Numerical Differentiation Richardson's Extrapolation	Numerical Differentiation Richardson's Extrapolation
	Outline
Math 541 - Numerical Analysis Numerical Differentiation and Richardson Extrapolation	
Joseph M. Mahaffy, $\langle jmahaffy@mail.sdsu.edu \rangle$	 Numerical Differentiation Ideas and Fundamental Tools Moving Along
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720	 2 Richardson's Extrapolation • A Nice Piece of "Algebra Magic"
http://jmahaffy.sdsu.edu	
Spring 2018	
SDSU	SDSU
Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) - (1/33)	Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) - (2/33)
Numerical Differentiation Ideas and Fundamental Tools Richardson's Extrapolation Moving Along	Numerical Differentiation Ideas and Fundamental Tools Richardson's Extrapolation Moving Along
Numerical Differentiation: The Big Picture	Numerical Differentiation

The goal of numerical differentiation is to compute an accurate approximation to the derivative(s) of a function.

Given measurements $\{f_i\}_{i=0}^n$ of the underlying function f(x) at the node values $\{x_i\}_{i=0}^n$, our task is to estimate f'(x) (and, later, higher derivatives) in the same nodes.

The strategy: Fit a polynomial to a cleverly selected subset of the nodes, and use the derivative of that polynomial as the approximation of the derivative.

Definition (Derivative as a limit)

 $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$

 $f'(x_0) \approx \frac{f(x_0+h) - f(x_0)}{h}.$

significant digits in finite precision arithmetic.

Cancellation and roundoff errors. — For small values of

h, $f(x_0 + h) \approx f(x_0)$ so the difference may have very few

Smaller h is not necessarily better numerically.

The obvious approximation is to fix h "small" and compute

The derivative of f at x_0 is

Problems:

SDSU

Main Tools for Numerical Differentiation

2 of 2

5050

Again Taylor's Theorem is critical for determining accuracy of our algorithms...

Theorem (Taylor's Theorem)

Suppose $f \in C^{n}[a,b]$, $f^{(n+1)}$ exists on [a,b], and $x_{0} \in [a,b]$. Then for all $x \in (a, b)$, there exists $\xi(x) \in (\min(x_0, x), \max(x_0, x))$ with $f(x) = P_n(x) + R_n(x)$ where

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \quad R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{(n+1)}.$$

 $P_n(x)$ is the Taylor polynomial of degree n, and $R_n(x)$ is the **remainder term** (truncation error).

Our second tool for building Differentiation and Integration schemes are the Lagrange Coefficients

$$L_{n,k}(x) = \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}$$

Recall: $L_{n,k}(x)$ is the *n*th degree polynomial which is 1 in x_k and 0 in the other nodes $(x_i, j \neq k)$.

Previously we have used the family $L_{n,0}(x)$, $L_{n,1}(x)$, ..., $L_{n,n}(x)$ to build the Lagrange interpolating polynomial. — A good tool for providing polynomial behavior.

Now, lets combine our tools and look at differentiation.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) - (5/33) Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) -(6/33)Numerical Differentiation Numerical Differentiation Richardson's Extrapolation Moving Along... **Richardson's Extrapolation** Moving Along... Getting an Error Estimate — Taylor Expansion Using Higher Degree Polynomials to get Better Accuracy

SDSU

1 of 2

$$\frac{f(x_0+h) - f(x_0)}{h} = \frac{1}{h} \left[f(x_0) + h f'(x_0) + \frac{h^2}{2} f''(\xi(x)) - f(x_0) \right]$$
$$= f'(x_0) + \frac{h}{2} f''(\xi(\mathbf{x}))$$

If $f''(\xi(x))$ is bounded, *i.e.*

$$f''(\xi(x))| < M, \quad \forall \xi(x) \in (x_0, x_0 + h)$$

then we have

$$f'(x_0) \approx \frac{f(x_0+h) - f(x_0)}{h}$$
, with an error less than $\frac{M|h|}{2}$

This is the **approximation error**, which is $\mathcal{O}(h)$.

