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Definite Integral

Theorem (Fundamental Theorem of Calculus)

Let f(x) be a continuous function on the interval [a, b] and assume

that F (x) is any antiderivative of f(x). The definite integral,

which gives the area under the curve of f(x) between a and b,
satisfies the following formula:

∫ b

a

f(x)dx = F (b)− F (a).

Finding integrals was a significant part of Calculus

Developed many techniques for solving a variety of integrals

Many integrals are impossible to solve with classic techniques

We need numerical methods to evaluate these definite
integrals
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Definition of Riemann Integral

Definition of Riemann Integral: The standard integral from
Calculus is the Riemann Integral

Let f(x) be a continuous function in the interval [a, b]

Partition the interval [a, b] into n subintervals [xi−1, xi] with
∆xi = xi − xi−1 and ∆xk being the largest

Let ci be some point in the subinterval [xi−1, xi]

The nth Riemann sum is given by

Sn =

n∑

i=1

f(ci)∆xi

The Riemann integral is defined by
∫ b

a

f(x)dx = lim
∆xk→0

n∑

i=1

f(ci)∆xi
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Midpoint Rule 1

The Midpoint Rule is based directly on the definition of the
Riemann integral.

Suppose that we want to approximate the area under some continuous
function f(x) between x = a and x = b

Divide the interval [a, b] into a number of small intervals

Assume there are n evenly spaced intervals (which Riemann
sums do not require this restriction)

Evaluate the function, f(x), at the midpoint of any subinterval

Technically, it is important in the definition of the Riemann
integral that one chooses arbitrarily any point in the interval,
but that is left to other analysis courses
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Midpoint Rule 2

The Midpoint Rule is given by the following:

Let x0 = a and xn = b and define ∆x = b−a
n

with xi = a+ i∆x
for i = 0, ..., n

This partitions the interval [a, b] into n subintervals [xi−1, xi]
each with length ∆x

The height of the approximating rectangle is found by evaluating
the function at the midpoint, ci =

xi+xi−1

2

The area of the rectangle, Ri, over the interval [xi−1, xi] is
given by its height times its width or

Ri = f(ci)∆x

The area under f(x) is approximated by adding the areas of the
rectangles

Sn =

n∑

i=1

f(ci)∆x ≈

∫ b

a

f(x)dx
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Midpoint Rule 3

Figures below show a single rectangle in computing area of the
Riemann Integral and all of the rectangles using the Midpoint
Rule for approximating the area under the curve
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Midpoint Rule 4

Riemann Sums and Riemann Integral

The Midpoint Rule described above is a specialized form of
Riemann sums

The more general form of Riemann sums allows the subintervals
to have varying lengths, ∆xi

The choice of where the function is evaluated need not be at the
midpoint as described above

The Riemann integral is defined using a limiting process,
similar to the one described above
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Area under a Curve 1

Area under a Curve: Consider the function

f(x) = x3 − 6 x2 + 9 x+ 2 for x ∈ [0, 5]

From the Fundamental Theorem of Calculus the area under the
curve is

A∗ =

∫ 5

0

f(x)dx =
x4

4
− 2x3 +

9x2

2
+ 2x

∣
∣
∣
∣

5

0

= 28.75

Approximate area with rectangles under the curve

Divide the interval x ∈ [0, 5] into even intervals

Use the midpoint of the interval to get height of the rectangle

Examine approximation as intervals get smaller

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Quadrature – Part A —
(9/60)



Riemann Integral
Interpolation and Polynomial Approximation

Numerical Integration (Quadrature)

Fundamental Theorem of Calculus
Definition of Riemann Integral and Midpoint Rule
Midpoint Rule for Integration
Midpoint Example

Area under a Curve 2

Area under a Curve Divide x ∈ [0, 5] into 5 intervals

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

  5 rectangles under the curve

x
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Area under a Curve 3

Area under a Curve: Height of rectangles from the function

f(x) = x3 − 6 x2 + 9 x+ 2 for x ∈ [0, 5]

Width of the rectangles are ∆x = 1

Height of rectangles evaluated at midpoints

Approximate area satisfies

A1 ≈
(
f
(
1
2

)
+ f

(
3
2

)
+ f

(
5
2

)
+ f

(
7
2

)
+ f

(
9
2

))
∆x =

4∑

i=0

f
(
i+ 1

2

)
·1

This gives

A1 ≈

4∑

i=0

((
i+ 1

2

)3
− 6

(
i+ 1

2

)2
+ 9

(
i+ 1

2

)
+ 2

)

