Math 541 －Numerical Analysis
 Newton＇s Method in Higher Dimensions

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu

$$
\text { Spring } 2018
$$

Outline

(1) Review U. S. Population Model

- Malthusian Growth
- Sum of Square Errors
- Finding a Minimum
(2) Newton's Method
- Minimization Problem
- Line Search Method
- Newton's Method or Algorithm
- Example
- Population Model
(3) Nelder-Mead Method
- Example
- Population Model
- Population Model - fminsearch

Review U. S. Population Model Newton's Method Nelder-Mead Method

U. S. Population Models

Below in a table of the U. S. population from census data

Year	Pop (M)	Year	Pop (M)	Year	Pop (M)
1790	3.929	1870	39.818	1950	150.697
1800	5.308	1880	50.189	1960	179.323
1810	7.240	1890	62.948	1970	203.302
1820	9.638	1900	76.212	1980	226.546
1830	12.866	1910	92.228	1990	248.710
1840	17.069	1920	106.022	2000	281.422
1850	23.192	1930	122.775	2010	308.746
1860	31.443	1940	132.165		

We'll use $t=0$ as 1790

Malthusian Growth Model

The most basic population model is the Malthusian growth model,

$$
P(t)=P_{0} e^{r t}
$$

We want the least squares best fit to the data:

$$
P_{0} e^{r t_{i}}=P_{i}, \quad i=0, \ldots, m
$$

which with natural logarithms this becomes a linear model:

$$
\ln P_{0}+r t_{i}=a_{0}+a_{1} t_{i}=\ln P_{i}
$$

A linear least squares fit to this problem gives the coefficients (a_{0}, a_{1}), where

$$
P_{0}=e^{a_{0}} \quad \text { and } \quad r=a_{1}
$$

Malthusian Growth Model

From the U. S. population data and fitting the $\ln (P)$, we find

$$
a_{0}=1.843853 \quad \text { and } \quad a_{1}=0.0196234
$$

so the best fitting Malthusian growth model is

$$
P(t)=6.320851 e^{0.0196234 t}
$$

The sum of square errors (SSE) for this model is

$$
S S E=48693.51 .
$$

This large error is largely caused by the bias of the logarithmic scale to over emphasize the early points.

Review U. S. Population Model Newton's Method Nelder-Mead Method

Malthusian Growth Model - Graph

The graph shows the log fit parameters perform poorly for recent history. However, this was the linear fit to the logarithm of the

Review U. S. Population Model
Newton's Method Nelder-Mead Method

Sum of Square Errors

The sum of square errors satisfies

$$
E\left(P_{0}, r\right)=\sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right)^{2}
$$

Sum of Square Errors

The contour plot is produced by the following:

```
1 % Create a contour of population lst sq
2 load 'uspop';
3 p0 = linspace (5, 25,100);
4 r = linspace(0.01,0.02,100);
5 [X,Y] = meshgrid(p0,r);
6 Z = zeros(100);
7 for i=1:100
8 for j=1:100
9 Z(j,i) = mallstsqc(p0(i),r(j),t,pop);
10 end
11 end
12
    figure(1)
    contourf(X,Y, log(Z),20)
    xlabel('$P_0$','interpreter','latex')
16 Vlabel('$r$','interoreter', 'latex')

\section*{Sum of Square Errors}

The sum of square errors function is given by
```

