Math 541 - Numerical Analysis Newton's Method in Higher Dimensions

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2018

Outline

Malthusian Growth Sum of Square Errors Finding a Minimum

U. S. Population Models

Source: Census Data

Below in a table of the U. S. population from census data

Year	Pop(M)	Year	Pop (M)	Year	Pop(M)
1790	3.929	1870	39.818	1950	150.697
1800	5.308	1880	50.189	1960	179.323
1810	7.240	1890	62.948	1970	203.302
1820	9.638	1900	76.212	1980	226.546
1830	12.866	1910	92.228	1990	248.710
1840	17.069	1920	106.022	2000	281.422
1850	23.192	1930	122.775	2010	308.746
1860	31.443	1940	132.165		

We'll use t = 0 as 1790

Malthusian Growth Sum of Square Errors Finding a Minimum

Malthusian Growth Model

The most basic population model is the Malthusian growth model,

$$P(t) = P_0 e^{rt}$$

We want the *least squares best fit* to the data:

$$P_0 e^{rt_i} = P_i, \quad i = 0, \dots, m,$$

which with **natural logarithms** this becomes a **linear model**:

$$\ln P_0 + rt_i = a_0 + a_1 t_i = \ln P_i.$$

A *linear least squares fit* to this problem gives the coefficients (a_0, a_1) , where

$$P_0 = e^{a_0} \qquad \text{and} \qquad r = a_1.$$

Malthusian Growth Sum of Square Errors Finding a Minimum

Malthusian Growth Model

From the U. S. population data and fitting the $\ln(P)$, we find

$$a_0 = 1.843853$$
 and $a_1 = 0.0196234$,

so the best fitting Malthusian growth model is

 $P(t) = 6.320851e^{0.0196234t}$

The sum of square errors (SSE) for this model is

SSE = 48693.51.

This large error is largely caused by the bias of the logarithmic scale to over emphasize the early points.

Malthusian Growth Sum of Square Errors Finding a Minimum

Malthusian Growth Model - Graph

The graph shows the *log fit* parameters perform poorly for recent history. However, this was the linear fit to the logarithm of the population data.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

(6/46)

505

Malthusian Growth Sum of Square Errors Finding a Minimum

Sum of Square Errors

The sum of square errors satisfies

$$E(P_0, r) = \sum_{i=0}^{n} \left(P_0 e^{rt_i} - P_i \right)^2$$

Sum of Square Errors

Sum of Square Errors

The contour plot is produced by the following:

```
1
   % Create a contour of population 1st sq
2
  load 'uspop';
3 \text{ p0} = \text{linspace}(5, 25, 100);
  r = linspace(0.01, 0.02, 100);
4
  [X,Y] = meshgrid(p0,r);
5
  Z = zeros(100);
6
  for i=1:100
7
       for j=1:100
8
            Z(j,i) = mallstsqc(p0(i),r(j),t,pop);
9
       end
10
   end
11
12
13
   figure(1)
14
   contourf(X, Y, log(Z), 20)
15
   xlabel('$P_0$','interpreter','latex')
   vlabel('$r$'.'interpreter'.'latex')
                                 (8/46)
```


Malthusian Growth Sum of Square Errors Finding a Minimum

Sum of Square Errors

The *sum of square errors* function is given by

```
1 function LS = mallstsqc(p0,r,t,y)
2 %Least Squares sum of square errors to Malthusian ...
growth model
```

3 LS =
$$sum((p0 * exp(r*t) - y).^2);$$

```
4 end
```

The contour plot shows a classic **banana-shaped** curve with a long stretched **minimum**

Graphically, the **minimum** is clearly far from the parameters found by the **linear fit** to the **logarithms** of the data

However, this graph shows the **sum of square errors** for the **nonlinear Malthusian growth model**

Malthusian Growth Sum of Square Errors Finding a Minimum

Method of Steepest Descent

The sum of square errors satisfies

$$E(P_0, r) = \sum_{i=0}^{n} \left(P_0 e^{rt_i} - P_i \right)^2$$

is a function of **two** variables

Recall from Calculus that $-\nabla E(P_0, r)$ (opposite the **gradient**) gives the direction of **steepest descent**, perpendicular to the level curve contours

