (-r * x(i)) * cos (r * y(i));
28 w3(i-201) = y(i)+b * exp (-r * x(i)) * sin (r * y(i));
29 end
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Argument Principle for DDE

30 for i=302:401
31 x(i) = x(i-1)-h;
32 y(i) = q;
33 u4(i-301) = x(i)-a-b * exp (-r * x(i)) * cos (r * y(i));
34 w4(i-301) = y(i)+b * exp (-r * x(i)) * sin (r * y(i));
35 end
36 plot (u1,w1, 'b-' ,u2,w2, 'r-' ,u3,w3, 'g-' ,u4,w4, 'm-' ); grid
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Linear Analysis of the Model

Due to the negative control by EPO, it can be shown that this
model has a unique equilibrium:

(M̄, Ē, ν̄F ).

With the change of variables, x1(t) = M(t)− M̄ , x2(t) = E(t)− Ē,
and x3(t) = νF (t)− ν̄F and keeping only the linear terms, we obtain
the linear system:

ẋ1(t) = eβµ1S′

0(Ē)x2(t− µF )− γx1(t),

ẋ2(t) = f ′(M̄)x1(t)− kx2(t),

ẋ3(t) =
1

Ē
x2(t− µF − ν̄F )− γx3(t).
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Linear Analysis of the Model

Let X(t) = [x1(t), x2(t), x3(t)]
T , then the linear system can be

written:

Ẋ(t) = A1X(t) +A2X(t− µF ) +A3X(t− µF − ν̄F ),

where

A1 =





−γ 0 0
f ′(M̄ ) −k 0

0 0 −γ



 , A2 =





0 eβµ1S′
0(Ē) 0

0 0 0
0 0 0



 ,

and

A3 =





0 0 0
0 0 0
0 1

Ē
0



 .

We try solutions of the form X(t) = ξeλt giving:

λIξeλt =
[

A1 +A2e
−λµF +A3e

−λ(µF+ν̄F )
]

ξeλt.
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Characteristic Equation

Dividing by eλt results in the eigenvalue equation:

(

A1 +A2e
−λµF +A3e

−λ(µF+ν̄F ) − λI
)

ξ = 0.

So we must solve

det

∣

∣

∣

∣

∣

∣

∣

∣

−γ − λ eβµ1S′

0(Ē)e−λµF 0

f ′(M̄) −k − λ 0

0 1
Ē
e−λ(µF+ν̄F ) −γ − λ

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

which gives the characteristic equation

(λ+ γ)
[

(λ+ γ)(λ+ k) + Āe−λµF
]

= 0,

where Ā ≡ −eβµ1S′

0(Ē)f ′(M̄) > 0.
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Stability Analysis of Delay Model

Stability Analysis of the Delay Model

The characteristic equation is an exponential polynomial given
by

(λ+ γ)

(

(λ+ γ)(λ+ k) + Āe−λµF

)

= 0,

which has one solution λ = −γ.

This shows the stability of the νF equation, which was the
state-dependent portion of the delay model.

Remains to analyze

(λ + γ)(λ+ k) = −Āe−λµF .

The boundary of the stability region occurs at a Hopf bifurcation,
where the eigenvalues are λ = iω, purely imaginary.
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Stability Analysis of Delay Model

Properties of the Exponential Polynomial (Characteristic Equation)

(λ+ γ)(λ + k) + Āe−λµF = 0.

The solution of the characteristic equation has infinitely many roots.

Discrete delay model is infinite dimensional as the initial data must be a
function of the history over the longest delay.

The exponential polynomial has a leading pair of eigenvalues and many of
trailing having negative real part (Stable Manifold Theorem).

Analysis of the delay model is easier than the generalized age-structured
model.

The models are equivalent under the assumption that V (E) = W = 1.

Stability changes to oscillatory when the leading pair of eigenvalues cross
the imaginary axis, a Hopf bifurcation.
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Stability Analysis of Delay Model

Hopf Bifurcation Analysis

A Hopf bifurcation occurs when λ = iω solves the characteristic
equation,

(iω + γ)(iω + k) = −Āe−iωµF .

