Math 541 - Numerical Analysis

Interpolation and Polynomial Approximation Piecewise Polynomial Approximation; Cubic Splines

Joseph M. Mahaffy, $\langle j m a h a f f y @ m a i l . s d s u . e d u\rangle$
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://jmahaffy.sdsu.edu
$$
\text { Spring } 2018
$$

Outline

(1) Polynomial Interpolation

- Checking the Roadmap
- Undesirable Side-effects
- New Ideas...
(2) Cubic Splines
- Introduction
- Building the Spline Segments
- Associated Linear Systems
(3) Cubic Splines...
- Error Bound
- Solving the Linear Systems

An n-degree polynomial passing through $n+1$ points

Polynomial Interpolation

Construct a polynomial passing through the points $\left(x_{0}, f\left(x_{0}\right)\right)$, $\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right), \ldots,\left(x_{N}, f\left(x_{n}\right)\right)$.
Define $L_{n, k}(x)$, the Lagrange coefficients:

$$
\mathbf{L}_{\mathbf{n}, \mathbf{k}}(\mathbf{x})=\prod_{\mathrm{i}=0, \mathbf{i} \neq \mathbf{k}}^{\mathrm{n}} \frac{\mathbf{x}-\mathbf{x}_{\mathbf{i}}}{\mathbf{x}_{\mathbf{k}}-\mathbf{x}_{\mathbf{i}}}=\frac{x-x_{0}}{x_{k}-x_{0}} \cdots \frac{x-x_{k-1}}{x_{k}-x_{k-1}} \cdot \frac{x-x_{k+1}}{x_{k}-x_{k+1}} \cdots \frac{x-x_{n}}{x_{k}-x_{n}}
$$

which have the properties

$$
L_{n, k}\left(x_{k}\right)=1 ; \quad L_{n, k}\left(x_{i}\right)=0, \quad \text { for all } i \neq k .
$$

The $n^{\text {th }}$ Lagrange Interpolating Polynomial

We use $L_{n, k}(x), k=0, \ldots, n$ as building blocks for the Lagrange interpolating polynomial:

$$
P(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x)
$$

which has the property

$$
P\left(x_{i}\right)=f\left(x_{i}\right), \quad \text { for all } i=0, \ldots, n .
$$

This is the unique $n^{\text {th }}$ degree polynomial passing through the points
$\left(x_{i}, f\left(x_{i}\right)\right), i=0, \ldots, n$.

Combining Taylor and Lagrange Polynomials

A Taylor polynomial of degree n matches the function and its first n derivatives at one point.
A Lagrange polynomial of degree n matches the function values at $n+1$ points.
Question: Can we combine the ideas of Taylor and Lagrange to get an interpolating polynomial that matches both the function values and some number of derivatives at multiple points?
Answer: To our euphoric joy, such polynomials exist! They are called Osculating Polynomials.

The Concise Oxford Dictionary:

Osculate 1. (arch. or joc.) kiss. 2. (Biol., of species, etc.) be related through intermediate species etc., have common characteristics with another or with each other. 3. (Math., of curve or surface) have contact of higher than first order with, meet at three or more coincident points.

Osculating Polynomials

In Painful Generality

Given $(n+1)$ distinct points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \in[a, b]$, and non-negative integers $\left\{m_{0}, m_{1}, \ldots, m_{n}\right\}$.
Notation: Let $m=\max \left\{m_{0}, m_{1}, \ldots, m_{n}\right\}$.
The osculating polynomial approximation of a function $f \in C^{m}[a, b]$ at $x_{i}, i=0,1, \ldots, n$ is the polynomial (of lowest possible order) that agrees with

$$
\left\{f\left(x_{i}\right), f^{\prime}\left(x_{i}\right), \ldots, f^{\left(m_{i}\right)}\left(x_{i}\right)\right\} \text { at } x_{i} \in[a, b], \forall i
$$

The degree of the osculating polynomial is at most

$$
M=n+\sum_{i=0}^{n} m_{i} .
$$

In the case where $m_{i}=1, \forall i$ the polynomial is called a Hermite Interpolatory Polynomial.