= 28.125

This is 2.17% less than the actual area
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Area under a Curve 4

Area under a Curve Divide x ∈ [0, 5] into 10 intervals

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

10 rectangles under the curve

x
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Area under a Curve 5

Area under a Curve: Height of rectangles from the function

f(x) = x3 − 6 x2 + 9 x+ 2 for x ∈ [0, 5]

Width of the rectangles are ∆x = 1
2

Height of rectangles evaluated at midpoints

Approximate area satisfies

A2 ≈

9∑

i=0

f
(
i
2 + 1

4

)
∆x

This gives

A2 ≈ 1
2

9∑

i=0

((
i
2 + 1

4

)3
− 6

(
i
2 + 1

4

)2
+ 9

(
i
2 + 1

4

)
+ 2

)

= 28.59375

This is 0.543% less than the actual area
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Area under a Curve 6

Area under a Curve Divide x ∈ [0, 5] into 20 intervals

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

20 rectangles under the curve

x
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Area under a Curve 7

Area under a Curve: Height of rectangles from the function

f(x) = x3 − 6 x2 + 9 x+ 2 for x ∈ [0, 5]

Width of the rectangles are ∆x = 1
4

Height of rectangles evaluated at midpoints

Approximate area satisfies

A3 ≈

19∑

i=0

f
(
i
4 + 1

8

)
∆x

This gives

A3 ≈ 1
4

19∑

i=0

((
i
4 + 1

8

)3
− 6

(
i
4 + 1

8

)2
+ 9

(
i
4 + 1

8

)
+ 2

)

= 28.7109

This is 0.135% less than the actual area
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Area under a Curve 8

Area under a Curve Divide x ∈ [0, 5] into 40 intervals

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

40 rectangles under the curve

x
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Area under a Curve 9

Area under a Curve: Height of rectangles from the function

f(x) = x3 − 6 x2 + 9 x+ 2 for x ∈ [0, 5]

Width of the rectangles are ∆x = 1
8

Height of rectangles evaluated at midpoints

Approximate area satisfies

A4 ≈

39∑

i=0

f
(
i
8 + 1

16

)
∆x

This gives

A4 ≈ 1
8

39∑

i=0

((
i
8 + 1

16

)3
− 6

(
i
8 + 1

16

)2
+ 9

(
i
8 + 1

16

)
+ 2

)

= 28.7402

This is 0.034% less than the actual area
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Area under a Curve 10

Area under a Curve: The actual area is,

A∗ =

∫ 5

0

f(x)dx = 28.75

The approximate areas were

∆x1 = 1 ∆x2 = 1
2 ∆x3 = 1

4 ∆x4 = 1
8

A1 = 28.125 A2 = 28.59375 A3 = 28.7109 A4 = 28.7402

The error ratio for this example is

|An+1 −A∗|

|An −A∗|
≈ 0.25

Thus, as the stepsize decreases by 1
2 , the error in the approximate

area decreases by a factor of 1
4

We will demonstrate that the error of the Midpoint Rule is
O((∆x)2), depending on the stepsize
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Numerical Methods for Integration

Numerical Methods for Integration

As noted before, many integrals cannot be solved exactly, so
numerical methods need to be used to estimate definite
integrals

∫ b

a

f(x)dx

The Midpoint Rule is an approximation based on the
definition of a Riemann integral

The Midpoint Rule is NOT a very efficient way to estimate
the area under the curve

Once again we turn to polynomials to approximate our
functions and improve the convergence of the numerical
routine to the actual value of the definite integral

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Quadrature – Part A —
(19/60)



Riemann Integral
Interpolation and Polynomial Approximation

Numerical Integration (Quadrature)

Fundamentals
Lagrange Interpolating Polynomials
MatLab and Lagrange Polynomials

Interpolation and Polynomial Approximation

Interpolation and Polynomial Approximation

Polynomials provide “nice” smooth functions for approximations

Taylor’s series give excellent estimates near a point

For integration, we need to extend over an interval

Interpolating polynomials have many applications to fit
functions or data at various x values
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Weierstrass Approximation Theorem

The following theorem is the basis for polynomial approximation:

Theorem (Weierstrass Approximation Theorem)

Suppose f ∈ C[a, b]. Then for every ǫ > 0 there exists a polynomial

P (x) : |f(x)− P (x)| < ǫ, for all x ∈ [a, b].