From complex variables, we match the magnitudes:

|(iω + γ)(iω + k)| = Ā,

where the left side is monotonically increasing in ω, and the
arguments

Θ(ω) ≡ arctan

(

ω

γ

)

+ arctan
(ω

k

)

= π − ωµF ,

which has infinitely many solutions.

Solve for ω by varying parameters such as γ or µF .
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Argument Principle

Hopf Bifurcation: One significant method for finding the roots of
the characteristic equation at a Hopf bifurcation is the Argument

Principle from complex variables.
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Experiments and Model

Experiment:

Give rabbits regular
antibodies to RBCs.

This increases destruction
rate γ.

Observe oscillations
in RBCs.

Model undergoes
Hopf bifurcation

with increasing γ.
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Model for Erythropoiesis

Model can reasonably match the rabbit data by fitting parameters
that are reasonable.

The model stabilizes with variable velocity, V (E), but a more
complicated model.
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Thrombopoiesis

Megakaryocytes Platelets

Thrombopoiesis is the process for producing Thrombocytes or
Platelets.

Platelets are about 20% the size of RBCs and there are only
about 10-20% by numbers compared to RBCs.

They are critical for repairing damage to blood vessels by
clumping together and creating clots.

The half-life for platelets is significantly lower and results in a
very high turnover.
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Thrombopoiesis

Thrombocytes or Platelets

Platelets begin from undifferentiated stem cells (multipotent
progenitors), and based on thrombopoietin (TPO) levels
multiply then stop dividing and undergo endomitosis, forming
megakaryocytes (2-256 nuclei).

Thrombopoietin (TPO) is produced constantly then absorbed
by megakaryocytes and platelets (negative feedback).

Maturation takes 10-14 days, then megakaryocytes protrude
filopodia into blood vessels and platelets are released.

Platelets circulate in the bloodstream for about 10 days, then
are actively degraded.

TPO circulates at significantly lower concentrations compared
to EPO.
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Age-Structured Model for Thrombopoiesis

Age-Structured Model for Thrombopoiesis

Q∗ mx(t, a)

∂mx

∂t
+ ∂mx

∂a
= ηx(T )mx

ηm(T )
ηe(T )

P (t)

⊕

⊕

⊖

⊖

T (t)Tprod
γTT

Me(t) =
∫ τe
0 me(t, ν)dν

τm τe

αPF (P )

γPP
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Model for Thrombopoiesis
Model for Thrombopoiesis

dP

dt
=

D0

βP

me (t, τe)− γPP − αP

PnP

b
nP
P

+ PnP
,

dT

dt
= Tprod − γT T − αT (Me (t) + kSβPP )

TnT

k
nT
T + TnT

,

where

me (t, a) = VmκPQ∗ exp







t−a
∫

t−a−τm

ηm (T (s)) ds






exp





t
∫

t−a

ηe (T (s)) ds



 ,

Me (t) =

τe
∫

0

me (t, a) da.

ηm (T (t)) = ηmin
m +

(

ηmax
m − ηmin

m

) Tnm

b
nm
m + Tnm

,

ηe (T (t)) = ηmin
e +

(

ηmax
e − ηmin

e

) Tne

b
ne
e + Tne
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Notes on Model for Thrombopoiesis

Notes on Model for Thrombopoiesis

The thrombopoiesis model is more complex with many more
parameters than the erythropoiesis model.

The Functional differential equation form is substantially
more complex, especially the 2 delays of maturation (ηm and
ηe).

Age-structure reductions are very similar.

The negative feedbacks differ significantly.

Simulations show clear Hopf bifurcations.

Linear analysis is significantly more difficult.
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Parameters for Model for Thrombopoiesis

Parameters for Model for Thrombopoiesis

Over 20 parameters in model.

Extensive literature search

Identify some directly.
Fit many with existing experimental data.
Insufficient sensitivity analysis at this time.

Found asymptotically stable equilibrium for normal subject.

Could vary several parameters (4) to match diseased patients.
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Cyclical Thrombocytopenia

Cyclical Thrombocytopenia

Rare, but dangerous pathological state, with very high and low
platelet counts oscillating with about a month period.