Hermite Interpolatory Polynomials

The Existence Statement

If $f \in C^{1}[a, b]$ and $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \in[a, b]$ are distinct, the unique polynomial of least degree $(\leq 2 n+1)$ agreeing with $f(x)$ and $f^{\prime}(x)$ at $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is

$$
\mathbf{H}_{2 \mathrm{n}+\mathbf{1}}(\mathrm{x})=\sum_{\mathrm{j}=\mathbf{0}}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \mathbf{H}_{\mathrm{n}, \mathrm{j}}(\mathrm{x})+\sum_{\mathrm{j}=0}^{\mathrm{n}} \mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right) \hat{\mathbf{H}}_{\mathrm{n}, \mathrm{j}}(\mathrm{x})
$$

where

$$
\begin{gathered}
H_{n, j}(x)=\left[1-2\left(x-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right] L_{n, j}^{2}(x) \\
\hat{H}_{n, j}(x)=\left(x-x_{j}\right) L_{n, j}^{2}(x),
\end{gathered}
$$

and $L_{n, j}(x)$ are our old friends, the Lagrange coefficients:

$$
L_{n, j}(x)=\prod_{i=0, i \neq j}^{n} \frac{x-x_{i}}{x_{j}-x_{i}}
$$

Further, if $f \in C^{2 n+2}[a, b]$, then for some $\xi(x) \in[a, b]$

$$
f(x)=H_{2 n+1}(x)+\frac{\prod_{i=0}^{n}\left(x-x_{i}\right)^{2}}{(2 n+2)!} f^{(2 n+2)}(\xi(x))
$$

Example of Interpreting Polynomials

Consider the function $f(x)=\sin (2 x)$. The graph below shows fits of 3 and 6 points with Lagrange $P_{2}(x)$ and $P_{5}(x)$, respectively, and 3 points, x_{i}, with $f\left(x_{i}\right)$ and $f^{\prime}\left(x_{i}\right)$, using Hermite $H_{5}(x)$ polynomials.

Checking the Roadmap

Inspired by Weierstrass, we have looked at a number of strategies for approximating arbitrary functions using polynomials.

Taylor
Detailed information from one point, excellent locally, but not very successful for extended intervals.
$\leq n$th degree poly. interpolating the function in $(n+1)$ pts.
Lagrange Representation: Theoretical using the Lagrange coefficients $L_{n, k}(x)$
$\leq(2 n+1)$ th degree polynomial interpolating the function, and
Hermite matching its first derivative in $(n+1)$ points.
Representation: Theoretical using two types of Hermite coefficients $H_{n, k}(x)$, and $\widehat{H}_{n, k}(x)$

With $(n+1)$ points, and a uniform matching criteria of m derivatives in each point we can talk about these in terms of the broader class of osculating polynomials with:
Taylor($\mathrm{m}, \mathrm{n}=0$), Lagrange $(\mathrm{m}=0, \mathrm{n})$, Hermite($\mathrm{m}=1, \mathrm{n}$); with resulting degree $d \leq(m+1)(n+1)-1$.

Admiring the Roadmap... Are We Done?

There are many methods (Neville, Newton's divided difference) to produce representations of arbitrary osculating polynomials... We have swept a dirty little secret under the rug: -

For all these interpolation strategies we get - provided the underlying function is smooth enough, i.e. $f \in C^{(m+1)(n+1)}([a, b])-$ errors of the form

$$
\underbrace{\frac{\prod_{i=0}^{n}\left(x-x_{i}\right)^{(m+1)}}{((m+1)(n+1))!}}_{\eta(x)} f^{((m+1)(n+1))}(\xi(x)), \quad \xi(x) \in[a, b]
$$

We have seen that with the x_{i} 's dispersed (Lagrange / Hermite-style), the controllable part, $\eta(x)$, of the error term is better behaved than for Taylor polynomials (but is it well-behaved enough?!) However, we have no control over the $((n+1)(m+1))$ th derivative of f.

Problems with High Order Polynomial Approximation

We can force a polynomial of high degree to pass through as many points ($\left.x_{i}, f\left(x_{i}\right)\right)$ as we like. However, high degree polynomials tend to fluctuate wildly between the interpolating points.