- Method of Steepest Descent
 - Gradient gives the directional derivative
 - Follow path opposite $(x_n = [P_0^{(n)}, r^{(n)}])$

$$x_{n+1} = x_n - \alpha \nabla E(x_n)$$

- Find α such that $E(x_{n+1})$ is much smaller than $E(x_n)$
- "Banana curves" are notoriously slow for this method

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (10/46)

Malthusian Growth Sum of Square Errors Finding a Minimum

Nelder-Mead Simplex Method

Define the sum of square errors with the two parameters

$$E(P_0, r) = \sum_{i=0}^{n} (P_0 e^{rt_i} - P_i)^2$$

Least Squares lecture showed MatLab's fminsearch [p,err]=fminsearch(@mallstsq,p0,[],t,pop) giving the best model as

 $P(t) = 16.345612e^{0.0136284t},$

• Nelder-Mead Simplex Method

- Requires a "good" initial guess
- Uses triangular simplexes
- Algorithm searches space with **three** function evaluations. (No derivatives!)
- Computes centroid, then improves one of the three points

• Details for a future class, Math 693A?

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

(11/46)

Review U. S. Population Model Newton's Method Nelder-Mead Method Nelder-Mead Method Nelder-Mead Method Nelder-Mead Method

Minimum – Sum of Square Errors

The graph of the **sum of square errors** shows a distinct minimum The function of **two variables** is

$$E(P_0, r) = \sum_{i=0}^{n} (P_0 e^{rt_i} - P_i)^2$$

From Calculus, a necessary condition for a minimum is

$$\nabla E(P_0, r) = \mathbf{\tilde{0}}$$

Taking partial derivatives gives

$$\frac{\partial E}{\partial P_0} = 2\sum_{i=0}^n \left(P_0 e^{rt_i} - P_i\right) e^{rt_i}$$
$$\frac{\partial E}{\partial r} = 2\sum_{i=0}^n \left(P_0 e^{rt_i} - P_i\right) P_0 t_i e^{rt_i}$$

SDSU

Review U. S. Population Model Newton's Method Nelder-Mead Method Nelder-Mead Method Nelder-Mead Method Nelder-Mead Method

Nonlinear Least Squares - Malthusian Growth

The minimum occurs when these partial derivatives are **zero**

This requires solving two nonlinear equations for the parameters, ${\cal P}_0$ and r

$$\sum_{i=0}^{n} (P_0 e^{rt_i} - P_i) e^{rt_i} = 0$$
$$\sum_{i=0}^{n} (P_0 e^{rt_i} - P_i) P_0 t_i e^{rt_i} = 0$$

Note that the first equation could be solved for P_0 easily

This could be substituted into the second equation, and the resulting nonlinear equation could be solved by Newton's method or one of our other routine for solving f(x) = 0

Minimization Problem

Line Search Method Newton's Method or Algorithm Example Population Model

Minimization Problem

Consider a function $f:\mathbb{R}^n\to\mathbb{R}$

Our problem is to minimize $f(\mathbf{\tilde{x}})$

 $\min_{\tilde{\mathbf{x}}\in\mathbb{R}^n}f(\tilde{\mathbf{x}}),$

where

- $f(\mathbf{\tilde{x}})$ is the objective function
- $\bullet~ \mathbf{\tilde{x}}$ is the vector of variables or parameters

In our example above, the function f is the *sum of square errors*, and the vector $\tilde{\mathbf{x}} = [P_0, r]$

Minimization Problem Line Search Method Newton's Method or Algorit

Example Population Model

Minimization Problem

If $f(\tilde{\mathbf{x}}) \in \mathbb{R}$ is **differentiable** we can recognize a **minimum** by looking at the first and second derivatives:

- The gradient: $\nabla f(\tilde{\mathbf{x}}) \in \mathbb{R}^n$
- The **Hessian**: $\nabla^2 f(\tilde{\mathbf{x}}) \in \mathbb{R}^{n \times n}$

Once again **Taylor's Theorem** (multi-dimensional) plays a key role

Theorem (First Order Necessary Condition)

If $\tilde{\mathbf{x}}^*$ is a local minimum and f is continuously differentiable in an open neighborhood of $\tilde{\mathbf{x}}^*$, then

$$\nabla f(\tilde{\mathbf{x}}^*) = \tilde{\mathbf{0}}.$$

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Local Minimum

Definition (Positive Definite Matrix)

