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Riemann Integral Riemann Integral

Definite Integral Definition of Riemann Integral

Definition of Riemann Integral: The standard integral from

Theorem (Fundamental Theorem of Calculus) Caleulus is the Ri Int !
alculus is the Riemann Integra

Let f(x) be a continuous function on the interval [a,b] and assume
that F(x) is any antiderivative of f(x). The definite integral, @ Let f(x) be a continuous function in the interval [a, b]
which gives the area under the curve of f(x) between a and b,

@ Partition the interval |a, b] into n subintervals |z;_1, ;| with
satisfies the following formula: [a, 0] [zio1,2i]

Azx; = x; — x;_1 and Axy being the largest

@ Let ¢; be some point in the subinterval [z;_1, ;]

/ f(z)dz = F(b) — F(a).

@ The n'* Riemann sum is given by

n
@ Finding integrals was a significant part of Calculus Sn = 2 Flei)Az;
1=

@ Developed many techniques for solving a variety of integrals o The Riemann integral is defined by

@ Many integrals are impossible to solve with classic techniques

b n
® We need numerical methods to evaluate these definite / flx)dx = Alirgo Z fle)Ax;
integrals SDSO @ i
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Riemann Integral

Midpoint Rule Midpoint Rule 2

The Midpoint Rule is given by the following:

The Midpoint Rule is based directly on the definition of the
Riemann integral. @ Let o = a and z,, = b and define Ax = b’Ta with z; = a + iAx

fori=0,...,n
Suppose that we want to approximate the area under some continuous

function f(z) between z — a and & — b @ This partitions the interval [a, b] into n subintervals [z;_1, x;]

each with length Ax
@ The height of the approximating rectangle is found by evaluating

Tit+Ti—1

@ Divide the interval [a,b] into a number of small intervals : ; !
the function at the midpoint, ¢; = 5

@ Assume there are n evenly spaced intervals (which Riemann

. . L ) ; i 1,25 i
sums do not require this restriction) The area of the rectangle, R;, over the interval [z;_1,x;] is

given by its height times its width or
@ Evaluate the functio at the midpoint of subinterval
valu unction, f(z), midpoint of any subinterv: Ri = f(c))Ax

@ Technically, it is important in the definition of the Riemann
integral that one chooses arbitrarily any point in the interval,
but that is left to other analysis courses

@ The area under f(z) is approximated by adding the areas of the
rectangles

n b
Sp = Z flei)Az ~ / f(z)dz SDST
/L:1 ° E— S — _
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Fundamental Theorem of Calculus
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Midpoint Example

Midpoint Rule 3

Figures below show a single rectangle in computing area of the
Riemann Integral and all of the rectangles using the Midpoint
Rule for approximating the area under the curve Riemann Sums and Riemann Integral

Riemann Integral Riemann Integral

Midpoint Rule 4

® The Midpoint Rule described above is a specialized form of
Riemann sums

y=f(x) . .
y=i(x) @ The more general form of Riemann sums allows the subintervals

to have varying lengths, Ax;

@ The choice of where the function is evaluated need not be at the
midpoint as described above

. @ The Riemann integral is defined using a limiting process,
ftc) 74 i) similar to the one described above
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Area under a Curve

Area under a Curve: Consider the function

flx)=2® 622 +9zx+2 for x€10,5]

From the Fundamental Theorem of Calculus the area under the
curve is

5
xt 92

5
A*—/ f(:c)da::——2m3+7+2x = 28.75
0

4 0

@ Approximate area with rectangles under the curve
@ Divide the interval z € [0, 5] into even intervals
@ Use the midpoint of the interval to get height of the rectangle

@ Examine approximation as intervals get smaller
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Midpoint Example

Riemann Integral

Area under a Curve 3

Area under a Curve: Height of rectangles from the function

fx) =23 — 622 +9x +2 for x€10,5]

@ Width of the rectangles are Az =1
@ Height of rectangles evaluated at midpoints

@ Approximate area satisfies

A1%(f(%)+f(%)+f(%)+f(%)+f(%))m:§4:f(i+%)~1

=0
@ This gives
4
A zZ((i+%)3—6(i+%)2+9(i+%) +2) = 28.125
i=0

@ This is 2.17% less than the actual area
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Riemann Integral