Alternative Approach to Interpolation

The oscillations tend to be extremely bad close to the end points of the interval of interest, and (in general) the more points you put in, the wilder the oscillations get!

Clearly, we need some new tricks!
Idea: Divide the interval into smaller sub-intervals, and construct different low degree polynomial approximations (with small oscillations) on the sub-intervals.

This is called Piecewise Polynomial Approximation.
Simplest continuous variant: Piecewise Linear Approximation:

Piecewise Linear Approximation

Figure: Piecewise linear approximation of the same data as on slide 11. Is this the end of excessive oscillations?!?

Problem with Piecewise Linear Approximation

The piecewise linear interpolating function is not differentiable at the "nodes," i.e. the points x_{i}. (Typically we want to do more than just plot the polynomial... and even plotting shows sharp corners!)

Idea: Strengthened by our experience with Hermite polynomials, why not generate piecewise polynomials that match both the function value and some number of derivatives in the nodes!

The Return of the Cubic Hermite Polynomial!

If, for instance $f(x)$ and $f^{\prime}(x)$ are known in the nodes, we can use a collection of cubic Hermite polynomials $H_{j}^{3}(x)$ to build up such a function.
But... what if $f^{\prime}(x)$ is not known (in general getting measurements of the derivative of a physical process is much more difficult and unreliable than measuring the quantity itself), can we still generate an interpolant with continuous derivative(s)???

An Old Idea: Splines

(Edited for Space, and "Content") Wikipedia Definition: Spline -

A spline consists of a long strip of wood (a lath) fixed in position at a number of points. Shipwrights often used splines to mark the curve of a hull. The lath will take the shape which minimizes the energy required for bending it between the fixed points, and thus adopt the smoothest possible shape.
Later craftsmen have made splines out of rubber, steel, and other elastomeric materials.
Spline devices help bend the wood for pianos, violins, violas, etc. The Wright brothers used one to shape the wings of their aircraft.
In 1946 mathematicians started studying the spline shape, and derived the piecewise polynomial formula known as the spline curve or function. This has led to the widespread use of such functions in computer-aided design, especially in the surface designs of vehicles.

Modern Spline Construction: - A Model Railroad

soso

Applications \& Pretty Pictures

soso

Applications \& Pretty Pictures

soso
$(18 / 48)$

Cubic Splines to the Rescue!!!

1D-version

Given a function f defined on $[a, b]$ and a set of nodes $a=x_{0}<x_{1}<\cdots<x_{n}=b$, a cubic spline interpolant S for f is a function that satisfies the following conditions:
a. $S(x)$ is a cubic polynomial, denoted $S_{j}(x)$, on the sub-interval $\left[x_{j}, x_{j+1}\right] \forall j=0,1, \ldots, n-1$.
b. $\quad S_{j}\left(x_{j}\right)=f\left(x_{j}\right), \forall j=0,1, \ldots,(n-1)$.
c. $\quad S_{j}\left(x_{j+1}\right)=f\left(x_{j+1}\right), \forall j=0,1, \ldots,(n-1)$.
d. $S_{j}^{\prime}\left(x_{j+1}\right)=S_{j+1}^{\prime}\left(x_{j+1}\right), \forall j=0,1, \ldots,(n-2)$.
e. $S_{j}^{\prime \prime}\left(x_{j+1}\right)=S_{j+1}^{\prime \prime}\left(x_{j+1}\right), \forall j=0,1, \ldots,(n-2)$.
"Left" Interpolation
"Right" Interpolation
Slope-match

Curvature-match

A Spline Segment

The spline segment $S_{j}(x)$ "lives" on the interval $\left[x_{j}, x_{j+1}\right]$. The spline segment $S_{j+1}(x)$ "lives" on the interval $\left[x_{j+1}, x_{j+2}\right]$.
Their function values: $\quad S_{j}\left(x_{j+1}\right)=S_{j+1}\left(x_{j+1}\right)=f\left(x_{j+1}\right)$ derivatives: $\quad S_{j}^{\prime}\left(x_{j+1}\right)=S_{j+1}^{\prime}\left(x_{j+1}\right)$ and second derivatives: $\quad S_{j}^{\prime \prime}\left(x_{j+1}\right)=S_{j+1}^{\prime \prime}\left(x_{j+1}\right)$
\ldots are required to match in the interior point x_{j+1}.