(Roundoff error, $\sim \epsilon_{\rm mach} \approx 10^{-16}$, not taken into account).

SDSU

Suppose $\{x_0, x_1, \ldots, x_n\}$ are distinct points in an interval \mathcal{I} , and $f \in C^{n+1}(\mathcal{I})$, we can write

$$f(x) = \sum_{\substack{k=0\\ \text{Lagrange Interp. Poly.}}}^{n} f(x_k) L_{n,k}(x) + \underbrace{\frac{\prod_{k=0}^{n} (x-x_k)}{(n+1)!} f^{(n+1)}(\xi(x))}_{\text{Error Term}}$$

Formal differentiation of this expression gives:

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_{n,k}(x) + \frac{d}{dx} \left[\frac{\prod_{k=0}^{n} (x - x_k)}{(n+1)!} \right] f^{(n+1)}(\xi(x)) + \frac{\prod_{k=0}^{n} (x - x_k)}{(n+1)!} \frac{d}{dx} \left[f^{(n+1)}(\xi(x)) \right].$$

Note: When we evaluate $f'(x_i)$ at the node points (x_i) the last term gives no contribution. (\Rightarrow we don't have to worry about it...)

Exercising the Product Rule for Differentiation

$$\frac{d}{dx} \left[\frac{\prod_{k=0}^{n} (x - x_k)}{(n+1)!} \right] = \frac{1}{(n+1)!} \left[(x - x_1)(x - x_2) \cdots (x - x_n) + (x - x_0)(x - x_2) \cdots (x - x_n) + \cdots \right] = \frac{1}{(n+1)!} \sum_{j=0}^{n} \left[\prod_{k=0, k \neq j}^{n} (x - x_k) \right]$$

Now, if we let $x = x_{\ell}$ for some particular value of ℓ , only the product which skips that value of $j = \ell$ is non-zero... *e.g.*

$$\frac{1}{(n+1)!} \sum_{j=0}^{n} \left[\prod_{k=0, k \neq j}^{n} (x-x_k) \right] \bigg|_{\mathbf{x}=\mathbf{x}_{\ell}} = \frac{1}{(n+1)!} \prod_{k=0, k \neq \ell}^{n} (x_{\ell}-x_k)$$

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) — (9/33)

Numerical Differentiation
Richardson's ExtrapolationIdeas and Fundamental To
Moving Along...Example: 3-point Formulas, I/III

Building blocks:

$$L_{2,0}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}, \quad L'_{2,0}(x) = \frac{(x-x_1)+(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$
$$L_{2,1}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}, \quad L'_{2,1}(x) = \frac{(x-x_0)+(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$
$$L_{2,2}(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}, \quad L'_{2,2}(x) = \frac{(x-x_0)+(x-x_1)}{(x_2-x_0)(x_2-x_1)}.$$

Formulas:

$$\begin{aligned} f'(x_j) &= f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] \\ &+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{f^{(3)}(\xi_j)}{6} \prod_{\substack{k = 0 \\ k \neq j}}^2 (x_j - x_k). \end{aligned}$$

Numerical Differentiation Richardson's Extrapolation Moving A

Ideas and Fundamental Tools Moving Along...

The (n+1) point formula for approximating $f'(x_i)$

Putting it all together yields what is known as the (n + 1) point formula for approximating $f'(x_i)$:

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_{n,k}(x_j) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \left[\prod_{\substack{k=0\\k \neq j}}^n (x_j - x_k) \right]$$

Note: The formula is most useful when the node points are equally spaced (it can be computed once and stored), *i.e.*

$$x_k = x_0 + kh$$

Now, we have to compute the derivatives of the Lagrange coefficients, *i.e.* $L_{n,k}(x)$... [We can no longer dodge this task!]

