Math 541 －Numerical Analysis
 Lecture Notes－Quadrature－Part A

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu

$$
\text { Spring } 2018
$$

Outline

(1) Riemann Integral

- Fundamental Theorem of Calculus
- Definition of Riemann Integral and Midpoint Rule
- Midpoint Rule for Integration
- Midpoint Example
(2) Interpolation and Polynomial Approximation
- Fundamentals
- Moving Beyond Taylor Polynomials
- Lagrange Interpolating Polynomials
- MatLab and Lagrange Polynomials
(3) Numerical Integration (Quadrature)
- Trapezoidal \& Simpson's Rules
- Newton-Cotes Formulas

Fundamental Theorem of Calculus Definition of Riemann Integral and Midpoint Ru Midpoint Rule for Integration Midpoint Example

Definite Integral

Theorem (Fundamental Theorem of Calculus)

Let $f(x)$ be a continuous function on the interval $[a, b]$ and assume that $F(x)$ is any antiderivative of $f(x)$. The definite integral, which gives the area under the curve of $f(x)$ between a and b, satisfies the following formula:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

- Finding integrals was a significant part of Calculus
- Developed many techniques for solving a variety of integrals
- Many integrals are impossible to solve with classic techniques
- We need numerical methods to evaluate these definite integrals

Definition of Riemann Integral

Definition of Riemann Integral: The standard integral from Calculus is the Riemann Integral

- Let $f(x)$ be a continuous function in the interval $[a, b]$
- Partition the interval $[a, b]$ into n subintervals $\left[x_{i-1}, x_{i}\right]$ with $\Delta x_{i}=x_{i}-x_{i-1}$ and Δx_{k} being the largest
- Let c_{i} be some point in the subinterval $\left[x_{i-1}, x_{i}\right]$
- The $n^{t h}$ Riemann sum is given by

$$
S_{n}=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

- The Riemann integral is defined by

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x_{k} \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

Midpoint Rule

The Midpoint Rule is based directly on the definition of the Riemann integral.

Suppose that we want to approximate the area under some continuous function $f(x)$ between $x=a$ and $x=b$

- Divide the interval $[a, b]$ into a number of small intervals
- Assume there are n evenly spaced intervals (which Riemann sums do not require this restriction)
- Evaluate the function, $f(x)$, at the midpoint of any subinterval
- Technically, it is important in the definition of the Riemann integral that one chooses arbitrarily any point in the interval, but that is left to other analysis courses

Midpoint Rule

The Midpoint Rule is given by the following:

- Let $x_{0}=a$ and $x_{n}=b$ and define $\Delta x=\frac{b-a}{n}$ with $x_{i}=a+i \Delta x$ for $i=0, \ldots, n$
- This partitions the interval $[a, b]$ into n subintervals $\left[x_{i-1}, x_{i}\right]$ each with length Δx
- The height of the approximating rectangle is found by evaluating the function at the midpoint, $c_{i}=\frac{x_{i}+x_{i-1}}{2}$
- The area of the rectangle, R_{i}, over the interval $\left[x_{i-1}, x_{i}\right]$ is given by its height times its width or

$$
R_{i}=f\left(c_{i}\right) \Delta x
$$

- The area under $f(x)$ is approximated by adding the areas of the rectangles

$$
S_{n}=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x \approx \int_{a}^{b} f(x) d x
$$

Riemann Integral

Midpoint Rule

Figures below show a single rectangle in computing area of the Riemann Integral and all of the rectangles using the Midpoint Rule for approximating the area under the curve

Riemann Integral

Midpoint Rule

Riemann Sums and Riemann Integral

- The Midpoint Rule described above is a specialized form of Riemann sums
- The more general form of Riemann sums allows the subintervals to have varying lengths, Δx_{i}
- The choice of where the function is evaluated need not be at the midpoint as described above
- The Riemann integral is defined using a limiting process, similar to the one described above

Area under a Curve

Area under a Curve: Consider the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

From the Fundamental Theorem of Calculus the area under the curve is

$$
A_{*}=\int_{0}^{5} f(x) d x=\frac{x^{4}}{4}-2 x^{3}+\frac{9 x^{2}}{2}+\left.2 x\right|_{0} ^{5}=28.75
$$

- Approximate area with rectangles under the curve
- Divide the interval $x \in[0,5]$ into even intervals
- Use the midpoint of the interval to get height of the rectangle
- Examine approximation as intervals get smaller