Example "Cartoon": Cubic Spline.

Example "Progressive" Cubic Spline Interpolation

5050

Example "Progressive" Cubic Spline Interpolation

s0S0

Building Cubic Splines, I. - Applying the Conditions

We start with

$$
\begin{aligned}
& S_{j}(x)=a_{j}+b_{j}\left(x-x_{j}\right)+c_{j}\left(x-x_{j}\right)^{2}+d_{j}\left(x-x_{j}\right)^{3} \\
& \forall j \in\{0,1, \ldots, n-1\}
\end{aligned}
$$

and apply all the conditions to these polynomials...
For convenience we introduce the notation $h_{j}=x_{j+1}-x_{j}$.
b. $\quad S_{j}\left(x_{j}\right)=a_{j}=f\left(x_{j}\right)$
c. $\quad S_{j+1}\left(x_{j+1}\right)=\mathbf{a}_{\mathbf{j}+1}=\mathbf{a}_{\mathbf{j}}+\mathbf{b}_{\mathbf{j}} \mathbf{h}_{\mathbf{j}}+\mathbf{c}_{\mathbf{j}} \mathbf{h}_{\mathbf{j}}^{\mathbf{2}}+\mathbf{d}_{\mathbf{j}} \mathbf{h}_{\mathbf{j}}^{3}=S_{j}\left(x_{j+1}\right)$
d. Notice $S_{j}^{\prime}\left(x_{j}\right)=b_{j}$, hence we get

$$
\mathrm{b}_{\mathrm{j}+1}=\mathrm{b}_{\mathrm{j}}+2 \mathrm{c}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}+3 \mathrm{~d}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}^{2}
$$

e. Notice $S_{j}^{\prime \prime}\left(x_{j}\right)=2 c_{j}$, hence we get $\mathbf{c}_{\mathbf{j}+1}=\mathbf{c}_{\mathbf{j}}+3 \mathbf{d}_{\mathbf{j}} \mathbf{h}_{\mathbf{j}}$.
— We got a whole lot of equations to solve!!! (How many???) soso

Cubic Splines, II. - Solving the Resulting Equations.

We solve $[\mathbf{e}]$ for $d_{j}=\frac{c_{j+1}-c_{j}}{3 h_{j}}$, and plug into $[\mathbf{c}]$ and $[\mathbf{d}]$ to get

$$
\begin{aligned}
& {\left[\mathbf{c}^{\prime}\right] a_{j+1}=a_{j}+b_{j} h_{j}+\frac{h_{j}^{2}}{3}\left(2 c_{j}+c_{j+1}\right),} \\
& {\left[\mathbf{d}^{\prime}\right] b_{j+1}=b_{j}+h_{j}\left(c_{j}+c_{j+1}\right)}
\end{aligned}
$$

We solve for b_{j} in [$\left.\mathbf{c}^{\prime}\right]$ and get

$$
[*] b_{j}=\frac{1}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{h_{j}}{3}\left(2 c_{j}+c_{j+1}\right)
$$

Reduce the index by 1 , to get

$$
[* \cdot] b_{j-1}=\frac{1}{h_{j-1}}\left(a_{j}-a_{j-1}\right)-\frac{h_{j-1}}{3}\left(2 c_{j-1}+c_{j}\right)
$$

Plug [*] (lhs) and [*'] (rhs) into the index-reduced-by-1 version of [d'], i.e.

$$
\left[\mathbf{d}^{\prime \prime}\right] b_{j}=b_{j-1}+h_{j-1}\left(c_{j-1}+c_{j}\right)
$$