Note: The bound is uniform, i.e., valid for all x in the interval.

Note: The theorem says nothing about how to find the polynomial,
or about its order.
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Illustrated: Weierstrass Approximation Theorem

0 2 4 6 8 10

−1

−0.5

0

0.5

1

1.5

2

2.5
f
f+ε
f−ε

Figure: Weierstrass approximation Theorem guarantees that we (maybe with
substantial work) can find a polynomial which fits into the “tube” around the
function f , no matter how thin we make the tube.
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Candidates: the Taylor Polynomials???

Natural Question:
Are our old friends, the Taylor Polynomials, good candidates for
polynomial interpolation?

Answer:
No. The Taylor expansion works very hard to be accurate in
the neighborhood of one point. But we want to fit data at many
points (in an extended interval).

[Next slide: The approximation is great near the expansion point
x0 = 0, but get progressively worse at we get further away from the
point, even for the higher degree approximations.]
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Taylor Approximation of ex on the Interval [0, 3]

We learned that ex outgrows any polynomial

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

x

e
x

P0(x)
P1(x)
P2(x)
P3(x)
P4(x)
P5(x)
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Interpolation: Lagrange Polynomials

Idea: Instead of working hard at one point, we will prescribe a number of points
through which the polynomial must pass.

Consider a function that passes through the points (x0, f(x0)) and (x1, f(x1)).
From techniques of algebra, we have the slope

m =
f(x1)− f(x0)

x1 − x0
,

so the point slope form of a line gives

y(x)− f(x0) =
f(x1)− f(x0)

x1 − x0
(x− x0).

This is rearranged to give

y(x) =
f(x1)− f(x0)

x1 − x0
(x− x0) + f(x0),

y(x) = f(x1)
(x− x0)

x1 − x0
+ f(x0)

(x − x0)

x0 − x1
+ f(x0)

(x0 − x1)

x0 − x1
,

y(x) = f(x1)
(x− x0)

x1 − x0
+ f(x0)

(x − x1)

x0 − x1
,
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Interpolation: Lagrange Polynomials

From the previous slide we have:

y(x) = f(x1)
(x − x0)

x1 − x0
+ f(x0)

(x− x1)

x0 − x1
.

If we define:

L0(x) =
x− x1

x0 − x1
, L1(x) =

x− x0

x1 − x0
,

then we obtain the interpolating polynomial

P (x) = L0(x)f(x0) + L1(x)f(x1),

with P (x0) = f(x0), and P (x1) = f(x1).

– P (x) is the unique linear polynomial passing through
(x0, f(x0)) and (x1, f(x1)).
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An n-degree polynomial passing through n+ 1 points

We are going to construct a polynomial passing through the points
(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)).

We define Ln,k(x), the Lagrange coefficients:

Ln,k(x) =
n∏

i=0, i6=k

x− xi

xk − xi

=
x− x0

xk − x0
· · ·

x− xk−1

xk − xk−1
·
x− xk+1

xk − xk+1
· · ·

x− xn

xk − xn

,

which have the properties

Ln,k(xk) = 1; Ln,k(xi) = 0, for all i 6= k.
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Example of Ln,k(x)

0 1 2 3 4 5 6

-0.5

0

0.5

1

This is L6,3(x), for the points xi = i, i = 0, . . . , 6.
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The nth Lagrange Interpolating Polynomial

We use Ln,k(x), k = 0, . . . , n as building blocks for the Lagrange
interpolating polynomial:

P (x) =

n∑

k=0

f(xk)Ln,k(x),

which has the property

P (xi) = f(xi), for all i = 0, . . . , n.

This is the unique nth degree polynomial passing through the
points
(xi, f(xi)), i = 0, . . . , n.
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Error bound for the Lagrange interpolating polynomial

Suppose xi, i = 0, . . . , n are distinct numbers in the interval [a, b],
and f ∈ Cn+1[a, b]. Then for all x ∈ [a, b] there exists ξ(x) ∈ (a, b) so
that:

f(x) = PLagrange(x) +
f (n+1)(ξ(x))

(n+ 1)!

n∏

i=0

(x− xi),

where PLagrange(x) is the nth Lagrange interpolating polynomial.