Area under a Curve

Area under a Curve Divide z € [0, 5] into 5 intervals

22
20t
18t

5 rectangles under the curve
14}f
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Fundamental Theorem of Calculus

Riemann Integral Definition of Riemann Int

Midpoint Rule for Integrat

Midpoint Example

Area under a Curve

Area under a Curve Divide z € [0, 5] into 10 intervals

22
20t
18t

10 rectangles under the curve

16

14f
12}
10f
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Riemann Integral

Area under a Curve 5)

Area under a Curve: Height of rectangles from the function

fx) =23 — 622 +9x +2 for x €10,5]

|—=

@ Width of the rectangles are Ar = 3

@ Height of rectangles evaluated at midpoints

@ Approximate area satisfies

9
Ay f(5+1)A
=0
@ This gives
9
Arm 3y (3 44) =6 (5 +3) 40 (5 +14) +2) = 2850375
=0

SDSJO
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Riemann Integral

Area under a Curve 7

Area under a Curve: Height of rectangles from the function

fx) =23 — 622 +9x +2 for x€10,5]

|—=

@ Width of the rectangles are Ar = ;

@ Height of rectangles evaluated at midpoints

@ Approximate area satisfies

19
A=) F(5+3)A
=0
@ This gives
19 3 9
A= 3 Y (GH8) =65+ 8) 49 (5 +3) +2) =28.7109
=0

@ This is 0.135% less than the actual area
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Fundamental Theorem of Calculus

Definition of Riemann Integral and Midpoint Ru
Midpoint Rule for Integration

Midpoint Example

Riemann Integral

Area under a Curve §

Area under a Curve Divide z € [0, 5] into 20 intervals

22
20t
18t

20 rectangles under the curve

161

14f
12}
10f
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Riemann Integral

rea under a Curve 8

Area under a Curve Divide z € [0, 5] into 40 intervals

22
20t
18t

40 rectangles under the curve

16

14f
12}
10f

(=S > ]




Fundamental Theorem of Calculus

Definition of Riemann Integral and Midpoint Ru
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Riemann Integral

Fundamental Theorem of Calculus

Definition of Riemann Integral and Midpoint Ru
Midpoint Rule for Integration

Midpoint Example

Riemann Integral

Area under a Curve 9

Area under a Curve: Height of rectangles from the function

fx) =23 — 622 +9x +2 for x €10,5]

|—=

@ Width of the rectangles are Ar = g

@ Height of rectangles evaluated at midpoints

@ Approximate area satisfies

@ This gives
39 3 9
Am kY (5 +4)" 6+ )" +9 (5 + ) +2) = 287402
=0

@ This is 0.034% less than the actual area SDST
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Riemann Integral

Numerical Methods for Integration

Numerical Methods for Integration

@ As noted before, many integrals cannot be solved exactly, so
numerical methods need to be used to estimate definite

integrals
b
/ f(x)dx

® The Midpoint Rule is an approximation based on the
definition of a Riemann integral

® The Midpoint Rule is NOT a very efficient way to estimate
the area under the curve

® Once again we turn to polynomials to approximate our
functions and improve the convergence of the numerical
routine to the actual value of the definite integral

Interpolation and Polynomial Approximation

Area under a Curve 10

Area under a Curve: The actual area is,

5
A, :/0 f(x)dx = 28.75

The approximate areas were

Ar1 =1 A$2:% Ax;g:% Axélzé
Ay =28.125 | Ay =28.59375 | A3 = 28.7109 | A4 = 28.7402
The error ratio for this example is
|[Ant1 — Ay
T " =~0.25
|f1n _‘14*‘

Thus, as the stepsize decreases by %, the error in the approximate
area decreases by a factor of %

We will demonstrate that the error of the Midpoint Rule is
O((Az)?), depending on the stepsize
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Interpolation and Polynomial Approximation

Interpolation and Polynomial Approximation

@ Polynomials provide “nice” smooth functions for approximations
@ Taylor’s series give excellent estimates near a point
@ For integration, we need to extend over an interval

@ Interpolating polynomials have many applications to fit
functions or data at various z values

(19/60)
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Weierstrass Approximation Theorem [lustrated: Weierstrass Approximation Theorem

The following theorem is the basis for polynomial approximation:

Theorem (Weierstrass Approximation Theorem )

Suppose f € Cla,b]. Then for every e > 0 there exists a polynomial
P(z): |f(z) — P(x)| <e, for all x € [a,b].