Cubic Splines, III. - A Linear System of Equations

After some "massaging" we end up with the linear system of equations for $j \in\{1,2, \ldots, n-1\}$ (the interior nodes).
$h_{j-1} c_{j-1}+2\left(h_{j-1}+h_{j}\right) c_{j}+h_{j} c_{j+1}=\frac{3}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{3}{h_{j-1}}\left(a_{j}-a_{j-1}\right)$.
Notice: The only unknowns are $\left\{c_{j}\right\}_{j=0}^{n}$, since the values of $\left\{a_{j}\right\}_{j=0}^{n}$ and $\left\{h_{j}\right\}_{j=0}^{n-1}$ are given.
Once we compute $\left\{c_{j}\right\}_{j=0}^{n-1}$, we get

$$
b_{j}=\frac{a_{j+1}-a_{j}}{h_{j}}-\frac{h_{j}\left(2 c_{j}+c_{j+1}\right)}{3}, \quad \text { and } \quad d_{j}=\frac{c_{j+1}-c_{j}}{3 h_{j}} .
$$

We are almost ready to solve for the coefficients $\left\{c_{j}\right\}_{j=0}^{n-1}$, but we only have $(n-1)$ equations for $(n+1)$ unknowns...

Cubic Splines, IV. - Completing the System

We can complete the system in many ways, some common ones are...

Natural boundary conditions:

$$
\begin{array}{cccc}
{[\mathbf{n 1}]} & 0=S_{0}^{\prime \prime}\left(x_{0}\right)=2 c_{0} & \Rightarrow & c_{0}=0 \\
{[\mathbf{n 2}]} & 0=S_{n}^{\prime \prime}\left(x_{n}\right)=2 c_{n} & \Rightarrow \quad c_{n}=0
\end{array}
$$

Cubic Splines, IV. - Completing the System
We can complete the system in many ways, some common ones are...

Clamped boundary conditions: (Derivative known at endpoints).

$$
\begin{aligned}
{[\mathbf{c} 1] } & S_{0}^{\prime}\left(x_{0}\right) \\
{[\mathbf{c 2}] } & S_{0}=f^{\prime}\left(x_{0}\right) \\
S_{n-1}\left(x_{n}\right) & =b_{n}=b_{n-1}+h_{n-1}\left(c_{n-1}+c_{n}\right)=f^{\prime}\left(x_{n}\right)
\end{aligned}
$$

[$\mathbf{c 1}]$ and $[\mathbf{c 2}]$ give the additional equations

$$
\begin{array}{lrl}
{\left[\mathbf{c 1}^{\prime}\right]} & 2 h_{0} c_{0}+h_{0} c_{1} & =\frac{3}{h_{0}}\left(a_{1}-a_{0}\right)-3 f^{\prime}\left(x_{0}\right) \\
{\left[\mathbf{c 2}^{\prime}\right]} & h_{n-1} c_{n-1}+2 h_{n-1} c_{n} & =3 f^{\prime}\left(x_{n}\right)-\frac{3}{h_{n-1}}\left(a_{n}-a_{n-1}\right) .
\end{array}
$$

Cubic Splines, IV. - Completing the System

Given a function f defined on $[a, b]$ and a set of nodes $a=x_{0}<x_{1}<\cdots<x_{n}=b$, a cubic spline interpolant S for f is a function that satisfies the following conditions:
a. $\quad S(x)$ is a cubic polynomial, denoted $S_{j}(x)$, on the sub-interval $\left[x_{j}, x_{j+1}\right] \forall j=0,1, \ldots, n-1$.
b. $\quad S_{j}\left(x_{j}\right)=f\left(x_{j}\right), \forall j=0,1, \ldots,(n-1)$.
"Left" Interpolation
c. $\quad S_{j}\left(x_{j+1}\right)=f\left(x_{j+1}\right), \forall j=0,1, \ldots,(n-1)$.
d. $S_{j}^{\prime}\left(x_{j+1}\right)=S_{j+1}^{\prime}\left(x_{j+1}\right), \forall j=0,1, \ldots,(n-2)$.
"Right" Interpolation
e. $\quad S_{j}^{\prime \prime}\left(x_{j+1}\right)=S_{j+1}^{\prime \prime}\left(x_{j+1}\right), \forall j=0,1, \ldots,(n-2)$.
f. One of the following sets of boundary conditions is satisfied:

1. $S^{\prime \prime}\left(x_{0}\right)=S^{\prime \prime}\left(x_{n}\right)=0$, - free / natural boundary
2. $S^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$ and $S^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)$, clamped boundary

Natural Boundary Conditions: Linear System, $A \tilde{\mathbf{x}}=\tilde{\mathbf{y}}$

We end up with a linear system of equations, $A \tilde{\mathbf{x}}=\tilde{\mathbf{y}}$, where
$A=\left[\begin{array}{cccccc}1 & 0 & 0 & \cdots & \cdots & 0 \\ h_{0} & 2\left(h_{0}+h_{1}\right) & h_{1} & \ddots & & \vdots \\ 0 & h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & h_{n-2} & 2\left(h_{n-2}+h_{n-1}\right) & h_{n-1} \\ 0 & \cdots & \cdots & 0 & 0 & 1\end{array}\right]$,

Boundary Terms: marked in red-bold.
soso

Natural Boundary Conditions: Linear System, $A \tilde{\mathbf{x}}=\tilde{\mathbf{y}}$

We end up with a linear system of equations, $A \tilde{\mathbf{x}}=\tilde{\mathbf{y}}$, where

$$
\tilde{\mathbf{y}}=\left[\begin{array}{c}
0 \\
\frac{3\left(a_{2}-a_{1}\right)}{h_{1}}-\frac{3\left(a_{1}-a_{0}\right)}{h_{0}} \\
\vdots \\
\frac{3\left(a_{n}-a_{n-1}\right)}{h_{n-1}}-\frac{3\left(a_{n-1}-a_{n-2}\right)}{h_{n-2}} \\
0
\end{array}\right], \quad \tilde{\mathbf{x}}=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1} \\
c_{n}
\end{array}\right]
$$

$\tilde{\mathbf{x}}$ are the unknowns (the quantity we are solving for!)
Boundary Terms: marked in red-bold.

Clamped Boundary Conditions: Linear System

We end up with a linear system of equations, $A \tilde{\mathbf{x}}=\tilde{\mathbf{y}}$, where
$A=\left[\begin{array}{cccccc}2 \mathbf{h}_{0} & \mathbf{h}_{0} & 0 & \cdots & \cdots & 0 \\ h_{0} & 2\left(h_{0}+h_{1}\right) & h_{1} & \ddots & & \vdots \\ 0 & h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & h_{n-2} & 2\left(h_{n-2}+h_{n-1}\right) & h_{n-1} \\ 0 & \cdots & \cdots & 0 & \mathbf{h}_{\mathbf{n}-1} & 2 \mathbf{h}_{\mathbf{n}-1}\end{array}\right.$

Boundary Terms: marked in red-bold.

Cubic Spline Natural B.C.

MatLab code for a cubic spline with Natural Boundary conditions.

```
    % Cubic Spline Interpolation - Natural Spline
    % INPUT: xi is the grid (points on x-axis) and a ...
        are points on y-axis. inter
    % is the point on the x-axis you want to know the ...
        value of on the y-axis.
    function [P] = cubic_splinenat(xi,a)
    if length(xi) f= length(a)
        erro('vectors xi and a must be of same length');
    end
    % Plotting points we want to interpolate between:
        grid on; hold on;
        title('Cubic Spline Interpolation');
        plot(xi,a,'or');
```


Cubic Spline Natural B.C.

```
16 n = length(xi);
17
18 % Vector h with subintervals:
h = zeros(n-1,1);
    for j = 1:n-1
        h(j) = xi(j+1) - xi(j);
        end
        % Coefficient matrix A:
        A = zeros(n);
        % Natural Spline boundary conditions:
        A (1, 1) = 1;
        A(n,n) = 1;
```


Cubic Spline Natural B.C.

```
for i = 2:n-1
    A(i,i-1) = h(i-1);
    A(i,i) = 2*(h(i-1) +h(i));
    A(i,i+1) = h(i);
    end
    % Vector b:
b = zeros(n,1);
    for i = 2:n-1
        b(i)=(3/h(i))*(a(i+1)-a(i)) - ...
        (3/h(i-1))*(a(i)-a(i-1));
end
    % Coefficient vector cj:
    cj = A\b;
```