Compare with the error formula for Taylor polynomials

f(x) = PTaylor(x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)

n+1,

Problem: Applying the error term may be difficult...
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The Lagrange and Taylor Error Terms

Just to get a feeling for the non-constant part of the error terms in
the Lagrange and Taylor approximations, we plot those parts on the
interval [0, 4] with interpolation points xi = i, i = 0, 1, . . . , 4:

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−3

−2

−1

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

Figure: [Left] The non-constant error terms for the Lagrange interpolation oscillates in the
interval [−4, 4] (and takes the value zero at the node point xk), and [Right] the non-constant
error term for the Taylor extrapolation grows in the interval [0, 1024].
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MatLab and Lagrange Polynomials

Example: Find the Lagrange polynomial through the points:

(0,−5), (1,−6), (2,−1), and (3, 16).

The Lagrange polynomial satisfies

P (x) =
(x− 1)(x − 2)(x− 3)

(0− 1)(0 − 2)(0 − 3)
(−5) +

x(x− 2)(x − 3)

(1− 0)(1 − 2)(1 − 3)
(−6)

+
x(x− 1)(x− 3)

(2− 0)(2 − 1)(2 − 3)
(−1) +

x(x− 1)(x− 2)

(3 − 0)(3 − 1)(3 − 2)
(16)

= x3 − 2x− 5

This example was reverse engineered to have clean numbers
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MatLab Lagrange Program

Below is a code for accepting vector data x and y and generating the
Lagrange polynomial

It outputs points on this polynomial at (u(k), v(k))

1 function v = polyinterp(x,y,u)
2 % Creates Lagrange polynomial
3 n = length (x);
4 v = zeros ( size (u));
5 for k = 1:n
6 w = ones( size (u));
7 for j = [1:k-1 k+1:n]
8 w = (u-x(j))./(x(k)-x(j)). * w;
9 end

10 v = v + w* y(k);
11 end
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MatLab and Lagrange Polynomials

Example (with MatLab): Our example satisfies
x = 0:3; y = [-5 -6 -1 16];

We enter closely spaced points, u, the function polyinterp , and
plot the results
u = -0.25:0.01:3.25;
v = polyinterp(x,y,u);
plot ((x,y, 'o' ,u,v, '-' ); grid ;

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
-10

-5

0
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15

20
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MatLab and Lagrange Polynomials

Example (with MatLab): Continuing our example we can use the
symbolic package in MatLab to obtain the polynomial expression:
symx = sym( 'x' )

The polynomial is given by:

P = polyinterp(x,y,symx)
P = (x * (x - 1) * (x - 3))/2 + 5 * (x/2 - 1) * (x/3 - ...

1) * (x - 1)+ (16 * x* (x/2 - 1/2) * (x - 2))/3 - ...

6* x* (x/2 - 3/2) * (x - 2)

This is simplified with

P = simplify(P)
P = xˆ3 - 2 * x - 5
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Vandermonde Matrix and Interpreting Polynomial

Alternate Scheme: Suppose we want an interpreting polynomial of
the form:

P (x) = c1x
n−1 + c2x

n−2 + · · ·+ cn−1x+ cn

Given data points x = [x1, ..., xn] and y = [y1, ..., yn] we can obtain
the coefficients c1, ..., cn by solving the system:








xn−1
1 xn−2

1 · · · x1 1
xn−1
2 xn−2

2 · · · x2 1
...

...
...

...
...

xn−1
n xn−2

n · · · xn 1















c1
c2
...
cn








=








y1
y2
...
yn








This system V c = y contains the important Vandermonde matrix,
V
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Vandermonde Matrix and MatLab

Given the data x = [x1, ..., xn], the elements of the Vandermonde

matrix, V , satisfy
vk,j = xn−j

k

MatLab has the function vander , which generates the
Vandermonde matrix, V

For our example above, x = 0:3; y = [-5 -6 -1 16];
V = vander (x) produces

V =









0 0 0 1
1 1 1 1
8 4 2 1
27 9 3 1









Then c = V\y' produces c = [1, 0,−2,−5]t or

P (x) = x3 − 2x− 5
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Numerical Quadrature – Basics

Numerical Quadrature: Basics

Integration is valuable in many applications – often the
anti-derivative is unavailable

Introduction showed the definition of the Riemann integral

Midpoint rule directly uses the definition with even
intervals and function evaluations at the midpoint of the
subintervals
The convergence of this method appeared to be O((∆x)2)

Can we do better with interpolating functions on the
subintervals [xj , xj+1]?
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Numerical Quadrature – Basics

There are two primary means of improving Numerical integration

1 If a = x0 < x1 < · · · < xn−1 < xn = b, then properties of the

integral give

∫ b

a

f(x)dx =

∫ x1

x0

f(x)dx + · · ·+

∫ xn

xn−1

f(x)dx.