Riemann Integral

Area under a Curve

Area under a Curve Divide $x \in[0,5]$ into 5 intervals

Area under a Curve

Area under a Curve: Height of rectangles from the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

- Width of the rectangles are $\Delta x=1$
- Height of rectangles evaluated at midpoints
- Approximate area satisfies

$$
A_{1} \approx\left(f\left(\frac{1}{2}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{5}{2}\right)+f\left(\frac{7}{2}\right)+f\left(\frac{9}{2}\right)\right) \Delta x=\sum_{i=0}^{4} f\left(i+\frac{1}{2}\right) \cdot 1
$$

- This gives

$$
A_{1} \approx \sum_{i=0}^{4}\left(\left(i+\frac{1}{2}\right)^{3}-6\left(i+\frac{1}{2}\right)^{2}+9\left(i+\frac{1}{2}\right)+2\right)=28.125
$$

- This is 2.17% less than the actual area

Riemann Integral

Area under a Curve

Area under a Curve Divide $x \in[0,5]$ into 10 intervals

Area under a Curve

Area under a Curve: Height of rectangles from the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

- Width of the rectangles are $\Delta x=\frac{1}{2}$
- Height of rectangles evaluated at midpoints
- Approximate area satisfies

$$
A_{2} \approx \sum_{i=0}^{9} f\left(\frac{i}{2}+\frac{1}{4}\right) \Delta x
$$

- This gives

$$
A_{2} \approx \frac{1}{2} \sum_{i=0}^{9}\left(\left(\frac{i}{2}+\frac{1}{4}\right)^{3}-6\left(\frac{i}{2}+\frac{1}{4}\right)^{2}+9\left(\frac{i}{2}+\frac{1}{4}\right)+2\right)=28.59375
$$

- This is 0.543% less than the actual area

Riemann Integral

Fundamental Theorem of Calculus Definition of Riemann Integral and Midpoint Ru Midpoint Rule for Integration Midpoint Example

Area under a Curve

Area under a Curve Divide $x \in[0,5]$ into 20 intervals

Area under a Curve

Area under a Curve: Height of rectangles from the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

- Width of the rectangles are $\Delta x=\frac{1}{4}$
- Height of rectangles evaluated at midpoints
- Approximate area satisfies

$$
A_{3} \approx \sum_{i=0}^{19} f\left(\frac{i}{4}+\frac{1}{8}\right) \Delta x
$$

- This gives

$$
A_{3} \approx \frac{1}{4} \sum_{i=0}^{19}\left(\left(\frac{i}{4}+\frac{1}{8}\right)^{3}-6\left(\frac{i}{4}+\frac{1}{8}\right)^{2}+9\left(\frac{i}{4}+\frac{1}{8}\right)+2\right)=28.7109
$$

- This is 0.135% less than the actual area

Riemann Integral Interpolation and Polynomial Approximation Numerical Integration (Quadrature)

Fundamental Theorem of Calculus Definition of Riemann Integral and Midpoint Ru Midpoint Rule for Integration Midpoint Example

Area under a Curve

Area under a Curve Divide $x \in[0,5]$ into 40 intervals

Area under a Curve

Area under a Curve: Height of rectangles from the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

- Width of the rectangles are $\Delta x=\frac{1}{8}$
- Height of rectangles evaluated at midpoints
- Approximate area satisfies

$$
A_{4} \approx \sum_{i=0}^{39} f\left(\frac{i}{8}+\frac{1}{16}\right) \Delta x
$$

- This gives

$$
A_{4} \approx \frac{1}{8} \sum_{i=0}^{39}\left(\left(\frac{i}{8}+\frac{1}{16}\right)^{3}-6\left(\frac{i}{8}+\frac{1}{16}\right)^{2}+9\left(\frac{i}{8}+\frac{1}{16}\right)+2\right)=28.7402
$$

- This is 0.034% less than the actual area

Area under a Curve

Area under a Curve: The actual area is,

$$
A_{*}=\int_{0}^{5} f(x) d x=28.75
$$

The approximate areas were

$\Delta x_{1}=1$	$\Delta x_{2}=\frac{1}{2}$	$\Delta x_{3}=\frac{1}{4}$	$\Delta x_{4}=\frac{1}{8}$
$A_{1}=28.125$	$A_{2}=28.59375$	$A_{3}=28.7109$	$A_{4}=28.7402$