Cubic Spline Natural B.C.

```
47 % Coefficient vector bj:
48 bj = zeros(n-1,1);
for i = 1:n-1
    bj(i) = (1/h(i))*(a(i+1)-a(i)) - ...
        (1/3*h(i))*(2*cj(i) +cj(i+1));
end
    % Coefficient vector dj:
    dj = zeros(n-1,1);
    for i = 1:n-1
    dj(i) = (1/(3*h(i))) * (cj(i+1)-cj(i));
    end
    % Making a matrix P with all polynomials (and ...
        intervals)
60 P = zeros(n-1,4);
61 X = zeros (n-1,2);
```


Cubic Spline Natural B.C.

```
62 for i = 1:n-1
63 P(i,1) = dj(i);
64 P(i,2) = cj(i);
65 P(i,3) = bj(i);
66 P(i,4) = a(i);
67 X(i,1) = xi(i);
68 X(i,2) = xi(i+1);
69 end
70 P = [P,X];
```


Cubic Spline Natural B.C.

```
72 % Plotting results:
resolution = 100;
for i = 1:n-1
    f = @(x) a(i) + bj(i).*(x-xi(i)) + ...
            cj(i).*(x-xi(i)).^2 + dj(i).*(x-xi(i)).^^3;
    xf = linspace(xi(i),xi(i+1),resolution);
    plot(xf,f(xf),'b-');
end
%print -depsc spline_nat.eps
end
```


Cubic Spline Natural B.C.

Cubic Spline with Natural boundary conditions

Clamped Boundary Conditions: Linear System

We end up with a linear system of equations, $A \tilde{\mathbf{x}}=\tilde{\mathbf{y}}$, where

$$
\tilde{\mathbf{y}}=\left[\begin{array}{c}
\frac{3\left(\mathbf{a}_{1}-\mathbf{a}_{0}\right)}{\mathbf{h}_{0}}-3 \mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{0}}\right) \\
\frac{3\left(a_{2}-a_{1}\right)}{h_{1}}-\frac{3\left(a_{1}-a_{0}\right)}{h_{0}} \\
\vdots \\
\frac{3\left(a_{n}-a_{n-1}\right)}{h_{n-1}}-\frac{3\left(a_{n-1}-a_{n-2}\right)}{h_{n-2}} \\
3 \mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{n}}\right)-\frac{3\left(\mathbf{a}_{\mathbf{n}}-\mathbf{a}_{\mathbf{n}-1}\right)}{\mathbf{h}_{\mathbf{n}-1}}
\end{array}\right], \quad \tilde{\mathbf{x}}=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1} \\
c_{n}
\end{array}\right]
$$

Boundary Terms: marked in red-bold.

Cubic Spline clamped B.C.

MatLab code changes for a cubic spline with Clamped Boundary conditions.

1 \% Cubic Spline Interpolation - Clamped
2 \% INPUT: xi is the grid (points on x-axis) and a ... are points on y-axis. inter
3 \% is the point on the x-axis you want to know the ... value of on the y-axis.
4
5 function $[P]=$ cubic_splineclp(xi,a,fp)

Cubic Spline clamped B.C.

More MatLab code changes for a cubic spline with Clamped Boundary conditions.

```
27 % Clamped boundary conditions:
28 A (1, 1) = 2*h(1);
29 A (1, 2) = h(1);
30 A (n,n) = 2*h(n-1);
31 A (n,n-1) = h(n-1);
```

```
39 % Vector b:
40 b = zeros(n,1);
41 b (1) = (3/h(1))*(a(2)-a(1)) - 3*fp(1);
42 b (n) = 3*fp (2) - (3/h(n-1))* (a(n)-a(n-1));
```


Cubic Spline clamped B.C.