An $n \times n$ matrix H is **positive definite** if and only if for all $\mathbf{\tilde{x}} \neq 0$,

$$\tilde{\mathbf{x}}^T H \tilde{\mathbf{x}} = \sum_{i=1}^n \sum_{j=1}^n h_{ij} x_i x_j > 0.$$

Theorem (Second-Order Sufficient Conditions)

Suppose that $\nabla^2 f$ is **continuous** in an open neighborhood of $\tilde{\mathbf{x}}^*$ and that $\nabla f(\tilde{\mathbf{x}}^*) = \tilde{\mathbf{0}}$ and $\nabla^2 f(\tilde{\mathbf{x}}^*)$ is **positive definite**. Then $\tilde{\mathbf{x}}^*$ is a **strict local minimum** of f.

Note: This is similar in 1-D of the derivative equal to zero and the second derivative being positive for a *local minimum*

Minimization Problem Line Search Method Newton's Method or Algorith Example

Population Model

Minimization Problem

We generally do not have a global picture of $f(\tilde{\mathbf{x}})$, so we concentrate on the local problem

Relying on our techniques from Calculus and the theorems above, we seek to solve

$$\nabla f(\mathbf{\tilde{x}}) = \mathbf{\tilde{0}}.$$

We will concentrate on the case where there is a *local minimum*, so the **Hessian** is *positive definite*. (Math 693A will go into much more detail.)

We limit our discussion here to **Newton's Method**, which is a **line search** technique

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Line Search Method

$$\min_{\tilde{\mathbf{x}}\in\mathbb{R}^n} f(\tilde{\mathbf{x}}),$$

with the one-dimensional problem

$$\min_{\tilde{\mathbf{x}}\in\mathbb{R}^n} f(\tilde{\mathbf{x}}_k + \alpha \tilde{\mathbf{p}}_k),$$

where $\tilde{\mathbf{p}}_k$ is a chosen *search direction* and α is the factor for how far we search in that direction.

Choice of $\tilde{\mathbf{p}}_k$ is critical to the rate of progress toward the *local* minimum

The intuitive *steepest descent* actually gives a slow scheme

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Taylor Theorem

The **fundamental** building block for our *minimization problem* is once again **Taylor's Theorem** in higher dimensions

The *local minimum* occurs when we find $\tilde{\mathbf{x}}^*$, such that $\nabla f(\tilde{\mathbf{x}}^*) = \tilde{\mathbf{0}}$ and $\nabla^2 f(\tilde{\mathbf{x}}^*)$ is positive definite Review U. S. Population Model Newton's Method Nelder-Mead Method Nelder-Mead Method Nelder-Mead Method Nelder-Mead Method Nelder-Mead Method

Newton Direction

If f is sufficiently smooth and the Hessian is positive definite, we can select $\tilde{\mathbf{p}}_k$ to be the Newton direction.

The second order Taylor expansion gives:

$$f(\tilde{\mathbf{x}} + \tilde{\mathbf{p}}) \approx f(\tilde{\mathbf{x}}) + \tilde{\mathbf{p}}^T \nabla f(\tilde{\mathbf{x}}) + \frac{1}{2} \tilde{\mathbf{p}}^T \left[\nabla^2 f(\tilde{\mathbf{x}}) \right] \tilde{\mathbf{p}}$$

The minimum of the rhs is obtained by computing the derivative with respect to $\tilde{\mathbf{p}}$ and setting the result to zero, so

$$\nabla f(\tilde{\mathbf{x}}) + \left[\nabla^2 f(\tilde{\mathbf{x}})\right] \tilde{\mathbf{p}} = \tilde{\mathbf{0}},$$

which gives the Newton direction

$$\tilde{\mathbf{p}}^N = -\left[\nabla^2 f(\tilde{\mathbf{x}})\right]^{-1} \nabla f(\tilde{\mathbf{x}}).$$

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Newton's Method or Algorithm

Given an initial $\tilde{\mathbf{x}}_0$, Newton's Method for finding a *minimum* for $f(\tilde{\mathbf{x}})$ is iteratively given by

$$\tilde{\mathbf{x}}_{n+1} = \tilde{\mathbf{x}}_n - \left[\nabla^2 f(\tilde{\mathbf{x}}_n)\right]^{-1} \nabla f(\tilde{\mathbf{x}}_n).$$

More generally, let $\tilde{\mathbf{g}}(\tilde{\mathbf{x}}) : \mathbb{R}^n \to \mathbb{R}^n$, then Newton's Method can be used to find a solution of

$$\tilde{\mathbf{g}}(\tilde{\mathbf{x}}) = \tilde{\mathbf{0}}$$
 given initial $\tilde{\mathbf{x}}_0$.