The error ratio for this example is

$$
\frac{\left|A_{n+1}-A_{*}\right|}{\left|A_{n}-A_{*}\right|} \approx 0.25
$$

Thus, as the stepsize decreases by $\frac{1}{2}$, the error in the approximate area decreases by a factor of $\frac{1}{4}$
We will demonstrate that the error of the Midpoint Rule is $\mathcal{O}\left((\Delta x)^{2}\right)$, depending on the stepsize

Numerical Methods for Integration

Numerical Methods for Integration

- As noted before, many integrals cannot be solved exactly, so numerical methods need to be used to estimate definite integrals

$$
\int_{a}^{b} f(x) d x
$$

- The Midpoint Rule is an approximation based on the definition of a Riemann integral
- The Midpoint Rule is NOT a very efficient way to estimate the area under the curve
- Once again we turn to polynomials to approximate our functions and improve the convergence of the numerical routine to the actual value of the definite integral

Interpolation and Polynomial Approximation

Interpolation and Polynomial Approximation

- Polynomials provide "nice" smooth functions for approximations
- Taylor's series give excellent estimates near a point
- For integration, we need to extend over an interval
- Interpolating polynomials have many applications to fit functions or data at various x values

Weierstrass Approximation Theorem

The following theorem is the basis for polynomial approximation:

Theorem (Weierstrass Approximation Theorem)

Suppose $f \in C[a, b]$. Then for every $\epsilon>0$ there exists a polynomial $P(x):|f(x)-P(x)|<\epsilon$, for all $x \in[a, b]$.

Note: The bound is uniform, i.e., valid for all x in the interval.
Note: The theorem says nothing about how to find the polynomial, or about its order.

Illustrated: Weierstrass Approximation Theorem

Figure: Weierstrass approximation Theorem guarantees that we (maybe with substantial work) can find a polynomial which fits into the "tube" around the function f, no matter how thin we make the tube.

Candidates: the Taylor Polynomials???

Natural Question:

Are our old friends, the Taylor Polynomials, good candidates for polynomial interpolation?

Answer:

No. The Taylor expansion works very hard to be accurate in the neighborhood of one point. But we want to fit data at many points (in an extended interval).
[Next slide: The approximation is great near the expansion point $x_{0}=0$, but get progressively worse at we get further away from the point, even for the higher degree approximations.]

Taylor Approximation of e^{x} on the Interval [0,3]

We learned that e^{x} outgrows any polynomial

Fundamentals

Lagrange Interpolating Polynomials MatLab and Lagrange Polynomials

Interpolation: Lagrange Polynomials

Idea: Instead of working hard at one point, we will prescribe a number of points through which the polynomial must pass.

Consider a function that passes through the points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$. From techniques of algebra, we have the slope

$$
m=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

so the point slope form of a line gives

$$
y(x)-f\left(x_{0}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right) .
$$

This is rearranged to give

$$
\begin{aligned}
y(x) & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right) \\
y(x) & =f\left(x_{1}\right) \frac{\left(x-x_{0}\right)}{x_{1}-x_{0}}+f\left(x_{0}\right) \frac{\left(x-x_{0}\right)}{x_{0}-x_{1}}+f\left(x_{0}\right) \frac{\left(x_{0}-x_{1}\right)}{x_{0}-x_{1}} \\
y(x) & =f\left(x_{1}\right) \frac{\left(x-x_{0}\right)}{x_{1}-x_{0}}+f\left(x_{0}\right) \frac{\left(x-x_{1}\right)}{x_{0}-x_{1}}
\end{aligned}
$$

Interpolation: Lagrange Polynomials

From the previous slide we have:

$$
y(x)=f\left(x_{1}\right) \frac{\left(x-x_{0}\right)}{x_{1}-x_{0}}+f\left(x_{0}\right) \frac{\left(x-x_{1}\right)}{x_{0}-x_{1}}
$$

If we define:

$$
L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}, \quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}
$$

then we obtain the interpolating polynomial

$$
P(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)
$$

with $P\left(x_{0}\right)=f\left(x_{0}\right)$, and $P\left(x_{1}\right)=f\left(x_{1}\right)$.
$-P(x)$ is the unique linear polynomial passing through $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$.