Note: The bound is uniform, i.e., valid for all x in the interval.

Note: The theorem says nothing about how to find the polynomial,

or about its order. ‘ ‘ ‘ ‘
0 2 4 6 8 10

Figure: Weierstrass approximation Theorem guarantees that we (maybe with
substantial work) can find a polynomial which fits into the “tube” around the
function f, no matter how thin we make the tube.

f SDSO
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Fundamentals
Interpolation and Polynomial Approximation Lagrange Interpolating Polynomials
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Candidates: the Taylor Polynomials???

Taylor Approximation of e* on the Interval [0, 3]

We learned that e” outgrows any polynomial

25

Natural Question:
Are our old friends, the Taylor Polynomials, good candidates for

polynomial interpolation? 20
Answer:
No. The Taylor expansion works very hard to be accurate in 15

the neighborhood of one point. But we want to fit data at many

points (in an extended interval).
10

[Next slide: The approximation is great near the expansion point
xp = 0, but get progressively worse at we get further away from the
point, even for the higher degree approximations.]
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Interpolation: Lagrange Polynomials

Idea: Instead of working hard at one point, we will prescribe a number of points
through which the polynomial must pass.

Consider a function that passes through the points (zo, f(zo0)) and (z1, f(z1)).
From techniques of algebra, we have the slope

_ f(=1) = f(zo)
1 — To ’

so the point slope form of a line gives

flz1) — f(ﬂﬂO)(

y(z) — f(zo) = 0)-
1 —
This is rearranged to give
va) = HELZIE) a4 ),
wo) = S >( 20 e 222,
R RCELY ) “a
y@) = f) + flao) 2, J—
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Interpolation: Lagrange Polynomials

From the previous slide we have:

@) = flan) T e 1)

— o To — T1
If we define:
r — X Tr — X9
L0($) = ) Ly (.’E) = ’
To — X1 xr1 — To

then we obtain the interpolating polynomial
P(x) = Lo(z) f(z0) + L1(x) f(21),

with P(xg) = f(xo), and P(z1) = f(x1).
— P(x) is the unique linear polynomial passing through

(zo, f(z0)) and (z1, f(z1))-

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (260)
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An n-degree polynomial passing through n + 1 points

We are going to construct a polynomial passing through the points
(2o, f(20)), (21, f(21)), (22, f(22)), -, (20, f(20)-
We define L, x(z), the Lagrange coefficients:

n

X — Xj r — X0 T —Tg—1 LT — Tk41 T — Tp
Lk (x) = H i ,
Tk — Tk—1 Tk — Tk41 LTk — Tn

Xk — Xj T — T
i=0, ik k i k 0

which have the properties

Ly (zk)=1; Lpi(z;) =0, forallik.
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Example of L,, j(z)

| | | | | | |
0 1 2 3 4 5 6

This is Lg 3(x), for the points x; =4,i=0,...,6.
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Fundamentals
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MatLab and Lagrange Polynomials

Error bound for the Lagrange interpolating polynomial

We use Ly, (z), k =0,...,n as building blocks for the Lagrange
interpolating polynomial:

which has the property
P(z;) = f(z;), foralli=0,...,n.