The Newton iteration scheme satisfies

$$\tilde{\mathbf{x}}_{n+1} = \tilde{\mathbf{x}}_n - J^{-1}(\tilde{\mathbf{x}}_n)\tilde{\mathbf{g}}(\tilde{\mathbf{x}}_n),$$

where $J(\mathbf{\tilde{x}})$ is the **Jacobian matrix** for $\mathbf{\tilde{g}}(\mathbf{\tilde{x}})$

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Newton's Method for \mathbb{R}^3

Consider $\tilde{\mathbf{g}}(\tilde{\mathbf{x}}) : \mathbb{R}^3 \to \mathbb{R}^3$, where

$$\mathbf{\tilde{g}}(\mathbf{\tilde{x}}) = \begin{pmatrix} g_1(\mathbf{\tilde{x}}) \\ g_2(\mathbf{\tilde{x}}) \\ g_3(\mathbf{\tilde{x}}) \end{pmatrix} \quad \text{and} \quad \mathbf{\tilde{x}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

The **Jacobian matrix** is given by

$$J(\tilde{\mathbf{x}}) = \begin{pmatrix} \frac{\partial g_1(\tilde{\mathbf{x}})}{\partial x_1} & \frac{\partial g_1(\tilde{\mathbf{x}})}{\partial x_2} & \frac{\partial g_1(\tilde{\mathbf{x}})}{\partial x_3} \\ \frac{\partial g_2(\tilde{\mathbf{x}})}{\partial x_1} & \frac{\partial g_2(\tilde{\mathbf{x}})}{\partial x_2} & \frac{\partial g_2(\tilde{\mathbf{x}})}{\partial x_3} \\ \frac{\partial g_3(\tilde{\mathbf{x}})}{\partial x_1} & \frac{\partial g_3(\tilde{\mathbf{x}})}{\partial x_2} & \frac{\partial g_3(\tilde{\mathbf{x}})}{\partial x_3} \end{pmatrix}$$

Then given an initial $\tilde{\mathbf{x}}_0$, Newton's Method can be used to find an approximate solution of $\tilde{\mathbf{g}}(\tilde{\mathbf{x}}) = \tilde{\mathbf{0}}$, where

$$\tilde{\mathbf{x}}_{n+1} = \tilde{\mathbf{x}}_n - J^{-1}(\tilde{\mathbf{x}}_n)\tilde{\mathbf{g}}(\tilde{\mathbf{x}}_n)$$

Minimization Problem Line Search Method Newton's Method or Algorithm **Example** Population Model

\mathbb{R}^2 Example of Newton's Method

Suppose we want to find the intersection of the 2D curves

$$x_1^2 + x_2^2 = 4$$
 and $x_1 x_2 = 1$

(This could be easily solved in 1D, then back substituted.)

We create a $\tilde{\mathbf{g}}(x_1, x_2)$ with $\tilde{\mathbf{g}}(x_1, x_2) = \tilde{\mathbf{0}}$

$$\tilde{\mathbf{g}}(x_1, x_2) = \left(\begin{array}{c} x_1^2 + x_2^2 - 4\\ x_1 x_2 - 1 \end{array}\right) = \left(\begin{array}{c} 0\\ 0 \end{array}\right)$$

The **Jacobian matrix** is given by

$$J(\tilde{\mathbf{x}}) = \begin{pmatrix} 2x_1 & 2x_2 \\ x_2 & x_1 \end{pmatrix} \quad \text{so} \quad J^{-1}(\tilde{\mathbf{x}}) = \begin{pmatrix} \frac{x_1}{2(x_1^2 - x_2^2)} & -\frac{x_2}{(x_1^2 - x_2^2)} \\ -\frac{x_2}{2(x_1^2 - x_2^2)} & \frac{x_1}{(x_1^2 - x_2^2)} \end{pmatrix}$$