1 function LS = mallstsqc(p0,r,t,y)
2 %Least Squares sum of square errors to Malthusian ...
growth model
3 LS = sum((p0*exp (r*t) -y).^2);
4 end

```

The contour plot shows a classic banana-shaped curve with a long stretched minimum

Graphically, the minimum is clearly far from the parameters found by the linear fit to the logarithms of the data

However, this graph shows the sum of square errors for the nonlinear Malthusian growth model

\section*{Method of Steepest Descent}

The sum of square errors satisfies
\[
E\left(P_{0}, r\right)=\sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right)^{2}
\]
is a function of two variables
Recall from Calculus that \(-\nabla E\left(P_{0}, r\right)\) (opposite the gradient) gives the direction of steepest descent, perpendicular to the level curve contours
- Method of Steepest Descent
- Gradient gives the directional derivative
- Follow path opposite \(\left(x_{n}=\left[P_{0}^{(n)}, r^{(n)}\right]\right)\)
\[
x_{n+1}=x_{n}-\alpha \nabla E\left(x_{n}\right)
\]
- Find \(\alpha\) such that \(E\left(x_{n+1}\right)\) is much smaller than \(E\left(x_{n}\right)\)
- "Banana curves" are notoriously slow for this method

\section*{Nelder-Mead Simplex Method}

Define the sum of square errors with the two parameters
\[
E\left(P_{0}, r\right)=\sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right)^{2}
\]

Least Squares lecture showed MatLab's fminsearch [p,err] =fminsearch (@mallstsq, p0, [],t,pop) giving the best model as
\[
P(t)=16.345612 e^{0.0136284 t},
\]
- Nelder-Mead Simplex Method
- Requires a "good" initial guess
- Uses triangular simplexes
- Algorithm searches space with three function evaluations. (No derivatives!)
- Computes centroid, then improves one of the three points
- Details for a future class. Math 693 A?

\section*{Minimum - Sum of Square Errors}

The graph of the sum of square errors shows a distinct minimum The function of two variables is
\[
E\left(P_{0}, r\right)=\sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right)^{2}
\]

From Calculus, a necessary condition for a minimum is
\[
\nabla E\left(P_{0}, r\right)=\tilde{\mathbf{0}}
\]

Taking partial derivatives gives
\[
\begin{aligned}
\frac{\partial E}{\partial P_{0}} & =2 \sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right) e^{r t_{i}} \\
\frac{\partial E}{\partial r} & =2 \sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right) P_{0} t_{i} e^{r t_{i}}
\end{aligned}
\]

\section*{Nonlinear Least Squares - Malthusian Growth}

The minimum occurs when these partial derivatives are zero
This requires solving two nonlinear equations for the parameters, \(P_{0}\) and \(r\)
\[
\begin{aligned}
\sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right) e^{r t_{i}} & =0 \\
\sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right) P_{0} t_{i} e^{r t_{i}} & =0
\end{aligned}
\]

Note that the first equation could be solved for \(P_{0}\) easily
This could be substituted into the second equation, and the resulting nonlinear equation could be solved by Newton's method or one of our other routine for solving \(f(x)=0\)
```

Minimization Problem
Line Search Method
Newton's Method or Algorithm
Example
Population Model

```

\section*{Minimization Problem}

Consider a function \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\)
Our problem is to minimize \(f(\tilde{\mathbf{x}})\)
\[
\min _{\tilde{\mathbf{x}} \in \mathbb{R}^{n}} f(\tilde{\mathbf{x}}),
\]
where
- \(f(\tilde{\mathbf{x}})\) is the objective function
- \(\tilde{\mathrm{x}}\) is the vector of variables or parameters

In our example above, the function \(f\) is the sum of square errors, and the vector \(\tilde{\mathbf{x}}=\left[P_{0}, r\right]\)

\section*{Minimization Problem}

If \(f(\tilde{\mathbf{x}}) \in \mathbb{R}\) is differentiable we can recognize a minimum by looking at the first and second derivatives:
- The gradient: \(\nabla f(\tilde{\mathbf{x}}) \in \mathbb{R}^{n}\)
- The Hessian: \(\nabla^{2} f(\tilde{\mathbf{x}}) \in \mathbb{R}^{n \times n}\)

Once again Taylor's Theorem (multi-dimensional) plays a key role

\section*{Theorem (First Order Necessary Condition)}

If \(\tilde{\mathbf{x}}^{*}\) is a local minimum and \(f\) is continuously differentiable in an open neighborhood of \(\tilde{\mathbf{x}}^{*}\), then
\[
\nabla f\left(\tilde{\mathbf{x}}^{*}\right)=\tilde{\mathbf{0}}
\]
```