Cubic Spline with clamped boundary conditions
Cubic Spline Interpolation

Cubic Splines, The Error Bound

No numerical story is complete without an error bound... If $f \in C^{4}[a, b]$, let

$$
M=\max _{a \leq x \leq b}\left|f^{4}(x)\right| .
$$

If S is the unique clamped cubic spline interpolant to f with respect to the nodes $a=x_{0}<x_{1}<\cdots<x_{n}=b$, then with

$$
\begin{gathered}
h=\max _{0 \leq j \leq n-1}\left(x_{j+1}-x_{j}\right)=\max _{0 \leq j \leq n-1} h_{j} \\
\max _{a \leq x \leq b}|f(x)-S(x)| \leq \frac{5 M h^{4}}{384}
\end{gathered}
$$

Banded Matrices

[REFERENCE]

We notice that the linear systems for both natural and clamped boundary conditions give rise to tri-diagonal linear systems.

Further, these systems are strictly diagonally dominant the entries on the diagonal outweigh the sum of the off-diagonal elements (in absolute terms) - , so pivoting (re-arrangement to avoid division by a small number) is not needed when solving for $\tilde{\mathbf{x}}$ using Gaussian Elimination...

This means that these systems can be solved very quickly (we will revisit this topic later on, but for now the algorithm is on the next couple of slides), see also "Computational Linear Algebra / Numerical Matrix Analysis."Math 543

Algorithm: Solving $T x=b$ in $\mathcal{O}(n)$ Time, I.

The Thomas Algorithm

Given the $N \times N$ tridiagonal matrix T and the $N \times 1$ vector y :
Step 1: The first row:

$$
\begin{aligned}
& l_{1,1}=T_{1,1} \\
& u_{1,2}=T_{1,2} / l_{1,1} \\
& z_{1}=y_{1} / l_{1,1}
\end{aligned}
$$

Step 2: FOR $i=2:(n-1)$

$$
\begin{array}{ll}
l_{i, i-1} & =T_{i, i-1} \\
l_{i, i} & =T_{i, i}-l_{i, i-1} u_{i-1, i} \\
u_{i, i+1} & =T_{i, i+1} / l_{i, i} \\
z_{i} & =\left(y_{i}-l_{i, i-1} z_{i-1}\right) / l_{i, i}
\end{array}
$$

END
Step 3: The last row:

$$
\begin{array}{ll}
l_{n, n-1} & =T_{n, n-1} \\
l_{n, n} & =T_{n, n}-l_{n, n-1} u_{n-1, n} \\
z_{n} & =\left(y_{n}-l_{n, n-1} z_{n-1}\right) / l_{n, n}
\end{array}
$$

Step 4: $x_{n}=z_{n}$
Step 5: FOR $i=(n-1):-1: 1$

$$
x_{i}=z_{i}-u_{i, i+1} x_{i+1}
$$

END

The Thomas Algorithm: Solving $T x=b$ in $\mathcal{O}(n)$ Time, II. [Reference]

The algorithm computes both the $L U$-factorization of T, as well as the solution $\tilde{\mathbf{x}}=T^{-1} \tilde{\mathbf{y}}$. Steps $1-3$ computes $\tilde{\mathbf{z}}=L^{-1} \tilde{\mathbf{y}}$, and steps $4-5$ computes $\tilde{\mathbf{x}}=U^{-1} \tilde{\mathbf{z}}$.

MatLab Tridiagonal Solver

It is more efficient to store our matrix A as only 3 vectors for large A
Below is a more efficient way to store and solve a Tridiagonal matrix, assuming it is tridiagonal

```
1 function y = tridiag( a, b, c, f )
2
3% Solve the n x n tridiagonal system Ay = f...
    for y
4 % with diagonal a, subdiagonal b, and ...
    superdiagonal c
5 % f must be a vector (row or column) of length n
% % a, b, c must be vectors of length n
7 % (note that b(1) and c(n) are not used)
```


MatLab Tridiagonal Solver

Below is the main code for solving a Tridiagonal matrix, assuming it is tridiagonal

```
20 n = length(f);
21 v = zeros(n,1);
22 Y = v;
23 w = a(1);
24 y (1) = f (1)/w;
25 for i=2:n
26 v(i-1) = c(i-1)/w;
27 W = a(i) - b(i)*v(i-1);
28 y(i) = ( f(i) - b(i) *y(i-1) )/w;
29 end
30 for j=n-1:-1:1
31 y(j) = y(j) - v(j)*y(j+1);
32 end
```