Given an initial $\mathbf{\tilde{x}}_0$, Newton's Method satisfies

$$\mathbf{\tilde{x}}_{n+1} = \mathbf{\tilde{x}}_n - J^{-1}(\mathbf{\tilde{x}}_n)\mathbf{\tilde{g}}(\mathbf{\tilde{x}}_n)$$

Minimization Problem Line Search Method Newton's Method or Algorithm **Example** Population Model

Given an initial $\mathbf{\tilde{x}}_0$, a MatLab version of Newton's Method is

```
function xn = newton2(x0, tol, N)
1
   % 2D Newton's Method
2
3
   xn = x0; err = 1; k = 1;
   while ((err > tol)\&\&(k < N))
4
5
       x1 = xn;
       xn = x1 - J2(x1) g2(x1)
6
       err = abs(norm(x1) - norm(xn))
7
       k = k+1:
8
   end
9
   end
10
```


Minimization Problem Line Search Method Newton's Method or Algorithm **Example** Population Model

 \mathbb{R}^2 Example of Newton's Method

The MatLab function and Jacobian are

1 function y = g2(x)
2 % 2D function
3 y = [x(1,1)² + x(2,1)² - 4; x(1,1)*x(2,1) - 1];
4 end

```
1 function A = J2(x)
2 % Jacobian matrix
3 A = [2*x(1,1), 2*x(2,1); x(2,1), x(1,1)];
4 end
```


Minimization Problem Line Search Method Newton's Method or Algorithm **Example** Population Model

Results of the program are listed in the Table below:

x_1	x_2	Norm Err
2	0	-
2	0.5	0.061553
1.933333	0.516667	0.060373
1.931853	0.517637	0.0011794
1.931851	0.517638	7.8345E - 07
1.931851	0.517638	5.6444E - 13

Note: The norm error is in the Cauchy sense comparing successive iterations.

It can be shown that this **Newton's Method** converges **quadratically**

Symmetry shows there are 4 solutions

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Newton's Method and Population Model

The Newton scheme derived above can be applied to the *least* squares function for our Malthusian growth model

However, the large number of data points and the exponentials result in very large gradients, particularly in the r direction

This results in serious numerical instabilities of our **Newton's method**

Below is the **MatLab function** for the gradient:

```
1 function y = gpop(x,t,pop)
2 % 2D function
3 y1 = sum((x(1,1)*exp(x(2,1)*t)-pop).*exp(x(2,1)*t));
4 y2 = sum((x(1,1)*exp(x(2,1)*t)-pop).*(x(1,1)*t)...
5     .*exp(x(2,1)*t));
6 y = [y1;y2];
7 end
```

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Newton's Method and Population Model

We readily compute the Jacobian in MatLab:

```
function A = Jpop(x, t, pop)
1
 % Jacobian matrix
2
3
 a11 = sum(exp(2*x(2,1)*t));
4 a12 = sum (2 \times x(1, 1) \times t \times exp(2 \times x(2, 1) \times t) - \dots
       pop.*t.*exp(x(2,1)*t));
5 a21 = a12;
 a22 = sum(2*x(1,1)^{2}*(t.^{2}).*exp(2*x(2,1)*t) - ...
6
        x(1,1) \cdot (t^2) \cdot \exp(x(2,1) \cdot t) \cdot pop);
7
 A = [a11, a12; a21, a22];
8
  end
9
```

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Newton's Method and Population Model

Newton's method becomes in MatLab:

```
function xn = newton_pop(x0, t, pop, tol, N)
1
   % 2D Newton's Method
2
   xn = x0; err = 1; k = 1;
3
   while ((err > tol) \& \& (k < N))
4
        x1 = xn;
5
        xn = x1 - Jpop(x1, t, pop) \langle gpop(x1, t, pop) \rangle
6
        err = abs(norm(x1) - norm(xn))
7
       k = k+1
8
   end
a
10
   end
```


Review U. S. Population Model Newton's Method Nelder-Mead Method Population Model Newton's Method Nelder-Mead Method

Newton's Method and Population Model

Recall that the *linear least squares best fit* to the logarithm of the data was a long distance from the observed minimum (Contour plot).