Line Search Method
Newton's Method or Algorithm
Example
Population Model

```

\section*{Local Minimum}

\section*{Definition (Positive Definite Matrix)}

An \(n \times n\) matrix \(H\) is positive definite if and only if for all \(\tilde{\mathbf{x}} \neq 0\),
\[
\tilde{\mathbf{x}}^{T} H \tilde{\mathbf{x}}=\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i j} x_{i} x_{j}>0 .
\]

\section*{Theorem (Second-Order Sufficient Conditions)}

Suppose that \(\nabla^{2} f\) is continuous in an open neighborhood of \(\tilde{\mathbf{x}}^{*}\) and that \(\nabla f\left(\tilde{\mathbf{x}}^{*}\right)=\tilde{\mathbf{0}}\) and \(\nabla^{2} f\left(\tilde{\mathbf{x}}^{*}\right)\) is positive definite. Then \(\tilde{\mathbf{x}}^{*}\) is a strict local minimum of \(f\).

Note: This is similar in 1-D of the derivative equal to zero and the second derivative being positive for a local minimum
```

Minimization Problem
Line Search Method
Newton's Method or Algorithm
Example
Population Model

```

\section*{Minimization Problem}

We generally do not have a global picture of \(f(\tilde{\mathbf{x}})\), so we concentrate on the local problem

Relying on our techniques from Calculus and the theorems above, we seek to solve
\[
\nabla f(\tilde{\mathbf{x}})=\tilde{\mathbf{0}}
\]

We will concentrate on the case where there is a local minimum, so the Hessian is positive definite. (Math 693A will go into much more detail.)

We limit our discussion here to Newton's Method, which is a line search technique

\section*{Line Search Method}

Line search methods reduce the \(n\)-dimensional minimization problem
\[
\min _{\tilde{\mathbf{x}} \in \mathbb{R}^{n}} f(\tilde{\mathbf{x}})
\]
with the one-dimensional problem
\[
\min _{\tilde{\mathbf{x}} \in \mathbb{R}^{n}} f\left(\tilde{\mathbf{x}}_{k}+\alpha \tilde{\mathbf{p}}_{k}\right)
\]
where \(\tilde{\mathbf{p}}_{k}\) is a chosen search direction and \(\alpha\) is the factor for how far we search in that direction.
Choice of \(\tilde{\mathbf{p}}_{k}\) is critical to the rate of progress toward the local minimum

The intuitive steepest descent actually gives a slow scheme

\section*{Taylor Theorem}

The fundamental building block for our minimization problem is once again Taylor's Theorem in higher dimensions

\section*{Theorem (Taylor's Theorem)}

For some \(t \in(0,1)\), we have
\[
f(\tilde{\mathbf{x}}+\tilde{\mathbf{p}})=f(\tilde{\mathbf{x}})+\tilde{\mathbf{p}}^{T} \underbrace{\nabla f(\tilde{\mathbf{x}})}_{\text {gradient }}+\frac{1}{2} \tilde{\mathbf{p}}^{T} \underbrace{\left[\nabla^{2} f(\tilde{\mathbf{x}}+t \tilde{\mathbf{p}})\right]}_{\text {Hessian }} \tilde{\mathbf{p}} .
\]

The local minimum occurs when we find \(\tilde{\mathbf{x}}^{*}\), such that \(\nabla f\left(\tilde{\mathbf{x}}^{*}\right)=\tilde{\mathbf{0}}\) and \(\nabla^{2} f\left(\tilde{\mathbf{x}}^{*}\right)\) is positive definite

\section*{Newton Direction}

If \(f\) is sufficiently smooth and the Hessian is positive definite, we can select \(\tilde{\mathbf{p}}_{k}\) to be the Newton direction.
The second order Taylor expansion gives:
\[
f(\tilde{\mathbf{x}}+\tilde{\mathbf{p}}) \approx f(\tilde{\mathbf{x}})+\tilde{\mathbf{p}}^{T} \nabla f(\tilde{\mathbf{x}})+\frac{1}{2} \tilde{\mathbf{p}}^{T}\left[\nabla^{2} f(\tilde{\mathbf{x}})\right] \tilde{\mathbf{p}}
\]

The minimum of the rhs is obtained by computing the derivative with respect to \(\tilde{\mathbf{p}}\) and setting the result to zero, so
\[
\nabla f(\tilde{\mathbf{x}})+\left[\nabla^{2} f(\tilde{\mathbf{x}})\right] \tilde{\mathbf{p}}=\tilde{\mathbf{0}}
\]
which gives the Newton direction
\[
\tilde{\mathbf{p}}^{N}=-\left[\nabla^{2} f(\tilde{\mathbf{x}})\right]^{-1} \nabla f(\tilde{\mathbf{x}})