We create composite integrals and choose appropriate xi’s,
which subdivide our function f(x) into n subintervals with each
subinterval providing a smaller domain and better approximation
of f on that subinterval.

2 Take a particular subinterval, then partition that subinterval
further to obtain a reasonable approximation of f(x) on the
subinterval by an interpreting polynomial, which is precisely
integrable and has a known error bound.
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Numerical Quadrature – Basics

Our aim is to obtain the greatest accuracy approximating the integral
with the minimum amount of computation

We can vary the spacing xj , not necessarily uniform

We can alter how f(x) is approximated – Using polynomials,
which are exactly integrable
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Numerical Quadrature – Single Interval

We begin our analysis with the second point above (avoiding the
composite integral for now)

We focus on a single interval and consider interpolating
polynomials approximating f(x) on the single interval

The basic idea is to replace integration by a clever summation:

∫ b

a

f(x) dx →
n∑

i=0

aifi,

where a ≤ x0 < x1 < · · · < xn ≤ b, fi = f(xi).

The coefficients ai and the nodes xi are to be selected.

Various means of selecting ai and xi alter the efficiency and accuracy
of our algorithm
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Building Integration Schemes with Lagrange Polynomials

Given the nodes {x0, x1, . . . , xn} we can use the Lagrange
interpolating polynomial

Pn(x) =

n∑

i=0

fiLn,i(x), with error En(x) =
f (n+1)(ξ(x))

(n+ 1)!

n∏

i=0

(x− xi)

to obtain

∫ b

a

f(x) dx =

∫ b

a

Pn(x) dx

︸ ︷︷ ︸

The Approximation

+

∫ b

a

En(x) dx

︸ ︷︷ ︸

The Error Estimate
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Identifying the Coefficients

The Lagrange interpolating polynomials are readily integrated to
give the weighting coefficients ai

∫ b

a

Pn(x) dx =

∫ b

a

n∑

i=0

fiLn,i(x) dx =

n∑

i=0

fi

∫ b

a

Ln,i(x) dx

︸ ︷︷ ︸

ai

=

n∑

i=0

fiai.

Hence we write
∫ b

a

f(x) dx ≈

n∑

i=0

aifi

with error given by

E(f) =

∫ b

a

En(x) dx =

∫ b

a

f (n+1)(ξ(x))

(n+ 1)!

n∏

i=0

(x− xi) dx.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Quadrature – Part A —
(43/60)



Riemann Integral
Interpolation and Polynomial Approximation

Numerical Integration (Quadrature)

Trapezoidal & Simpson’s Rules
Newton-Cotes Formulas

Example 1: Trapezoidal Rule 1 of 3

Let a = x0 < x1 = b, and use the linear interpolating polynomial

P1(x) = f0

[
x− x1

x0 − x1

]

+ f1

[
x− x0

x1 − x0

]

.
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Example 1: Trapezoidal Rule 2 of 3

Then

∫ b

a

f(x) dx =

∫ x1

x0

[

f0

[
x− x1

x0 − x1

]

+ f1

[
x− x0

x1 − x0

]]

dx

+
1

2

∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx.

The error term (use the Weighted Mean Value Theorem):

∫ x1

x0

f ′′(ξ(x))(x − x0)(x− x1) dx = f ′′(ξ)

∫ x1

x0

(x− x0)(x− x1) dx

= f ′′(ξ)

[
x3

3
−

x1 + x0

2
x2 + x0x1x

]x1

x0

= −
h3

6
f ′′(ξ).

where h = x1 − x0 = b− a.
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Example 1: Trapezoidal Rule 3 of 3

Hence,

∫ b

a

f(x) dx =

[

f0

[
(x− x1)

2

2(x0 − x1)

]

+ f1

[
(x− x0)

2

2(x1 − x0)