SDSU

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) — (10/33)

SDSU

Numerical Differentiation	Ideas and Fundamental Tools
Richardson's Extrapolation	Moving Along
Example: 3-point Formulas, II/III	

When the points are equally spaced...

$$\begin{cases} f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_1) - f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \\ f'(x_1) = \frac{1}{2h} \left[-f(x_0) + f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \\ f'(x_2) = \frac{1}{2h} \left[f(x_0) - 4f(x_1) + 3f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_2) \end{cases}$$

Use x_0 as the reference point $-x_k = x_0 + kh$:

$$\begin{cases} f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \\ f'(x_0 + h) = \frac{1}{2h} \left[-f(x_0) + f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \\ f'(x_0 + 2h) = \frac{1}{2h} \left[f(x_0) - 4f(x_0 + h) + 3f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2) \end{cases}$$

Numerical Differentiation Richardson's Extrapolation Moving Along...

Example: 3-point Formulas, III/III

$$\begin{cases} f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \\ \mathbf{f}'(\mathbf{x}_0^*) = \frac{1}{2h} \left[-\mathbf{f}(\mathbf{x}_0^* - \mathbf{h}) + \mathbf{f}(\mathbf{x}_0^* + \mathbf{h}) \right] - \frac{\mathbf{h}^2}{6} \mathbf{f}^{(3)}(\xi_1) \\ f'(x_0^+) = \frac{1}{2h} \left[f(x_0^+ - 2h) - 4f(x_0^+ - h) + 3f(x_0^+) \right] + \frac{h^2}{3} f^{(3)}(\xi_2) \end{cases}$$

After the substitution $x_0 + h \to x_0^*$ in the second equation, and $x_0 + 2h \to x_0^+$ in the third equation.

Note#1: The third equation can be obtained from the first one by setting $h \rightarrow -h$.

- **Note#2:** The error is smallest in the second equation.
- **Note#3:** The second equation is a two-sided approximation, the first and third one-sided approximations.

Note#4: We can drop the superscripts *,⁺...

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) — (13/33)

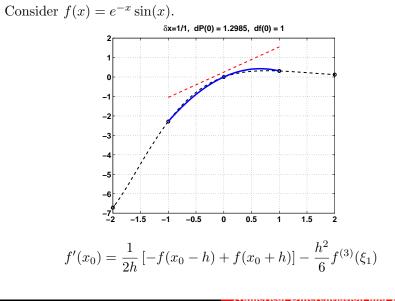
Numerical Differentiation Idea Richardson's Extrapolation Mov

3-point Formulas: Illustration

Ideas and Fundamental Tools Moving Along...

Centered Formula

SDSU



Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) -(14/33)

Numerical Differentiation Numerical Differentiation Richardson's Extrapolation Moving Along... **Richardson's Extrapolation** Moving Along... Forward Formula **Backward Formula 3-point Formulas: Illustration 3-point Formulas: Illustration** $\delta x=1/1$, dP(0) = 0.55759, df(0) = 1 $\delta x = 1/1$, dP(0) = 1.2153, df(0) = 1 -7L -2 1.5 -1.5 -1 -0.5 0 0.5 1 2 -1.5 -1 -0.5 0 0.5 1.5 1 $f'(x_0) = \frac{1}{2h} \left[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$ $f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$ SDSU **SDSU**

SDSU

5-Point Formulas

If we want even better approximations we can go to 4-point, 5-point, 6-point, etc... formulas.

Moving Along...

The most accurate (smallest error term) 5-point formula is:

Numerical Differentiation

Richardson's Extrapolation

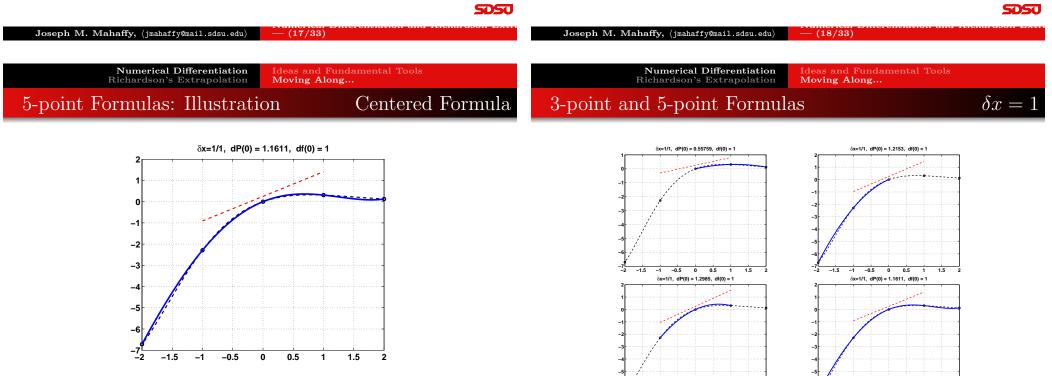
5-point Formulas

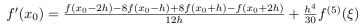
$$f'(x_0) = \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h} + \frac{h^4}{30}f^{(5)}(\xi)$$

Sometimes (e.g for end-point approximations like the clamped splines), we need one-sided formulas

$$f'(x_0) = \frac{-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)}{12h} + \frac{h^4}{5}f^{(5)}(\xi).$$

$$\begin{aligned} f'(x_0) &= \frac{1}{12h} \left[-25f(x_0) + 48f(x_1) - 36f(x_2) + 16f(x_3) - 3f(x_4) \right] \\ f'(x_0) &= \frac{1}{12h} \left[-3f(x_{-1}) - 10f(x_0) + 18f(x_1) - 6f(x_2) + f(x_3) \right] \\ f'(x_0) &= \frac{1}{12h} \left[f(x_{-2}) - 8f(x_{-1}) + 8f(x_1) - f(x_2) \right] \\ f'(x_0) &= \frac{1}{12h} \left[-f(x_{-3}) + 6f(x_{-2}) - 18f(x_{-1}) + 10(x_0) + 3f(x_1) \right] \\ f'(x_0) &= \frac{1}{12h} \left[3f(x_{-4}) - 16f(x_{-3}) + 36f(x_{-2}) - 48(x_{-1}) + 25f(x_0) \right] \end{aligned}$$





1.5

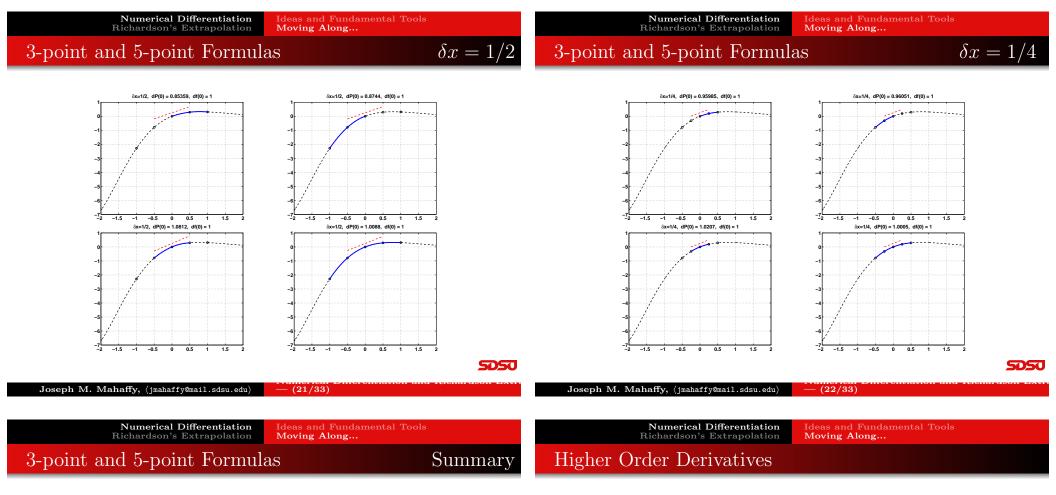
-1.5

-0.5 0 0.5

-7L

-1.5 -1 -0.5 0 0.5

1.5



For the example: $f(x) = e^{-x} \sin(x)$ around x = 0.

dx	3-Po	5-point		
ax	Backward	Center	Forward	Formula
1	1.2153	1.2985	0.55759	1.1611
1/2	0.8744	1.0812	0.8536	1.0088
1/4	0.96051	1.0207	0.95985	1.0005

Table: "Clearly" the centered 3-point formula beats out the backward and forward formulas; but the 5point formula is big winner here. We can derive approximations for higher order derivatives in the same way. — Fit a kth degree polynomial to a cluster of points $\{x_i, f(x_i)\}_{i=n}^{n+k+1}$, and compute the appropriate derivative of the polynomial in the point of interest.