\]

\section*{Newton's Method or Algorithm}

Given an initial \(\tilde{\mathbf{x}}_{0}\), Newton's Method for finding a minimum for \(f(\tilde{\mathbf{x}})\) is iteratively given by
\[
\tilde{\mathbf{x}}_{n+1}=\tilde{\mathbf{x}}_{n}-\left[\nabla^{2} f\left(\tilde{\mathbf{x}}_{n}\right)\right]^{-1} \nabla f\left(\tilde{\mathbf{x}}_{n}\right) .
\]

More generally, let \(\tilde{\mathbf{g}}(\tilde{\mathbf{x}}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\), then Newton's Method can be used to find a solution of
\[
\tilde{\mathbf{g}}(\tilde{\mathbf{x}})=\tilde{\mathbf{0}} \quad \text { given initial } \quad \tilde{\mathbf{x}}_{0} .
\]

The Newton iteration scheme satisfies
\[
\tilde{\mathbf{x}}_{n+1}=\tilde{\mathbf{x}}_{n}-J^{-1}\left(\tilde{\mathbf{x}}_{n}\right) \tilde{\mathbf{g}}\left(\tilde{\mathbf{x}}_{n}\right),
\]
where \(J(\tilde{\mathbf{x}})\) is the Jacobian matrix for \(\tilde{\mathbf{g}}(\tilde{\mathbf{x}})\)

\section*{Newton's Method for \(\mathbb{R}^{3}\)}

Consider \(\tilde{\mathbf{g}}(\tilde{\mathbf{x}}): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\), where
\[
\tilde{\mathbf{g}}(\tilde{\mathbf{x}})=\left(\begin{array}{c}
g_{1}(\tilde{\mathbf{x}}) \\
g_{2}(\tilde{\mathbf{x}}) \\
g_{3}(\tilde{\mathbf{x}})
\end{array}\right) \quad \text { and } \quad \tilde{\mathbf{x}}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\]

The Jacobian matrix is given by
\[
J(\tilde{\mathbf{x}})=\left(\begin{array}{ccc}
\frac{\partial g_{1}(\tilde{\mathbf{x}})}{\partial x_{1}} & \frac{\partial g_{1}(\tilde{\mathbf{x}})}{\partial x_{2}} & \frac{\partial g_{1}(\tilde{\mathbf{x}})}{\partial x_{3}} \\
\frac{\partial g_{2}(\tilde{\mathbf{x}})}{\partial x_{1}} & \frac{\partial g_{2}(\tilde{\mathbf{x}})}{\partial x_{2}} & \frac{\partial g_{2}(\tilde{\mathbf{x}})}{\partial x_{3}} \\
\frac{\partial g_{3}(\tilde{\mathbf{x}})}{\partial x_{1}} & \frac{\partial g_{3}(\tilde{\mathbf{x}})}{\partial x_{2}} & \frac{\partial g_{3}(\tilde{\mathbf{x}})}{\partial x_{3}}
\end{array}\right)
\]

Then given an initial \(\tilde{\mathbf{x}}_{0}\), Newton's Method can be used to find an approximate solution of \(\tilde{\mathbf{g}}(\tilde{\mathbf{x}})=\tilde{\mathbf{0}}\), where
\[
\tilde{\mathbf{x}}_{n+1}=\tilde{\mathbf{x}}_{n}-J^{-1}\left(\tilde{\mathbf{x}}_{n}\right) \tilde{\mathbf{g}}\left(\tilde{\mathbf{x}}_{n}\right)
\]

\section*{\(\mathbb{R}^{2}\) Example of Newton's Method}

Suppose we want to find the intersection of the 2D curves
\[
x_{1}^{2}+x_{2}^{2}=4 \quad \text { and } \quad x_{1} x_{2}=1
\]
(This could be easily solved in 1D, then back substituted.)
We create a \(\tilde{\mathbf{g}}\left(x_{1}, x_{2}\right)\) with \(\tilde{\mathbf{g}}\left(x_{1}, x_{2}\right)=\tilde{\mathbf{0}}\)
\[
\tilde{\mathbf{g}}\left(x_{1}, x_{2}\right)=\binom{x_{1}^{2}+x_{2}^{2}-4}{x_{1} x_{2}-1}=\binom{0}{0}
\]

The Jacobian matrix is given by
\[
J(\tilde{\mathbf{x}})=\left(\begin{array}{cc}
2 x_{1} & 2 x_{2} \\
x_{2} & x_{1}
\end{array}\right) \quad \text { so } \quad J^{-1}(\tilde{\mathbf{x}})=\left(\begin{array}{cc}
\frac{x_{1}}{2\left(x_{1}^{2}-x_{2}^{2}\right)} & -\frac{x_{2}}{\left(x_{1}^{2}-x_{2}^{2}\right)} \\
-\frac{x_{2}}{2\left(x_{1}^{2}-x_{2}^{2}\right)} & \frac{x_{1}}{\left(x_{1}^{2}-x_{2}^{2}\right)}
\end{array}\right)
\]

Given an initial \(\tilde{\mathbf{x}}_{0}\), Newton's Method satisfies
\[
\tilde{\mathbf{x}}_{n+1}=\tilde{\mathbf{x}}_{n}-J^{-1}\left(\tilde{\mathbf{x}}_{n}\right) \tilde{\mathbf{g}}\left(\tilde{\mathbf{x}}_{n}\right)
\]

\section*{\(\mathbb{R}^{2}\) Example of Newton's Method}

Given an initial \(\tilde{\mathbf{x}}_{0}\), a MatLab version of Newton's Method is
```