An n-degree polynomial passing through $n+1$ points

We are going to construct a polynomial passing through the points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$.
We define $L_{n, k}(x)$, the Lagrange coefficients:

$$
\mathbf{L}_{\mathbf{n}, \mathbf{k}}(\mathbf{x})=\prod_{\mathrm{i}=0, \mathbf{i} \neq \mathbf{k}}^{\mathrm{n}} \frac{\mathbf{x}-\mathbf{x}_{\mathbf{i}}}{\mathbf{x}_{\mathbf{k}}-\mathbf{x}_{\mathbf{i}}}=\frac{x-x_{0}}{x_{k}-x_{0}} \cdots \frac{x-x_{k-1}}{x_{k}-x_{k-1}} \cdot \frac{x-x_{k+1}}{x_{k}-x_{k+1}} \cdots \frac{x-x_{n}}{x_{k}-x_{n}}
$$

which have the properties

$$
L_{n, k}\left(x_{k}\right)=1 ; \quad L_{n, k}\left(x_{i}\right)=0, \quad \text { for all } i \neq k .
$$

Example of $L_{n, k}(x)$

This is $L_{6,3}(x)$, for the points $x_{i}=i, i=0, \ldots, 6$.

The $n^{\text {th }}$ Lagrange Interpolating Polynomial

We use $L_{n, k}(x), k=0, \ldots, n$ as building blocks for the Lagrange interpolating polynomial:

$$
P(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x)
$$

which has the property

$$
P\left(x_{i}\right)=f\left(x_{i}\right), \quad \text { for all } i=0, \ldots, n .
$$

This is the unique $n^{\text {th }}$ degree polynomial passing through the points
$\left(x_{i}, f\left(x_{i}\right)\right), i=0, \ldots, n$.

Error bound for the Lagrange interpolating polynomial

Suppose $x_{i}, i=0, \ldots, n$ are distinct numbers in the interval $[a, b]$, and $f \in C^{n+1}[a, b]$. Then for all $x \in[a, b]$ there exists $\xi(x) \in(a, b)$ so that:

$$
f(x)=P_{\text {Lagrange }}(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right),
$$

where $P_{\text {Lagrange }}(x)$ is the $n^{\text {th }}$ Lagrange interpolating polynomial.
Compare with the error formula for Taylor polynomials

$$
f(x)=P_{\text {Taylor }}(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{n+1},
$$

Problem: Applying the error term may be difficult...

The Lagrange and Taylor Error Terms

Just to get a feeling for the non-constant part of the error terms in the Lagrange and Taylor approximations, we plot those parts on the interval $[0,4]$ with interpolation points $x_{i}=i, i=0,1, \ldots, 4$:

Figure: [LEFT] The non-constant error terms for the Lagrange interpolation oscillates in the interval $[-4,4]$ (and takes the value zero at the node point x_{k}), and [RIGHT] the non-constant error term for the Taylor extrapolation grows in the interval [0, 1024].

MatLab and Lagrange Polynomials

Example: Find the Lagrange polynomial through the points:

$$
(0,-5), \quad(1,-6), \quad(2,-1), \quad \text { and } \quad(3,16)
$$

The Lagrange polynomial satisfies

$$
\begin{aligned}
P(x)= & \frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)}(-5)+\frac{x(x-2)(x-3)}{(1-0)(1-2)(1-3)}(-6) \\
& +\frac{x(x-1)(x-3)}{(2-0)(2-1)(2-3)}(-1)+\frac{x(x-1)(x-2)}{(3-0)(3-1)(3-2)}(16) \\
= & x^{3}-2 x-5
\end{aligned}
$$

This example was reverse engineered to have clean numbers

MatLab Lagrange Program

Below is a code for accepting vector data x and y and generating the Lagrange polynomial

It outputs points on this polynomial at $(u(k), v(k))$

```
function \(v=p o l y i n t e r p(x, y, u)\)
\% Creates Lagrange polynomial
\(\mathrm{n}=\) length (x) ;
\(\mathrm{v}=\) zeros(size(u));
for \(k=1: n\)
    w = ones (size(u));
    for \(j=[1: k-1 k+1: n]\)
        \(\mathrm{w}=(\mathrm{u}-\mathrm{x}(\mathrm{j})) . /(\mathrm{x}(\mathrm{k})-\mathrm{x}(\mathrm{j})) \cdot \mathrm{*} \mathrm{w}\);
        end
        \(\mathrm{v}=\mathrm{v}+\mathrm{w} * \mathrm{y}(\mathrm{k})\);
    end
```


MatLab and Lagrange Polynomials

Example (with MatLab): Our example satisfies

$$
x=0: 3 ; y=\left[\begin{array}{llll}
-5 & -6 & -1 & 16
\end{array}\right] ;
$$

We enter closely spaced points, u, the function polyinterp, and plot the results

```
u = -0.25:0.01:3.25;
v = polyinterp(x,y,u);
plot((x,y,'O',u,v,'-');grid;
```