Source of the disease is unknown, but suspect defective
peripheral control – No good treatment to date.
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Unique Equilibrium

From before, we have the Thrombopoiesis Model:

dP

dt
=

D0

βP

me (t, τe)− γPP − αP

PnP

bnP

P + PnP
,

dT

dt
= Tprod − γTT − αT (Me (t) + kSβPP )

T nT

knT

T + T nT
,

where the functions me(t, τe) and Me(t) are defined as before.

Theorem (Unique Equilibrium)

The Thrombopoiesis Model has a unique positive equilibrium,

(P ∗, T ∗).

Proof: The proof of this result uses the monotonicity of the functions
composing the right hand sides of this system of DEs. It is a highly
nonlinear system, but the positive and negative feedbacks combine to
give a unique equilibrium.
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Linearization

Let x(t) = P (t)− P ∗ and y(t) = T (t) − T ∗ and ignore higher order terms, then
the linearized system becomes:

dx

dt
= A2

[

∂T ηm(T ∗)

∫ t−τe

t−τe−τm

y(s) ds+ ∂T ηe(T
∗)

∫ t

t−τe

y(s) ds

]

−
(

γP + ∂PF (P ∗)
)

x,

dy

dt
= − αT kSβPG(T ∗)x−

(

γT + αT (A1E1 + kSβPP ∗)∂TG(T ∗)
)

y

− αTA1G(T ∗)

(

∂T ηm(T ∗)

∫ τe

0
eηe(T

∗)a

(∫ t−a

t−a−τm

y(s) ds

)

da

+ ∂T ηe(T
∗)

∫ τe

0
eηe(T

∗)a

(∫ t

t−a

y(s) ds

)

da

)

,

where

A2 =
D0VmκP Q∗

βP

e
ηm(T∗)τm+ηe(T∗)τe , A1 = VmκP Q

∗

e
ηm(T∗)τm , E1 =

eηe(T∗)τe − 1

ηe(T∗)
.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Age-Structured Models — (68/82)



Age-Structured Model
Introduction - Hematopoiesis

Model for Erythropoiesis
Thrombopoiesis

Model for Thrombopoiesis
Cyclical Thrombocytopenia
Analysis
2-Delay Aside

Characteristic Equation 1

With solutions of the form [x(t), y(t)]T = [c1, c2]T eλt, the linear functional
equation becomes:

λI

(

c1
c2

)

=

(

−L1 L2(λ)
−L3 −L4(λ)

)(

c1
c2

)

.

The coefficients L1, L2, L3, and L4 are given by

L1 = γP + ∂PF (P
∗

),

L2(λ) =
A2

λ

[

∂T ηm(T
∗

)e
−λτe

(

1 − e
−λτm

)

+ ∂T ηe(T
∗

)
(

1 − e
−λτe

)]

,

L3 = αT kSβPG(T
∗

),

L4(λ) = C1 +
C2

λ

[

∂T ηm(T
∗

)
(

1 − e
−λτm

)

(

1 − e−(λ−ηe(T∗))τe
)

(λ − ηe(T∗))

+ ∂T ηe(T
∗

)





eηe(T∗)τe − 1

ηe(T∗)
+

e−(λ−ηe(T∗))τe − 1

λ − ηe(T∗)





]

,
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Characteristic Equation 2

From the definitions above the Characteristic Equation becomes:

det

∣

∣

∣

∣

−L1 − λ L2(λ)
L3 −L4(λ)− λ

∣

∣

∣

∣

= (λ+ L1)(λ+ L4(λ)) − L2(λ)L3 = 0.

Eliminating the λ terms in the denominator leaves a complicated
exponential polynomial of the form:

P4(λ) + (α1λ+ α0)e
−λτm + (β1λ+ β0)e

−λτe + (γ1λ+ γ0)e
−λ(τe+τm) = 0.

We have failed to obtain any analytic intuition on this exponential

polynomial, but it is readily solved numerically in Maple and

MatLab.
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Numerical Hopf Bifurcation 1

Numerical Hopf Bifurcation

As noted earlier, parameters were fit for a normal subject.

Leading eigenvalues were λ1 ≈ −0.059± 0.053i, which has
the wrong frequency for observed diseased individuals.
The second set of eigenvalues were λ2 ≈ −0.114± 0.359i.
λ2 has appropriate frequency and connects numerically to
all diseased patients studied.