 1 function xn = newton2(x0,tol,N)
 2 % 2D Newton's Method
3 xn = x0; err = 1; k = 1;
4 while ((err > tol)\&\&(k < N))
5 x1 = xn;
6 xn = x1 - J2(x1)\g2(x1)
7 err = abs(norm(x1)-norm(xn))
8 k = k+1;
9 end
10 end

```

\section*{\(\mathbb{R}^{2}\) Example of Newton's Method}

The MatLab function and Jacobian are
```

1 function y = g2(x)
2 % 2D function
3y=[x(1,1)^2 + x (2,1)^2 - 4; x(1,1)*x(2,1) - 1];
4 end

```
```

1 function A = J2(x)
2 % Jacobian matrix
3 A = [2*x(1,1), 2*x(2,1); x(2,1) ,x(1,1)];
4 end

```

\section*{\(\mathbb{R}^{2}\) Example of Newton's Method}

Results of the program are listed in the Table below:
\begin{tabular}{|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & Norm Err \\
\hline 2 & 0 & - \\
\hline 2 & 0.5 & 0.061553 \\
\hline 1.933333 & 0.516667 & 0.060373 \\
\hline 1.931853 & 0.517637 & 0.0011794 \\
\hline 1.931851 & 0.517638 & \(7.8345 E-07\) \\
\hline 1.931851 & 0.517638 & \(5.6444 E-13\) \\
\hline
\end{tabular}

Note: The norm error is in the Cauchy sense comparing successive iterations.

It can be shown that this Newton's Method converges quadratically

Symmetry shows there are 4 solutions

\section*{Newton's Method and Population Model}

The Newton scheme derived above can be applied to the least squares function for our Malthusian growth model

However, the large number of data points and the exponentials result in very large gradients, particularly in the \(r\) direction
This results in serious numerical instabilities of our Newton's method

Below is the MatLab function for the gradient:
```