MatLab and Lagrange Polynomials

Example (with MatLab): Continuing our example we can use the symbolic package in MatLab to obtain the polynomial expression: symx = sym('x')

The polynomial is given by:
$\mathrm{P}=$ polyinterp(x,y,symx)
$P=(x *(x-1) *(x-3)) / 2+5 *(x / 2-1) *(x / 3-\ldots$
$1) *(x-1)+(16 * x *(x / 2-1 / 2) *(x-2)) / 3-\ldots$
$6 * x *(x / 2-3 / 2) *(x-2)$
This is simplified with
P = simplify(P)
$P=x^{\wedge} 3-2 * x-5$

Vandermonde Matrix and Interpreting Polynomial

Alternate Scheme: Suppose we want an interpreting polynomial of the form:

$$
P(x)=c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots+c_{n-1} x+c_{n}
$$

Given data points $x=\left[x_{1}, \ldots, x_{n}\right]$ and $y=\left[y_{1}, \ldots, y_{n}\right]$ we can obtain the coefficients c_{1}, \ldots, c_{n} by solving the system:

$$
\left(\begin{array}{ccccc}
x_{1}^{n-1} & x_{1}^{n-2} & \cdots & x_{1} & 1 \\
x_{2}^{n-1} & x_{2}^{n-2} & \cdots & x_{2} & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{n}^{n-1} & x_{n}^{n-2} & \cdots & x_{n} & 1
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

This system $V c=y$ contains the important Vandermonde matrix, V

Vandermonde Matrix and MatLab

Given the data $x=\left[x_{1}, \ldots, x_{n}\right]$, the elements of the Vandermonde matrix, V, satisfy

$$
v_{k, j}=x_{k}^{n-j}
$$

MatLab has the function vander, which generates the Vandermonde matrix, V

For our example above, $x=0: 3 ; y=[-5-6-116]$; $\mathrm{V}=$ vander(x) produces

$$
V=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
8 & 4 & 2 & 1 \\
27 & 9 & 3 & 1
\end{array}\right)
$$

Then $\mathrm{c}=\mathrm{V} \backslash \mathrm{y}$ ' produces $c=[1,0,-2,-5]^{t}$ or

$$
P(x)=x^{3}-2 x-5
$$

Numerical Quadrature - Basics

Numerical Quadrature: Basics

- Integration is valuable in many applications - often the anti-derivative is unavailable
- Introduction showed the definition of the Riemann integral
- Midpoint rule directly uses the definition with even intervals and function evaluations at the midpoint of the subintervals
- The convergence of this method appeared to be $\mathcal{O}\left((\Delta x)^{2}\right)$
- Can we do better with interpolating functions on the subintervals $\left[x_{j}, x_{j+1}\right]$?

Numerical Quadrature - Basics

There are two primary means of improving Numerical integration
(1) If $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$, then properties of the integral give

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{1}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x
$$

We create composite integrals and choose appropriate x_{i} 's, which subdivide our function $f(x)$ into n subintervals with each subinterval providing a smaller domain and better approximation of f on that subinterval.
(2) Take a particular subinterval, then partition that subinterval further to obtain a reasonable approximation of $f(x)$ on the subinterval by an interpreting polynomial, which is precisely integrable and has a known error bound.

Numerical Quadrature - Basics

Our aim is to obtain the greatest accuracy approximating the integral with the minimum amount of computation

- We can vary the spacing x_{j}, not necessarily uniform
- We can alter how $f(x)$ is approximated - Using polynomials, which are exactly integrable

Numerical Quadrature - Single Interval

We begin our analysis with the second point above (avoiding the composite integral for now)

We focus on a single interval and consider interpolating polynomials approximating $f(x)$ on the single interval

The basic idea is to replace integration by a clever summation:

$$
\int_{a}^{b} f(x) d x \quad \rightarrow \quad \sum_{i=0}^{n} a_{i} f_{i}
$$

where $a \leq x_{0}<x_{1}<\cdots<x_{n} \leq b, f_{i}=f\left(x_{i}\right)$.

The coefficients a_{i} and the nodes x_{i} are to be selected.