We attempt starting **Newton's method** at this point $(P_0, r) = (6.32, 0.0196)$, and the Table below is generated with n the number of iterations

n	P_0	r	err
1	5.8604	0.01906	0.4596
2	1.8088	0.02213	4.0515
3	2.1092	0.02814	0.3004
4	2.0917	0.02636	0.01753
5	2.0342	0.02505	0.05743
10	0.2568	0.007638	0.007617
12	0.2854	-0.003745	0.01724

Minimization Problem Line Search Method Newton's Method or Algorithm Example Population Model

Newton's Method and Population Model

The previous slide shows **Newton's method** diverging.

From the contour map a good starting point for **Newton's method** is $(P_0, r) = (16, 0.014)$ with the Table below showing the iterations.

n	P_0	r	err
1	15.0906	0.0140456	0.9094
2	16.3185	0.0136219	1.2279
3	16.3437	0.0136291	0.02517
4	16.3456	0.0136284	0.001898
5	16.3456	0.0136284	3.337E-07

This Table shows Newton's method converging quadratically

Example Population Model Population Model - fminsearch

Nelder-Mead Method

A number of times this semester, we have employed the MatLab minimization algorithm fminsearch.

This algorithm employs the **Nelder-Mead** method¹, which is a heuristic technique based on searching parameter space with *simplexes*.

- This simplex method finds a *local minimum* of a function of several variables.
- If f(x, y) is function of two variables, the pattern starts with an initial triangle.
- The largest vertex is rejected and replaced with another.
- The process generates a sequence of triangles with vertices having smaller functional values.
- The size of the triangles eventually reduces to where it is sufficiently close to the *local minimum*.

¹ Nelder, John A., R. Mead (1965). A simplex method for function minimization.

Computer Journal 7: 308313.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (32/46)

Example Population Model Population Model - fminsearch

Nelder-Mead Method

The **Nelder-Mead algorithm** is developed using a *simplex*, which is a generalized triangle in N dimensions, and it follows an effective and computationally compact scheme.

For clarity, the Nelder-Mead algorithm is shown for f(x, y), a function of two variables².

Let f(x, y) be a function to be minimized, and select an initial triangle with vertices, $V_i = (x_i, y_i), i = 1, 2, 3$.

Step 1: Evaluate $z_i = f(x_i, y_i)$ for i = 1, 2, 3 and reorder so $z_1 \le z_2 \le z_3$, where

$$\mathbf{B} = (x_1, y_1), \quad \mathbf{G} = (x_2, y_2), \quad \mathbf{W} = (x_3, y_3).$$

B is the *best vertex*, **G** is the *good vertex*, and **W** is the *worst vertex*.

²John H. Mathews, Kurtis D. Fink (2004), Numerical Methods Using MatLab, 4th Edition, Prentice Hall (ISBN: 0-13-065248-2)

Example Population Model Population Model - fminsearch

Nelder-Mead Method

Step 2: Find the midpoint (centroid in higher dimensions) of the Good Side:

$$\mathbf{M} = \frac{\mathbf{B} + \mathbf{G}}{2} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right).$$

Step 3: Reflection: Create the line segment $\overline{\mathbf{MW}}$ through the midpoint with length *d*, then extend the line segment a distance *d* past **M** to find **R**, the *reflection point*:

$$\mathbf{R} = \mathbf{M} + (\mathbf{M} - \mathbf{W}) = 2\mathbf{M} - \mathbf{W}.$$

If the *reflected point* is better than the **good vertex**, \mathbf{G} , but not better than the **good vertex**, \mathbf{B} , so

$$f(\mathbf{B}) \le f(\mathbf{R}) < f(\mathbf{G}),$$

then create the new simplex BRG by replacing W with R and return to Step 1.

Example Population Model Population Model - fminsearch

Nelder-Mead Method

Step 4: Expansion: If the function is smaller at **R** than $f(\mathbf{B})$, then this may be the correct direction toward the minimum, so extend the line segment another distance d to a point **E**:

$$\mathbf{E} = \mathbf{R} + (\mathbf{R} - \mathbf{M}) = 2\mathbf{R} - \mathbf{M}.$$

If $f(\mathbf{E}) < f(\mathbf{R})$, then this is a better vertex than \mathbf{R} , so create the new simplex **BEG** by replacing \mathbf{W} with \mathbf{E} and return to **Step 1**.