1 function y = gpop (x,t,pop)
2 % 2D function
3y1 = sum((x (1,1)*exp (x (2,1)*t)-pop).*exp (x (2,1)*t));
4 y2 = sum((x (1,1)*exp (x (2,1)*t) -pop).*(x(1, 1)*t)...
5 .*exp (x (2,1) *t));
6 y = [y1;y2];
7 end

```

\section*{Newton's Method and Population Model}

We readily compute the Jacobian in MatLab:
```

1 function A = Jpop (x,t,pop)
2 % Jacobian matrix
3 a11 = sum(exp (2*x (2,1)*t));
4 a12 = sum(2*x(1,1).*t.*exp (2*x (2,1)*t) - ...
pop.*t.*exp (x (2,1) *t));
5 a21 = a12;
6 a22 = sum (2*x (1, 1)^2* (t.^2).*exp (2*x (2,1)*t) - ...
7 x(1,1).*(t.^2).*exp (x (2,1) *t).*pop);
8 A = [a11,a12;a21,a22];
9 end

```

\section*{Newton's Method and Population Model}

Newton's method becomes in MatLab:
```

function xn = newton_pop(x0,t,pop,tol,N)
% 2D Newton's Method
xn = x0; err = 1; k = 1;
while ((err > tol)\&\&(k < N))
x1 = xn;
xn = x1 - Jpop (x1,t,pop)\gpop (x1,t,pop)
err = abs(norm(x1)-norm(xn))
k = k+1
end
end

```

\section*{Newton's Method and Population Model}

Recall that the linear least squares best fit to the logarithm of the data was a long distance from the observed minimum (Contour plot).

We attempt starting Newton's method at this point \(\left(P_{0}, r\right)=(6.32,0.0196)\), and the Table below is generated with \(n\) the number of iterations
\begin{tabular}{|c|c|c|c|}
\hline\(n\) & \(P_{0}\) & \(r\) & \(e r r\) \\
\hline 1 & 5.8604 & 0.01906 & 0.4596 \\
\hline 2 & 1.8088 & 0.02213 & 4.0515 \\
\hline 3 & 2.1092 & 0.02814 & 0.3004 \\
\hline 4 & 2.0917 & 0.02636 & 0.01753 \\
\hline 5 & 2.0342 & 0.02505 & 0.05743 \\
\hline & & & \\
\hline 10 & 0.2568 & 0.007638 & 0.007617 \\
\hline & & & \\
\hline 12 & 0.2854 & -0.003745 & 0.01724 \\
\hline
\end{tabular}

\section*{Newton's Method and Population Model}

The previous slide shows Newton's method diverging.
From the contour map a good starting point for Newton's method is \(\left(P_{0}, r\right)=(16,0.014)\) with the Table below showing the iterations.
\begin{tabular}{|c|c|c|c|}
\hline\(n\) & \(P_{0}\) & \(r\) & err \\
\hline 1 & 15.0906 & 0.0140456 & 0.9094 \\
\hline 2 & 16.3185 & 0.0136219 & 1.2279 \\
\hline 3 & 16.3437 & 0.0136291 & 0.02517 \\
\hline 4 & 16.3456 & 0.0136284 & 0.001898 \\
\hline 5 & 16.3456 & 0.0136284 & \(3.337 \mathrm{E}-07\) \\
\hline
\end{tabular}

This Table shows Newton's method converging quadratically

\section*{Nelder-Mead Method}

A number of times this semester, we have employed the MatLab minimization algorithm fminsearch.

This algorithm employs the Nelder-Mead method \({ }^{1}\), which is a heuristic technique based on searching parameter space with simplexes.
- This simplex method finds a local minimum of a function of several variables.
- If \(f(x, y)\) is function of two variables, the pattern starts with an initial triangle.
- The largest vertex is rejected and replaced with another.
- The process generates a sequence of triangles with vertices having smaller functional values.
- The size of the triangles eventually reduces to where it is sufficiently close to the local minimum.
\({ }^{1}\) Nelder, John A., R. Mead (1965). A simplex method for function minimization. Computer Journal 7: 308313.

\section*{Nelder-Mead Method}

The Nelder-Mead algorithm is developed using a simplex, which is a generalized triangle in \(N\) dimensions, and it follows an effective and computationally compact scheme.

For clarity, the Nelder-Mead algorithm is shown for \(f(x, y)\), a function of two variables \({ }^{2}\).