The standard centered approximation of the second derivative is given by

$$f''(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} + \mathcal{O}(h^2)$$

Numerical Differentiation **Richardson's Extrapolation** Moving Along...

Wrapping Up Numerical Differentiation

A Nice Piece of "Algebra Magic'

Richardson's Extrapolation

We now have the tools to build high-order accurate approximations to the derivative.

We will use these tools and similar techniques in building integration schemes in the following lectures.

Also, these approximations are the backbone of finite difference methods for numerical solution of differential equations (see Math 542, and Math 693b).

Next, we develop a general tool for combining low-order accurate approximations (to derivatives, integrals, anything! (almost))... in order to hierarchically constructing higher order approximations.

- What it is: A general method for generating high-accuracy results using low-order formulas.
- **Applicable when:** The approximation technique has an error term of predictable form, *e.q.*

$$M - N_j(h) = \sum_{k=j}^{m} E_k h^k,$$

where M is the unknown value we are trying to approximate, and $N_i(h)$ the approximation (which has an error $\mathcal{O}(h^j)$.)

Procedure: Use two approximations of the same order, but with different h; e.g. $N_i(h)$ and $N_i(h/2)$. Combine the two approximations in such a way that the error terms of order h^j cancel.

		3030			3030
${f Joseph}$ M. Mahaffy, $\langle { t jmahaffy@mail.sdsu.edu} angle$	-(25/33)		${\bf Joseph ~M.~Mahaffy},~ {\tt (jmahaffy@mail.sdsu.edu} \\$	- (26/33)	
Numerical Differentiation Richardson's Extrapolation	A Nice Piece of "Algebra Magic"		Numerical Differentiation Richardson's Extrapolation	A Nice Piece of "Algebra Magic"	
Building High Accuracy Approximations1 of 5		Building High Accuracy Ap	proximations	2 of 5	

Consider two first order approximations to M:

$$M - N_1(h) = \sum_{k=1}^{\infty} E_k h^k,$$

and

$$M - N_1(h/2) = \sum_{k=1}^{\infty} E_k \frac{h^k}{2^k}.$$

If we let $N_2(h) = 2N_1(h/2) - N_1(h)$, then

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

$$M - N_2(h) = \underbrace{2E_1 \frac{h}{2} - E_1 h}_{0} + \sum_{k=2}^n E_k^{(2)} h^k,$$

-(27/33)

where

$$E_k^{(2)} = E_k \left(\frac{1}{2^{k-1}} - 1\right)$$

Hence, $N_2(h)$ is now a second order approximation to M.

SDSU

Building High Accuracy Approximations	$2 ext{ of}$

We can play the game again, and combine $N_2(h)$ with $N_2(h/2)$ to get a third-order accurate approximation, etc.

$$N_{3}(h) = \frac{4N_{2}(h/2) - N_{2}(h)}{3} = N_{2}(h/2) + \frac{N_{2}(h/2) - N_{2}(h)}{3}$$
$$N_{4}(h) = N_{3}(h/2) + \frac{N_{3}(h/2) - N_{3}(h)}{7}$$
$$N_{5}(h) = N_{4}(h/2) + \frac{N_{4}(h/2) - N_{4}(h)}{2^{4} - 1}$$

In general, combining two jth order approximations to get a (j+1)st order approximation:

$$N_{j+1}(h) = N_j(h/2) + \frac{N_j(h/2) - N_j(h)}{2^j - 1}$$

Let's derive the general update formula. Given,

$$M - N_j(h) = E_j h^j + \mathcal{O}\left(h^{j+1}\right)$$
$$M - N_j(h/2) = E_j \frac{h^j}{2^j} + \mathcal{O}\left(h^{j+1}\right)$$