]]x1

x0

−
h3

12
f ′′(ξ)

=
(x1 − x0)

2
[f0 + f1]−

h3

12
f ′′(ξ)

∫ b

a

f(x) dx = h

[
f(x0) + f(x1)

2

]

−
h3

12
f ′′(ξ), h = b− a.
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Example 2a: Simpson’s Rule (sub-optimal error bound)

Let x0 = a, x1 = a+b
2 , x2 = b, let h = b−a

2 and use the quadratic

interpolating polynomial

∫ b

a

f(x)dx =

∫ x2

x0

[

f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)

+ f(x2)
(x− x0)(x − x1)

(x2 − x0)(x2 − x1)

]

dx

+

∫ x2

x0

(x− x0)(x − x1)(x − x2)

6
f (3)(ξ(x)) dx ...

∫ b

a

f(x) dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]

+O(h4f (3)(ξ)).
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Example 2b: Simpson’s Rule (optimal error bound)

The optimal error bound for Simpson’s rule can be obtained by
Taylor expanding f(x) about the mid-point x1:

f(x) = f(x1) + f
′
(x1)(x− x1) +

f ′′(x1)

2
(x− x1)

2
+

f ′′′(x1)

6
(x− x1)

3
+

f(4)(ξ(x))

24
(x − x1)

4
,

then formally integrating this expression, to get:

∫

b

a

[

f(x1) + f
′
(x1)(x − x1) +

f ′′(x1)

2
(x − x1)

2
+

f ′′′(x1)

6
(x − x1)

3
+

f(4)(ξ(x))

24
(x − x1)

4

]

dx.

After use of the weighted mean value theorem, and the approximation

f ′′(x1) =
1
h2 [f(x0)− 2f(x1) + f(x2)]−

h2

12f
(4)(ξ), and a whole lot of

algebra (Yanofsky - UCLA Notes) we end up with

∫ x2

x0

f(x) dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]

−
h5

90
f (4)(ξ).
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Example 2: Simpson’s Rule

∫ b

a

f(x) dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]

+O(h5f (4)(ξ)).

f(x)

p(x) − Simpson’s Rule
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Integration Examples

f(x) [a, b]
∫ b

a
f(x)dx Trapezoidal Error Simpson Error

x [0, 1] 1/2 0.5 0 0.5 0
x2 [0, 1] 1/3 0.5 0.16667 0.33333 0
x3 [0, 1] 1/4 0.5 0.25000 0.25000 0
x4 [0, 1] 1/5 0.5 0.30000 0.20833 0.0083333
ex [0, 1] e− 1 1.8591 0.14086 1.7189 0.0005793

The Trapezoidal rule gives exact solutions for linear functions. — The
error terms contains a second derivative.

Simpson’s rule gives exact solutions for polynomials of degree less
than 4. — The error term contains a fourth derivative.
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Degree of Accuracy (Precision)

Definition (Degree of Accuracy)

The Degree of Accuracy, or precision, of a quadrature formula is
the largest positive integer n such that the formula is exact for xk for
all k = 0, 1, . . . , n.

With this definition:

Scheme Degree of Accuracy
Trapezoidal 1
Simpson’s 3

Trapezoidal and Simpson’s are examples of a class of methods known
as Newton-Cotes formulas.
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Newton-Cotes Formulas — Two Types Closed

Closed The (n + 1) point closed NCF uses nodes xi = x0 + ih, i =
0, 1, . . . , n, where x0 = a, xn = b and h = (b − a)/n. It is
called closed since the endpoints are included as nodes.
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Newton-Cotes Formulas — Two Types Open

Open The (n + 1) point open NCF uses nodes xi = x0 + ih, i =
0, 1, . . . , n where h = (b−a)/(n+2) and x0 = a+h, xn = b−h.
(We label x−1 = a, xn+1 = b.)
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Closed Newton-Cotes Formulas

The approximation is

∫ b

a

f(x) dx ≈
n∑

i=0

aif(xi),

where

ai =

∫ xn

x0

Ln,i(x) dx =

∫ xn

x0

n∏

j = 0
j 6= i

(x − xj)

(xi − xj)
dx.