Created hyperline in parameter space connecting the 4

parameters varied between normal subject and each diseased
patient.

Following graphs show variations in the values of the equilibria
and the eigenvalues as the 4 parameters vary continuously.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Age-Structured Models — (71/82)

Age-Structured Model
Introduction - Hematopoiesis

Model for Erythropoiesis
Thrombopoiesis

Model for Thrombopoiesis
Cyclical Thrombocytopenia
Analysis
2-Delay Aside

Numerical Hopf Bifurcation 2
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Numerical Hopf Bifurcation 3

As the 4 parameters vary linearly, the equilibria and the
eigenvalues vary continuously.

However, we observe a cusp-like change in a very small region of
the hyperline (rapid transition).

This needs more detailed exploration.
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Bélair and Mackey Platelet Model

Two-delay Model for Platelets (Bélair and Mackey, 1987)

Platelets

Thrombopoietin β(  )P
γ

Megakaryocytes

T sTm0 m+ T
age

dP

dt
= − γP (t)−γP (t)+β(P (t− Tm))β(P (t− Tm))β(P (t− Tm))−β(P (t

Production of platelets (β(P ))
Linear loss of platelets, (γP )
Discounted destruction of platelets (β(P )e−γTs)

Time delays for maturation (Tm) and life expectancy (Ts)
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Modified Platelet Model 1

Modified Platelet Model

Examine a modified form:

dP

dt
= −γP (t) +

β0θ
nP (t−R)

θn + Pn(t−R)
− f ·

β0θ
nP (t− 1)

θn + Pn(t− 1)

Scaled time to normalize the larger delay

Chose parameters similar to Bélair and Mackey after
scaling

Introduced parameter f , which is different

Wanted a scaling factor, instead of time delay varying
discount
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Modified Platelet Model 2

dP

dt
= −γP (t) +

β0θP (t−R)

θn + Pn(t−R)
− f ·

β0θP (t− 1)

θn + Pn(t− 1)
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Model with Delays near 1/2

 

 

R = 1/2
R = 0.48
R = 0.51

Figure shows stability at R = 1
2 , but irregular oscillations for delays

nearby
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Modified Platelet Model 3

dP

dt
= −γP (t) +

β0θP (t−R)

θn + Pn(t−R)
− f ·

β0θP (t− 1)

θn + Pn(t− 1)
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Model with Delays near 1/3

 

 

R = 1/3
R = 0.318
R = 0.34

Figure shows stability at R = 1
3 , but irregular oscillations for delays

nearby (Same parameters as R = 1
2 )
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Two-Delay Differential Equation

Two-Delay Differential Equation

ẏ(t) +Ay(t) +B y(t− 1) + C y(t−R) = 0

Delay equations are important in modeling

Two-delay problem

E. F. Infante noted an odd stability property observed in a
two delay economic model, rational delays created a larger
region of stability
Multiple delays are important for biological models
Developed special geometric techniques for analysis of delay
equations
JM and T. C. Busken, Regions of stability for a linear
differential equation with two rationally dependent delays,
DCDS A, 35, 4955-4986 (2015)
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Stability Regions for Different Delays

Technique creates parametric families of curves from the image
of the imaginary axis

Similarity of limited family types prevent approach of Minimum
Region of Stability (Black dashed lines)

Below shows first 100 parametric curves for A = 1000
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Modified Platelet Model 1

Returning to the modified platelet model

The coefficients of the linearized model are approximately
(A,B,C) = (100, 35,−100) (black circle)

Our D-partitioning curves for R = 1
3 are below
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Modified Platelet Model 2

The coefficients of the linearized model are approximately
(A,B,C) = (100, 35,−100) (black circle)

Our D-partitioning curves for R = 0.318 are below
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Discussion/Conclusions

Created age-structured models for hematopoiesis

Can fit parameters to experimental data

Reasonably fit normal and diseased patients

Provides some insight to cyclical thrombocytopenia

Remains some sensitivity issues with parameters - start
examining a simpler model

Ultimately want model to give insights into treatments
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