Various means of selecting a_{i} and x_{i} alter the efficiency and accuracy of our algorithm

Building Integration Schemes with Lagrange Polynomials

Given the nodes $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ we can use the Lagrange interpolating polynomial

$$
P_{n}(x)=\sum_{i=0}^{n} f_{i} L_{n, i}(x), \quad \text { with error } \quad E_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

to obtain

$$
\int_{a}^{b} f(x) d x=\underbrace{\int_{a}^{b} P_{n}(x) d x}_{\text {The Approximation }}+\underbrace{\int_{a}^{b} E_{n}(x) d x}_{\text {The Error Estimate }}
$$

Identifying the Coefficients

The Lagrange interpolating polynomials are readily integrated to give the weighting coefficients a_{i}

$$
\int_{a}^{b} P_{n}(x) d x=\int_{a}^{b} \sum_{i=0}^{n} f_{i} L_{n, i}(x) d x=\sum_{i=0}^{n} f_{i} \underbrace{\int_{a}^{b} L_{n, i}(x) d x}_{a_{i}}=\sum_{i=0}^{n} f_{i} a_{i}
$$

Hence we write

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} a_{i} f_{i}
$$

with error given by

$$
E(f)=\int_{a}^{b} E_{n}(x) d x=\int_{a}^{b} \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right) d x .
$$

Trapezoidal \& Simpson's Rules Newton-Cotes Formulas

Example 1: Trapezoidal Rule

Let $a=x_{0}<x_{1}=b$, and use the linear interpolating polynomial

$$
P_{1}(x)=f_{0}\left[\frac{x-x_{1}}{x_{0}-x_{1}}\right]+f_{1}\left[\frac{x-x_{0}}{x_{1}-x_{0}}\right] .
$$

Example 1: Trapezoidal Rule

Then

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \int_{x_{0}}^{x_{1}}\left[f_{0}\left[\frac{x-x_{1}}{x_{0}-x_{1}}\right]+f_{1}\left[\frac{x-x_{0}}{x_{1}-x_{0}}\right]\right] d x \\
& +\frac{1}{2} \int_{x_{0}}^{x_{1}} f^{\prime \prime}(\xi(x))\left(x-x_{0}\right)\left(x-x_{1}\right) d x
\end{aligned}
$$

The error term (use the Weighted Mean Value Theorem):

$$
\begin{aligned}
& \int_{x_{0}}^{x_{1}} f^{\prime \prime}(\xi(x))\left(x-x_{0}\right)\left(x-x_{1}\right) d x=f^{\prime \prime}(\xi) \int_{x_{0}}^{x_{1}}\left(x-x_{0}\right)\left(x-x_{1}\right) d x \\
& =f^{\prime \prime}(\xi)\left[\frac{x^{3}}{3}-\frac{x_{1}+x_{0}}{2} x^{2}+x_{0} x_{1} x\right]_{x_{0}}^{x_{1}}=-\frac{h^{3}}{6} f^{\prime \prime}(\xi) .
\end{aligned}
$$

where $h=x_{1}-x_{0}=b-a$. Numerical Integration (Quadrature)

Trapezoidal \& Simpson's Rules Newton-Cotes Formulas

Example 1: Trapezoidal Rule

Hence,

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\left[f_{0}\left[\frac{\left(x-x_{1}\right)^{2}}{2\left(x_{0}-x_{1}\right)}\right]+f_{1}\left[\frac{\left(x-x_{0}\right)^{2}}{2\left(x_{1}-x_{0}\right)}\right]\right]_{x_{0}}^{x_{1}}-\frac{h^{3}}{12} f^{\prime \prime}(\xi) \\
& =\frac{\left(x_{1}-x_{0}\right)}{2}\left[f_{0}+f_{1}\right]-\frac{h^{3}}{12} f^{\prime \prime}(\xi)
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d x=h\left[\frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}\right]-\frac{h^{3}}{12} f^{\prime \prime}(\xi), \quad h=b-a .
$$ Numerical Integration (Quadrature)

Example 2a: Simpson's Rule (sub-optimal error bound)

Let $x_{0}=a, x_{1}=\frac{a+b}{2}, x_{2}=b$, let $h=\frac{b-a}{2}$ and use the $\boldsymbol{q u a d r a t i c}$ interpolating polynomial

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{2}}\left[f\left(x_{0}\right) \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}+f\left(x_{1}\right) \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}\right. \\
& \left.\quad+f\left(x_{2}\right) \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}\right] d x \\
& \quad+\int_{x_{0}}^{x_{2}} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{6} f^{(3)}(\xi(x)) d x \ldots
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d x=h\left[\frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{3}\right]+\mathcal{O}\left(h^{4} f^{(3)}(\xi)\right)
$$

Example 2b: Simpson's Rule (optimal error bound)