We let

$$N_{j+1}(h) = \alpha_j N_j(h) + \beta_j N_j(h/2)$$

However, if we want $N_{j+1}(h)$ to approximate M, we must have $\alpha_j + \beta_j = 1$. Therefore

$$M - N_{j+1}(h) = \alpha_j E_j h^j + (1 - \alpha_j) E_j \frac{h^j}{2^j} + \mathcal{O}(h^{j+1})$$

SDSU

A Nice Piece of "Algebra Magic"

Building High Accuracy Approximations

Now,

$$M - N_{j+1}(h) = E_j h^j \left[\alpha_j + (1 - \alpha_j) \frac{1}{2^j} \right] + \mathcal{O}\left(h^{j+1}\right)$$

We want to select α_j so that the expression in the bracket is zero.

This gives

$$\alpha_{\mathbf{j}} = \frac{-\mathbf{1}}{\mathbf{2}^{\mathbf{j}} - \mathbf{1}}, \qquad \mathbf{1} - \alpha_{\mathbf{j}} = \frac{2^{j}}{2^{j} - 1} = \frac{(2^{j} - 1) + 1}{2^{j} - 1} = \mathbf{1} + \frac{\mathbf{1}}{\mathbf{2}^{\mathbf{j}} - \mathbf{1}}$$

Therefore,

$$N_{j+1}(h) = N_j(h/2) + \frac{N_j(h/2) - N_j(h)}{2^j - 1}$$

SDSU

4 of 5

 Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)
 — (29/33)
 Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)
 — (30/33)

 Numerical Differentiation Richardson's Extrapolation
 A Nice Piece of "Algebra Magic"
 Numerical Differentiation Richardson's Extrapolation
 A Nice Piece of "Algebra Magic"

 Building High Accuracy Approximations
 5 of 5
 Example (c.f. slide#17, and slide#21)

The following table illustrates how we can use Richardson's extrapolation to build a 5th order approximation, using five 1st order approximations:

$\mathcal{O}\left(\mathbf{h} ight)$	$\mathcal{O}\left(\mathbf{h^{2}} ight)$	$\mathcal{O}\left(\mathbf{h^{3}} ight)$	$\mathcal{O}\left(\mathbf{h^4}\right)$	$\mathcal{O}\left(\mathbf{h^{5}}\right)$
$N_1(h)$				
$N_1(h/2)$	$N_2(h)$			
$N_1(h/4)$	$N_2(h/2)$	$N_3(h)$		
$N_1(h/8)$	$N_2(h/4)$	$N_{3}(h/2)$	$N_4(h)$	
$N_1(h/16)$	$N_2(h/8)$	$N_{3}(h/4)$	$N_4(h/2)$	$N_5(h)$
\uparrow Measurements	1	$Extrapolations$ \uparrow		

The centered difference formula approximating $f'(x_0)$ can be expressed:

$$f'(x_0) = \underbrace{\frac{f(x+h) - f(x-h)}{2h}}_{N_2(h)} - \underbrace{\frac{h^2}{6}f'''(\xi) + \mathcal{O}(h^4)}_{\text{error term}}$$

In order to eliminate the h^2 part of the error, we let our new approximation be

$$N_3(h) = N_2(h/2) + \frac{N_2(h/2) - N_2(h)}{3}.$$

$$N_{3}(2h) = \frac{f(x+h) - f(x-h)}{2h} + \frac{\frac{f(x+h) - f(x-h)}{2h} - \frac{f(x+2h) - f(x-2h)}{4h}}{3}$$

= $\frac{8f(x+h) - 8f(x-h)}{6h} - \frac{f(x+2h) - f(x-2h)}{6h}$
= $\frac{1}{12h} \left[f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h) \right].$ SDSU

SDSU

Example, $f(x) = x^2 e^x$.

SDSU

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) - (33/33)