This is the unique n'" degree polynomial passing through the
points

(CCi, f(a;l)), 1= 0, sy
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The Lagrange and Taylor Error Terms

Just to get a feeling for the non-constant part of the error terms in
the Lagrange and Taylor approximations, we plot those parts on the
interval [0,4] with interpolation points z; = 1,7 =0,1,...,4:

1000

600

Figure: [LEFT| The non-constant error terms for the Lagrange interpolation oscillates in the
interval [—4, 4] (and takes the value zero at the node point x}), and [RIGHT]| the non-constant

error term for the Taylor extrapolation grows in the interval [0, 1024]. m

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (310)

Suppose z;, i = 0,...,n are distinct numbers in the interval [a, b],
and f € C""a, b]. Then for all x € [a, b] there exists £(z) € (a, b) so
that:

(n+D) (g(2)) =
f(l‘) = PLagrange(x) + ‘]C(T(glgl)) H($ - ‘Ti)?

where Ppagrange() is the n'™ Lagrange interpolating polynomial.

Compare with the error formula for Taylor polynomials

Fr D (g(
1

@) = Praorta) + D (0 s

)

Problem: Applying the error term may be difficult...
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MatLab and Lagrange Polynomials

Example: Find the Lagrange polynomial through the points:
(0,-5), (1,—-6), (2,—-1), and (3,16).

The Lagrange polynomial satisfies

(= 1D(x—=2)(z—-3) z(x —2)(xz — 3)
P(z) = (0—1)(0—2)(0—3) (=9) + 1-0)(1-2)(1-3) (=6)
z(z —1)(z — 3) z(z —1)(z —2)
e-0e-ne-3"TE_ge-nE-2"Y
= x3-22-5

This example was reverse engineered to have clean numbers
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Interpolation and Polynomial Approximation Interpolation and Polynomial Approximation

MatLab and Lagrange Polynomials

MatLab Lagrange Program

Example (with MatLab): Our example satisfies
Xx =03,y =[5 -6 -1 16];

Below is a code for accepting vector data X and y and generating the
Lagrange polynomial
We enter closely spaced points, u, the function polyinterp  , and

It outputs points on this polynomial at (u(k),v(k))
plot the results

1 function v = polyinterp(x,y,u) u = -0.25:0.01:3.25;

2 % Creates Lagrange polynomial Vlo_t p()g(lylnterlp('x,y,u), SOy arid

3 N = Iength (X); p Y5 o ,uyv, )s ar )

4 VvV = zeros (size (u)); .

5 for k = 1in )

6 w = ones( size (u));

7 for j = [1:k-1 k+1:n] “

5 w = (Ux())/x(K)X())- w; :

9 end ’
10 V =V + W+* y(k); 0 B
11 end R R
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Interpolation and Polynomial Approximation
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(34/60)

Fundamentals
Lagrange Interpolating Polynomials
MatLab and Lagrange Polynomials

MatLab and Lagrange Polynomials

Vandermonde Matrix and Interpreting Polynomial

Alternate Scheme: Suppose we want an interpreting polynomial of
Example (with MatLab): Continuing our example we can use the the form:
symbolic package in MatLab to obtain the polynomial expression:

symx = sym('x' ) Plx)=cia" 4oz 2+ 1+ ey

The polynomial is given by: Given data points © = [x1, ..., x,] and y = [y1, ..., Yn] We can obtain

P = polyinterp(x,y,symx) the coefficients c1, ..., ¢, by solving the system:

P=(x+*(X-1) *x-3)2+5 *=x2-1 =*=Xx3- .. -l ogn-2 .
1) *(X - 1)+ (16 *xx(}2 - 1/2)  *(x - 2))/3 - L 1 1 u
Bxxx (X2 - 312)  *(x - 2) Ty @yt e @ 1 2| | ¥
This is simplified with ' ‘

:1:2_1 :UZ_Z R S | Cn Yn

P = simplify(P)

P=x3-2x*x-5 This system V¢ = y contains the important Vandermonde matriz,

v SDSJO
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Vandermonde Matrix and MatLab

Given the data z = [x1, ..., x|, the elements of the Vandermonde
matrix, V, satisfy _

Uk =y
MatLab has the function vander , which generates the

Vandermonde matrix, V

For our example above, x = 0:3; y = [-5 -6 -1 16];
V = vander (X) produces

0
1
V= 8

O > = O
wN = o
=

2

3

Then ¢ = V\y' produces ¢ = [1,0,—2,—5]" or

P(x) =222 -5
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Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Nerriom=-Cleiies HemmmlEs

Numerical Quadrature — Basics

Numerical Quadrature: Basics

@ Integration is valuable in many applications — often the
anti-derivative is unavailable

@ Introduction showed the definition of the Riemann integral

@ Midpoint rule directly uses the definition with even
intervals and function evaluations at the midpoint of the
subintervals

o The convergence of this method appeared to be O((Ax)?)