Let \(f(x, y)\) be a function to be minimized, and select an initial triangle with vertices, \(V_{i}=\left(x_{i}, y_{i}\right), i=1,2,3\).

Step 1: Evaluate \(z_{i}=f\left(x_{i}, y_{i}\right)\) for \(i=1,2,3\) and reorder so \(z_{1} \leq z_{2} \leq z_{3}\), where
\[
\mathbf{B}=\left(x_{1}, y_{1}\right), \quad \mathbf{G}=\left(x_{2}, y_{2}\right), \quad \mathbf{W}=\left(x_{3}, y_{3}\right) .
\]
\(\mathbf{B}\) is the best vertex, \(\mathbf{G}\) is the good vertex, and \(\mathbf{W}\) is the worst vertex.
\({ }^{2}\) John H. Mathews, Kurtis D. Fink (2004), Numerical Methods Using MatLab, \(4^{\text {th }}\) Edition, Prentice Hall (ISBN: 0-13-065248-2)

\section*{Nelder-Mead Method}

Step 2: Find the midpoint (centroid in higher dimensions) of the Good Side:
\[
\mathbf{M}=\frac{\mathbf{B}+\mathbf{G}}{2}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
\]

Step 3: Reflection: Create the line segment \(\overline{\mathbf{M W}}\) through the midpoint with length \(d\), then extend the line segment a distance \(d\) past \(\mathbf{M}\) to find \(\mathbf{R}\), the reflection point:
\[
\mathbf{R}=\mathbf{M}+(\mathbf{M}-\mathbf{W})=2 \mathbf{M}-\mathbf{W}
\]

If the reflected point is better than the good vertex, \(\mathbf{G}\), but not better than the good vertex, \(\mathbf{B}\), so
\[
f(\mathbf{B}) \leq f(\mathbf{R})<f(\mathbf{G}),
\]
then create the new simplex BRG by replacing \(\mathbf{W}\) with \(\mathbf{R}\) and return to Step 1.


\section*{Nelder-Mead Method}

Step 4: Expansion: If the function is smaller at \(\mathbf{R}\) than \(f(\mathbf{B})\), then this may be the correct direction toward the minimum, so extend the line segment another distance \(d\) to a point \(\mathbf{E}\) :
\[
\mathbf{E}=\mathbf{R}+(\mathbf{R}-\mathbf{M})=2 \mathbf{R}-\mathbf{M}
\]

If \(f(\mathbf{E})<f(\mathbf{R})\), then this is a better vertex than \(\mathbf{R}\), so create the new simplex BEG by replacing \(\mathbf{W}\) with \(\mathbf{E}\) and return to Step 1.


\section*{Nelder-Mead Method}

Step 5: Contraction: If this stage is reached, then \(f(\mathbf{R}) \geq f(\mathbf{G})\).
Find the midpoint of the line segment \(\overline{\mathbf{M W}}\) and label this contracted point \(\mathbf{C}\).
If the contracted point is better than the worst point, \(f(\mathbf{C})<f(\mathbf{W})\), then this is a better vertex than \(\mathbf{W}\), so create the new simplex BCG by replacing \(\mathbf{W}\) with \(\mathbf{C}\) and return to Step 1.


\section*{Nelder-Mead Method}

Step 6: Shrink: If this stage is reached (which rarely occurs), then none of the created points did better than \(\mathbf{W}\).

At this stage, the best vertex, \(\mathbf{B}\) is kept and the simplex is shrunk.
In addition to finding \(\mathbf{M}\), we find the midpoint, \(\mathbf{S}\) of the line segment \(\overline{\mathbf{B W}}\), then create the new simplex BMS by replacing \(\mathbf{W}\) with \(\mathbf{S}\) and \(\mathbf{G}\) with \(\mathbf{M}\) and return to Step 1.


\section*{Nelder-Mead Method}

The initial simplex is important.
- If the initial simplex is too small, the solution can become trapped locally.
- The initial simplex often depends on the nature of the problem.

The termination conditions vary.
- The original paper of Nelder and Mead used the variation in the function values of the simplex.
- Alternately, one could compare the distance between the simplex nodes.
- The solution is taken as the last best vertex in the iteration.

\section*{Nelder Mead Example}

Consider the function:
\[
f\left(x_{1}, x_{2}\right)=\left(x_{1}-3\right)^{2}+\left(x_{2}-4\right)^{2}
\]
```