The optimal error bound for Simpson's rule can be obtained by Taylor expanding $f(x)$ about the mid-point x_{1} :
$f(x)=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)+\frac{f^{\prime \prime}\left(x_{1}\right)}{2}\left(x-x_{1}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{1}\right)}{6}\left(x-x_{1}\right)^{3}+\frac{f^{(4)}(\xi(x))}{24}\left(x-x_{1}\right)^{4}$,
then formally integrating this expression, to get:
$\int_{a}^{b}\left[f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)+\frac{f^{\prime \prime}\left(x_{1}\right)}{2}\left(x-x_{1}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{1}\right)}{6}\left(x-x_{1}\right)^{3}+\frac{f^{(4)}(\xi(x))}{24}\left(x-x_{1}\right)^{4}\right] d x$.

After use of the weighted mean value theorem, and the approximation $f^{\prime \prime}\left(x_{1}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}\right)-2 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{h^{2}}{12} f^{(4)}(\xi)$, and a whole lot of algebra (Yanofsky - UCLA Notes) we end up with

$$
\int_{x_{0}}^{x_{2}} f(x) d x=h\left[\frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{3}\right]-\frac{h^{5}}{90} f^{(4)}(\xi)
$$ Numerical Integration (Quadrature)

Trapezoidal \& Simpson's Rules Newton-Cotes Formulas

Example 2: Simpson's Rule

$$
\int_{a}^{b} f(x) d x=h\left[\frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{3}\right]+\mathcal{O}\left(h^{5} f^{(4)}(\xi)\right)
$$

Integration Examples

$f(x)$	$[a, b]$	$\int_{a}^{b} f(x) d x$	Trapezoidal	Error	Simpson	Error
x	$[0,1]$	$1 / 2$	0.5	0	0.5	0
x^{2}	$[0,1]$	$1 / 3$	0.5	0.16667	0.33333	0
x^{3}	$[0,1]$	$1 / 4$	0.5	0.25000	0.25000	0
x^{4}	$[0,1]$	$1 / 5$	0.5	0.30000	0.20833	0.0083333
e^{x}	$[0,1]$	$e-1$	1.8591	0.14086	1.7189	0.0005793

The Trapezoidal rule gives exact solutions for linear functions. - The error terms contains a second derivative.

Simpson's rule gives exact solutions for polynomials of degree less than 4 . - The error term contains a fourth derivative.

Degree of Accuracy (Precision)

Definition (Degree of Accuracy)

The Degree of Accuracy, or precision, of a quadrature formula is the largest positive integer n such that the formula is exact for x^{k} for all $k=0,1, \ldots, n$.

With this definition:

Scheme	Degree of Accuracy
Trapezoidal	1
Simpson's	3

Trapezoidal and Simpson's are examples of a class of methods known as Newton-Cotes formulas.

Newton-Cotes Formulas - Two Types

Closed The $(n+1)$ point closed NCF uses nodes $x_{i}=x_{0}+i h, i=$ $0,1, \ldots, n$, where $x_{0}=a, x_{n}=b$ and $h=(b-a) / n$. It is called closed since the endpoints are included as nodes.

Newton-Cotes Formulas - Two Types

Open The $(n+1)$ point open NCF uses nodes $x_{i}=x_{0}+i h, i=$ $0,1, \ldots, n$ where $h=(b-a) /(n+2)$ and $x_{0}=a+h, x_{n}=b-h$. (We label $x_{-1}=a, x_{n+1}=b$.)

Closed Newton-Cotes Formulas

The approximation is

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} a_{i} f\left(x_{i}\right)
$$

where

$$
a_{i}=\int_{x_{0}}^{x_{n}} L_{n, i}(x) d x=\int_{x_{0}}^{x_{n}} \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} d x
$$

Note: The Lagrange polynomial $L_{n, i}(x)$ models a function which takes the value 0 at all $x_{j}(j \neq i)$, and 1 at x_{i}. Hence, the coefficient a_{i} captures the integral of a function, which is 1 at x_{i} and zero at the other node points.