@ Can we do better with interpolating functions on the
subintervals [z}, z;11]?
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Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Nerriom=-Cleies emmmlEs

Numerical Quadrature — Basics

There are two primary means of improving Numerical integration

Qlfa=ag<x1< <21 <2y =0, then properties of the
integral give

/abf(:c)d:r _ /m f(x)dﬂc+~--+/g:: F(@)da.

We create composite integrals and choose appropriate x;’s,
which subdivide our function f(z) into n subintervals with each
subinterval providing a smaller domain and better approximation
of f on that subinterval.

Q@ Take a particular subinterval, then partition that subinterval
further to obtain a reasonable approximation of f(z) on the
subinterval by an interpreting polynomsial, which is precisely
integrable and has a known error bound.
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Our aim is to obtain the greatest accuracy approximating the integral
with the minimum amount of computation

@ We can vary the spacing x;, not necessarily uniform

@ We can alter how f(x) is approximated — Using polynomials,
which are exactly integrable
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Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Numerical Integration (Quadrature) Newton-Cotes Formulas

Numerical Quadrature i Single Interval Building Integration Schemes with Lagrange Polynomials

We begin our analysis with the second point above (avoiding the

composite integral for now
P & ) Given the nodes {zg,x1,...,x,} we can use the Lagrange

We focus on a single interval and consider interpolating interpolating polynomial

polynomials approximating f(x) on the single interval

The basic idea is to replace integration by a clever summation: n

, . P,(x) = Z fiLy i(x), with error E,(z) = f(T(glg‘)) H(:r — ;)
/ flx)yde — Z a; fi, =0 =0
a i=0

to obtain

where a <o < a1 < - <y <b, fi = flx;). b
/ f(z)dx

The coefficients a; and the nodes z; are to be selected. — —
The Approximation The Error Estimate

Various means of selecting a; and x; alter the efficiency and accuracy
of our algorithm SD0SO S0S0
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Trapezoidal & Simpson’s Rules Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Nerriom=-Cleiies emmmlEs Numerical Integration (Quadrature) Nerriom=-Cleiies HemmemlEs

Identifying the Coefficients Example 1: Trapezoidal Rule

The Lagrange interpolating polynomials are readily integrated to
give the weighting coefficients a;

/ab P, (z)dx = /ab g filp.i(z) de = Efi/

b n
Ln,i(ﬁ) dx = Z fiai-
< , =0

ag

Let a = zg < 1 = b, and use the linear interpolating polynomial

Pi(z) = fo {m} L {ﬂ] ,

To — X1 T — Xo

Hence we write ) N
[ t@ydex Y at,
a i=0

with error given by

b bo(n+1) (g(2))
E(f):/a En(yc)d:c:/a %H(;ﬂ—mdw
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Trapezoidal & Simpson’s Rules Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Nerriom=-Cleiies emmemlEs Numerical Integration (Quadrature) Nerrior=Cleiies HemmmlEs

Example 1: Trapezoidal Rule Example 1: Trapezoidal Rule

Hence,

b o T o
/afmdx B / {fo [fb‘o— }+f L’l—%” o /f )da = [fo {M]#ﬁ [on)z)”:—h—gf”(ﬁ)

/ f” )( )d ( 0_56’1) 2(%1 — Xp 12
fE—fEO Tr —x1)ax.