Example Population Model Population Model - fminsearch

Nelder-Mead Method

Step 5: Contraction: If this stage is reached, then $f(\mathbf{R}) \ge f(\mathbf{G})$.

Find the midpoint of the line segment $\overline{\mathbf{MW}}$ and label this *contracted point* C.

If the contracted point is better than the worst point, $f(\mathbf{C}) < f(\mathbf{W})$, then this is a better vertex than \mathbf{W} , so create the new simplex **BCG** by replacing \mathbf{W} with \mathbf{C} and return to **Step 1**.

Example Population Model Population Model - fminsearch

Nelder-Mead Method

Step 6: Shrink: If this stage is reached (which rarely occurs), then none of the created points did better than W.

At this stage, the **best vertex**, **B** is kept and the simplex is shrunk.

In addition to finding \mathbf{M} , we find the midpoint, \mathbf{S} of the line segment $\overline{\mathbf{BW}}$, then create the new simplex **BMS** by replacing \mathbf{W} with \mathbf{S} and \mathbf{G} with \mathbf{M} and return to **Step 1**.

Example Population Model Population Model - fminsearch

Nelder-Mead Method

The *initial simplex* is important.

- If the initial simplex is too small, the solution can become trapped locally.
- The initial simplex often depends on the nature of the problem.

The *termination* conditions vary.

- The original paper of Nelder and Mead used the variation in the function values of the simplex.
- Alternately, one could compare the distance between the simplex nodes.
- The solution is taken as the last *best vertex* in the iteration.

Example Population Model Population Model - fminsearch

Nelder Mead Example

Consider the function:

$$f(x_1, x_2) = (x_1 - 3)^2 + (x_2 - 4)^2$$

```
1 function z = fcn(x)
```

2 %function here

$$z = ((x(1)-3)^2) + ((x(2)-4)^2);$$

```
4 end
```

This clearly has a *minimum* at $(x_1, x_2) = (3, 4)$.

The **Nelder-Mead Algorithm** is applied to this problem with initial simplexes:

- V: (0,0), (1,0), (0,1)
- **2** V: (0,0), (6,0), (0,6)

Iterations are seen on the next slide.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (39/46)

Example Population Model Population Model - fminsearch

Nelder Mead Example

The Nelder-Mead Algorithm is visualized below:

Example **Population Model** Population Model - fminsearch

Nelder Mead Population Model

The population model sum of square errors satisfies

$$E(P_0, r) = \sum_{i=0}^{n} \left(P_0 e^{rt_i} - P_i \right)^2,$$

which in **MatLab** is given by

Example **Population Model** Population Model - fminsearch

Nelder Mead Population Model

The Nelder-Mead Algorithm is applied to this problem with initial simplex starting near the point from the *linear least squares best fit* with

 $(P_0, r) = (6.32, 0.0196).$

Iterations are seen on the next slide.

Example Population Model Population Model - fminsearch

Nelder Mead Population Model

The Nelder-Mead Algorithm is visualized below:

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (43/46)

Population Model

Nelder Mead Population Model

When Nelder-Mead iteration is overlayed on the original contour graph, we see the following:

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Example Population Model Population Model - fminsearch

Fitting the Population Model with MatLab

Recall that the function we want to minimize is the **nonlinear sum** of square errors:

$$E(P_0, r) = \sum_{i=0}^{n} \left(P_0 e^{rt_i} - P_i \right)^2$$

In MatLab

```
1 function LS = mallstsq(p,t,y)
2 %Least Squares sum of square errors to Malthusian ...
growth model
3 LS = sum((p(1)*exp(p(2)*t)-y).^2);
4 end
```

We apply the MatLab function fminsearch, using the multidimensional unconstrained nonlinear minimization (Nelder-Mead).

SDSU

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) (45/46)

Example Population Model Population Model - fminsearch

Fitting the Population Model with MatLab

The output from the MatLab command

[p,err]=fminsearch(@mallstsq,p0,[],t,pop)

is p = [16.345612, 0.0136284] and err = 2875.53

This gives the Nonlinear Least Squares Best Model

 $P(t) = 16.345612e^{0.0136284t},$

with a substantially improved sum of square error = 2875.53