Closed Newton-Cotes Formulas - Error

Theorem

Suppose that $\sum_{i=0}^{n} a_{i} f\left(x_{i}\right)$ denotes the $(n+1)$ point closed Newton-Cotes formula with $x_{0}=a, x_{n}=b$, and $h=(b-a) / n$. Then there exists $\xi \in(a, b)$ for which

$$
\int_{a}^{b} f(x) d x=\sum_{i=0}^{n} a_{i} f\left(x_{i}\right)+\frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{0}^{n} t^{2}(t-1) \cdots(t-n) d t
$$

if n is even and $f \in C^{n+2}[a, b]$, and

$$
\int_{a}^{b} f(x) d x=\sum_{i=0}^{n} a_{i} f\left(x_{i}\right)+\frac{h^{n+2} f^{(n+1)}(\xi)}{(n+1)!} \int_{0}^{n} t(t-1) \cdots(t-n) d t
$$

if n is odd and $f \in C^{n+1}[a, b]$.
Note that when n is an even integer, the degree of precision is $(n+1)$. When n is odd, the degree of precision is only n.

Closed Newton-Cotes Formulas - Examples

$\mathbf{n}=1$: Trapezoid Rule

$$
\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]-\frac{h^{3}}{12} f^{\prime \prime}(\xi)
$$

$\mathbf{n}=2$: Simpson's Rule

$$
\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{h^{5}}{90} f^{(4)}(\xi)
$$

n = 3: Simpson's $\frac{3}{8}$-Rule

$$
\frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right]-\frac{3 h^{5}}{80} f^{(4)}(\xi)
$$

n=4: Boole's Rule

$$
\frac{2 h}{45}\left[7 f\left(x_{0}\right)+32 f\left(x_{1}\right)+12 f\left(x_{2}\right)+32 f\left(x_{3}\right)+7 f\left(x_{4}\right)\right]-\frac{8 h^{7}}{945} f^{(6)}(\xi)
$$

Open Newton-Cotes Formulas

The approximation is

$$
\int_{a}^{b} f(x) d x=\int_{x_{-1}}^{x_{n+1}} f(x) d x \approx \sum_{i=0}^{n} a_{i} f\left(x_{i}\right),
$$

where

$$
a_{i}=\int_{x_{-1}}^{x_{n+1}} L_{n, i}(x) d x=\int_{x_{0}}^{x_{n}} \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} d x
$$

Open Newton-Cotes Formulas - Error

Theorem

Suppose that $\sum_{i=0}^{n} a_{i} f\left(x_{i}\right)$ denotes the $(n+1)$ point open
Newton-Cotes formula with $x_{-1}=a, x_{n+1}=b$, and $h=(b-a) /(n+2)$. Then there exists $\xi \in(a, b)$ for which

$$
\int_{a}^{b} f(x) d x=\sum_{i=0}^{n} a_{i} f\left(x_{i}\right)+\frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{-1}^{n+1} t^{2}(t-1) \cdots(t-n) d t
$$

if n is even and $f \in C^{n+2}[a, b]$, and

$$
\int_{a}^{b} f(x) d x=\sum_{i=0}^{n} a_{i} f\left(x_{i}\right)+\frac{h^{n+2} f^{(n+1)}(\xi)}{(n+1)!} \int_{-1}^{n+1} t(t-1) \cdots(t-n) d t
$$

if n is odd and $f \in C^{n+1}[a, b]$.
Note that when n is an even integer, the degree of precision is $(n+1)$. When n is odd, the degree of precision is only n.

Open Newton-Cotes Formulas - Examples

$\mathbf{n}=\mathbf{0}:$ Midpoint Rule

$$
2 h f\left(x_{0}\right)+\frac{h^{3}}{3} f^{\prime \prime}(\xi)
$$

n = 1: Trapezoid Method

$$
\frac{3 h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{3 h^{3}}{4} f^{\prime \prime}(\xi)
$$

n = 2: Milne's Rule

$$
\frac{4 h}{3}\left[2 f\left(x_{0}\right)-f\left(x_{1}\right)+2 f\left(x_{2}\right)\right]+\frac{14 h^{5}}{45} f^{(4)}(\xi)
$$

n=3: No Name

$$
\frac{5 h}{24}\left[11 f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+11 f\left(x_{3}\right)\right]+\frac{95 h^{5}}{144} f^{(4)}(\xi)
$$

Divide and Conquer!

Say you want to compute:

$$
\int_{0}^{100} f(x) d x
$$

Is it a Good Idea ${ }^{\mathrm{TM}}$ to directly apply your favorite Newton-Cotes formula to this integral?!?

No!

With the closed 5-point NCF, we have $h=25$ and $h^{5} / 90 \sim 10^{5}$ so even with a bound on $f^{(6)}(\xi)$ the error will be large.

Better: Apply the closed 5-point NCF to the integrals

$$
\int_{4 i}^{4(i+1)} f(x) d x, \quad i=0,1, \ldots, 24
$$

then sum. "Composite Numerical Integration"