(z1 — 900) (

fo+ fil = —f”<5)
The error term (use the Weighted Mean Value Theorem):

- @1 b f(zo) + f(z1) h3 .,
/ F(E@) (@ — zo)(x — 1) dx = f7(€) / (x —20)(x —21) do / f(@)de=h {— 2 }—f €, h=b-a

12
o
3 ri+x o h3
= f"(&) {g - 5 022 +960931$] = —Ef"(f)-
o

where h=x1 — 29 = b — a.
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Trapezoidal & Simpson’s Rules Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Neriem-Oeies Xl Numerical Integration (Quadrature) Newton-Cotes Formulas

Example 2a: Simpson’s Rule (sub-optimal error bound) Example 2b: Simpson’s Rule (optimal error bound)

The optimal error bound for Simpson’s rule can be obtained by

_ — atd boa ,
Let 20 = a, 71 = , T2 =b, let h = and use the quadratic Taylor expanding f(z) about the mid-point z;:

interpolating polynomzal

/abf(x)dx:/a: {f(xo)((:c—m)(m—a:g) + o) (2 — 20)(x — 22)

" (4) .
f(x)—f($1)+f($1)($*wl)+f @ 1)( wﬂﬂ%”(wm)ﬂ%ff”(wm)%

then formally integrating this expression, to get:

" (4) T
(22 — m0) (22 — 21 A [ @0t e e+ T @y O g TEEOD ] g,
2(r—xo)(z—21) (T — T
+ [ lm e BT 0 e (0)) | .
zo After use of the weighted mean value theorem, and the approximation

' (x1) = %[f(mo) —2f(z1) + f(z2)] — ?—;ﬂ‘”(f), and a whole lot of
algebra (Yanofsky - UCLA Notes) we end up with

/‘T’Q Flo)de = h {f(xo) + 4.]”;561) + flz2)] Z_;

FD9).
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Trapezoidal & Simpson’s Rules

Trapezoidal & Simpson’s Rules
Numerical Integration (Quadrature) AL S L ERR L Numerical Integration (Quadrature) INErriem=Cleies INermmlEs

Example 2: Simpson’s Rule Integration Examples

b . .
: f(zo) +4f(21) + f(=2) 5.p
[ (I) dr=h [ 3 + O(h?f@) (E)) f(z) [a,b] fab f(z)dz | Trapezoidal Error | Simpson Error
“ z  [0,1] 1/2 0.5 0 0.5 0
x? [0,1] 1/3 0.5 0.16667 0.33333 0
2 [0,1] 1/4 0.5 0.25000 | 0.25000 0
x4 [0,1] 1/5 0.5  0.30000 0.20833  0.0083333
f(x) e* [0,1] e—1 1.8591  0.14086 1.7189  0.0005793
p(x) — Simpson’s Rule
The Trapezoidal rule gives exact solutions for linear functions. — The

error terms contains a second derivative.

Simpson’s rule gives exact solutions for polynomials of degree less
than 4. — The error term contains a fourth derivative.
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Trapezoidal & Simpson’s Rules Trapezoidal & Simpson’s Rules

Newton-Cotes Formulas Newton-Cotes Formulas

Numerical Integration (Quadrature) Numerical Integration (Quadrature)

Degree of Accuracy (Pl‘eCiSiOD) Newton-Cotes Formulas — Two Types Closed

Closed The (n+ 1) point closed NCF uses nodes x; = zg + ih, i =
Definition (Degree of Accuracy) 0,1,...,n, where 9 = a, x, = band h = (b —a)/n. It is
called closed since the endpoints are included as nodes.

The Degree of Accuracy, or precision, of a quadrature formula is
the largest positive integer n such that the formula is exact for z* for 'y

all k=0,1,...,n.
I)JI'

With this definition: f

Scheme Degree of Accuracy

Trapezoidal 1

Simpson’s 3
Trapezoidal and Simpson’s are examples of a class of methods known | E ; ; .
as Newton-Cotes formulas. a=xy X x Xyoy X, = x

SDST SDST
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Trapezoidal & Simpson’s Rules
Newton-Cotes Formulas

Numerical Integration (Quadrature)

Newton-Cotes Formulas — Two Types

Open The (n + 1) point open NCF uses nodes z; = xg + ih, i =
0,1,...,nwhere h = (b—a)/(n+2) and zg = a+h, x,, = b—h.
(We label z_1 = a, p41 = b.)

f -
T ¥ T T T L
4=2Xx_y Xy Xy X, Xy X,u=b *
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Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Nievwri@m-Coies Nommrikg