Note: The Lagrange polynomial Ln,i(x) models a function which
takes the value 0 at all xj (j 6= i), and 1 at xi. Hence, the
coefficient ai captures the integral of a function, which is 1 at
xi and zero at the other node points.
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Closed Newton-Cotes Formulas — Error

Theorem

Suppose that
∑n

i=0 aif(xi) denotes the (n+ 1) point closed
Newton-Cotes formula with x0 = a, xn = b, and h = (b − a)/n. Then
there exists ξ ∈ (a, b) for which

∫ b

a

f(x)dx =
n
∑

i=0

aif(xi) +
hn+3f(n+2)(ξ)

(n+ 2)!

∫ n

0
t2(t − 1) · · · (t − n)dt,

if n is even and f ∈ Cn+2[a, b], and

∫ b

a

f(x)dx =
n
∑

i=0

aif(xi) +
hn+2f(n+1)(ξ)

(n+ 1)!

∫ n

0
t(t − 1) · · · (t− n)dt,

if n is odd and f ∈ Cn+1[a, b].

Note that when n is an even integer, the degree of precision is (n+ 1).
When n is odd, the degree of precision is only n.
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Closed Newton-Cotes Formulas — Examples

n = 1: Trapezoid Rule

h

2

[

f(x0) + f(x1)

]

−
h3

12
f ′′(ξ)

n = 2: Simpson’s Rule

h

3

[

f(x0) + 4f(x1) + f(x2)

]

−
h5

90
f (4)(ξ)

n = 3: Simpson’s 3

8
-Rule

3h

8

[

f(x0) + 3f(x1) + 3f(x2) + f(x3)

]

−
3h5

80
f (4)(ξ)

n = 4: Boole’s Rule

2h

45

[

7f(x0) + 32f(x1) + 12f(x2) + 32f(x3) + 7f(x4)

]

−
8h7

945
f (6)(ξ)
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Open Newton-Cotes Formulas

The approximation is

∫ b

a

f(x) dx =

∫ xn+1

x−1

f(x) dx ≈
n∑

i=0

aif(xi),

where

ai =

∫ xn+1

x−1

Ln,i(x) dx =

∫ xn

x0

n∏

j = 0
j 6= i

(x− xj)

(xi − xj)
dx.
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Open Newton-Cotes Formulas — Error

Theorem

Suppose that
∑n

i=0 aif(xi) denotes the (n+ 1) point open
Newton-Cotes formula with x−1 = a, xn+1 = b, and
h = (b− a)/(n+ 2). Then there exists ξ ∈ (a, b) for which

∫ b

a

f(x)dx =
n
∑

i=0

aif(xi) +
hn+3f(n+2)(ξ)

(n+ 2)!

∫ n+1

−1
t2(t− 1) · · · (t− n)dt,

if n is even and f ∈ Cn+2[a, b], and

∫ b

a

f(x)dx =
n
∑

i=0

aif(xi) +
hn+2f(n+1)(ξ)

(n+ 1)!

∫ n+1

−1
t(t − 1) · · · (t − n)dt,

if n is odd and f ∈ Cn+1[a, b].

Note that when n is an even integer, the degree of precision is (n+ 1).
When n is odd, the degree of precision is only n.
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Open Newton-Cotes Formulas — Examples

n = 0: Midpoint Rule

2hf(x0) +
h3

3
f ′′(ξ)

n = 1: Trapezoid Method

3h

2

[

f(x0) + f(x1)

]

+
3h3

4
f ′′(ξ)

n = 2: Milne’s Rule

4h

3

[

2f(x0)− f(x1) + 2f(x2)

]

+
14h5

45
f (4)(ξ)

n = 3: No Name

5h

24

[

11f(x0) + f(x1) + f(x2) + 11f(x3)

]

+
95h5

144
f (4)(ξ)
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Riemann Integral
Interpolation and Polynomial Approximation

Numerical Integration (Quadrature)

Trapezoidal & Simpson’s Rules
Newton-Cotes Formulas

Divide and Conquer!

Say you want to compute:

∫ 100

0

f(x) dx.

Is it a Good IdeaTM to directly apply your favorite Newton-Cotes
formula to this integral?!?

No!

With the closed 5-point NCF, we have h = 25 and h5/90 ∼ 105 so
even with a bound on f (6)(ξ) the error will be large.

Better: Apply the closed 5-point NCF to the integrals

∫ 4(i+1)

4i

f(x) dx, i = 0, 1, . . . , 24

then sum. “Composite Numerical Integration”
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