1 function z = fcn(x)
2 %function here
3 z=((x(1)-3)^2)+((x(2)-4)^2);
4 end

```

This clearly has a minimum at \(\left(x_{1}, x_{2}\right)=(3,4)\).
The Nelder-Mead Algorithm is applied to this problem with initial simplexes:
(1) \(V:(0,0),(1,0),(0,1)\)
(2) \(V:(0,0),(6,0),(0,6)\)

Iterations are seen on the next slide.

Review U. S. Population Model Newton's Method Nelder-Mead Method

Example
Population Model
Population Model - fminsearch

\section*{Nelder Mead Example}

The Nelder-Mead Algorithm is visualized below:



\section*{Nelder Mead Population Model}

The population model sum of square errors satisfies
\[
E\left(P_{0}, r\right)=\sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right)^{2}
\]
which in MatLab is given by
```

1 function LS = malsqsim(p)
2 %Sum of square errors: Malthusian growth model
3 t = [0:10:220];
4 y1 = [3.929 5.308 7.24 9.638 12.866 17.069 23.192 ···.
31.443 39.818];
5 y2 = [50.189 62.948 76.212 92.228 106.022 122.775 ...
132.165 150.697];
6 y = [y1,y2,179.323 203.302 226.546 248.71 281.422 ...
308.746];
7 LS = sum((p(1)*exp(p (2)*t)-y).^2);
8 end

```

\section*{Nelder Mead Population Model}

The Nelder-Mead Algorithm is applied to this problem with initial simplex starting near the point from the linear least squares best fit with
\[
\left(P_{0}, r\right)=(6.32,0.0196) .
\]

Iterations are seen on the next slide.

\section*{Nelder Mead Population Model}

The Nelder-Mead Algorithm is visualized below:


\section*{Nelder Mead Population Model}

When Nelder-Mead iteration is overlayed on the original contour graph, we see the following:

soso

\section*{Fitting the Population Model with MatLab}

Recall that the function we want to minimize is the nonlinear sum of square errors:
\[
E\left(P_{0}, r\right)=\sum_{i=0}^{n}\left(P_{0} e^{r t_{i}}-P_{i}\right)^{2}
\]

In MatLab
```

1 function LS = mallstsq(p,t,y)
2 %Least Squares sum of square errors to Malthusian ...
growth model
3 LS = sum((p (1)*\operatorname{exp}(p(2)*t)-y).^^2);
4 end

```

We apply the MatLab function fminsearch, using the multidimensional unconstrained nonlinear minimization (Nelder-Mead).

\section*{Fitting the Population Model with MatLab}

The output from the MatLab command
[p,err]=fminsearch (@mallstsq, p0, [],t,pop)
is \(p=[16.345612,0.0136284]\) and \(\operatorname{err}=2875.53\)
This gives the Nonlinear Least Squares Best Model
\[
P(t)=16.345612 e^{0.0136284 t}
\]
with a substantially improved sum of square error \(=2875.53\)```