Closed Newton-Cotes Formulas — Error

Theorem

Suppose that Y i, a; f(z;) denotes the (n+ 1) point closed
Newton-Cotes formula with xo = a, ©, = b, and h = (b —a)/n. Then
there exists & € (a,b) for which

hn—&-Sf(n—&-Q) (5) n

b n
f— a; €T; 2 — e —n
/a flx)dx = ;} if (z4) + 1 2) to(t—1)---(t )dt,

0

if n is even and f € C"*2[a,b], and

b B n 4 ‘ hn+2f(n,+l)(€) n 3 3
/ D S [ te=0)- =

if n is odd and f € C"[a,b].

Note that when n is an even integer, the degree of precision is (n + 1)
When n is odd, the degree of precision is only n.
Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (550) —
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Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Nievwriom-Coies ok

Closed Newton-Cotes Formulas

The approximation is

b n
/ f(z)dr ~ Zaif(l’i),

where

Note: The Lagrange polynomial L, ;(z) models a function which
takes the value 0 at all z; (j # i), and 1 at x;. Hence, the
coefficient a; captures the integral of a function, which is 1 at
x; and zero at the other node points.

SDSJO
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Trapezoidal & Simpson’s Rules

Numerical Integration (Quadrature) Nievwrion-Coies ok

Closed Newton-Cotes Formulas — Examples

n = 1: Trapezoid Rule

h h3

5 {f(ﬂfo) + f(xl)} - Ef”(f)
n = 2: Simpson’s Rule

30+ s+ flan)| - g510©
n = 3: Simpson’s %-Rule
5
T [0 31+ 31 + )| - 00

n = 4: Boole’s Rule

7
% [7f(x0) +32f (1) +12f (w2) + 32f (x3) + 7f(3;4)} _ %f«a)(g)
SDSU
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Trapezoidal & Simpson’s Rules
Numerical Integration (Quadrature) Nievri@a-Coies ok

Open Newton-Cotes Formulas

Trapezoidal & Simpson’s Rules
Numerical Integration (Quadrature) Nievwriom-Coies ok

Open Newton-Cotes Formulas — Error

The approximation is

b Tn+1 n
/ f(a) da = / F)de =S aif (),
a 1 i=0

where
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Trapezoidal & Simpson’s Rules
Numerical Integration (Quadrature) Nievwri@m-Coies Nommrikg

Open Newton-Cotes Formulas — Examples

n = 0: Midpoint Rule

h3
2hf(zo) + gf”(f)
n = 1: Trapezoid Method

2 [+ s6a] + 20

n = 2: Milne’s Rule

4h[2f<xo> f<x1>+2f<xz>] M po o)

n = 3: No Name

5h

o {Hf(xo) + f(21) + f(22) + 11f(:c3)] 95h°

SYTEAN)

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (590)

Theorem

Suppose that Y., a;f(z;) denotes the (n+ 1) point open
Newton-Cotes formula with t_1 = a, T,+1 = b, and
h=(b—a)/(n+2). Then there exists & € (a,b) for which

b B n 4 4 hn+3f(n+2)(£) n+1 5
/a f(@)dx = ;azf(mz) 1 it ) 2t —1)--- (t — n)dt,
if n is even and f € C"2[a,b], and
b n hn+2f(n+l (5) n+1
f(x)dz = > a;f(z:) + - (t — n)dt,
/a ; (n+1)! /

if n is odd and f € C"*1{a,b].

Note that when n is an even integer, the degree of precision is (n + 1).
When n is odd, the degree of precision is only n.
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Trapezoidal & Simpson’s Rules
Numerical Integration (Quadrature) Nievwrion-Coies ok

Divide and Conquer!

Say you want to compute:

0

Is it a Good Idea™ to directly apply your favorite Newton-Cotes
formula to this integral?!?

No!

With the closed 5-point NCF, we have h = 25 and h°/90 ~ 10° so
even with a bound on f((€) the error will be large.

Better: Apply the closed 5-point NCF to the integrals

4(i4+1)
/ flx)dx, 1=0,1,...,24
4

)

then sum. “Composite Numerical Integratlon SDSO
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