Math 541 －Numerical Analysis
 Lecture Notes－Linear Algebra：Part B

Roundoff ErrorsJoseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Norms
－Vector Norms
－Norm of Matrix
（3）
Condition Number

Outline

Spring 2018

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉
（1／21）
SDSO
－Condition Number and Gaussian Elimination

Roundoff Errors
Condition Number

Errors

Errors：Consider the system

$$
A x=b
$$

－The coefficients in A and values in b are rarely known exactly
－Experimental（observational）and round－off errors enter almost every system
－How much effect is there from perturbations to the system？
－Problems arise when A is singular or nearly singular
－Singular matrices result in either no solution to the system or the solution is not unique
－If A is near the identity，then small changes in b result in small changes in x

Roundoff Error－Example

Example：Perform 3－digit arithmetic on the system：

$$
\left(\begin{array}{ll}
0.780 & 0.563 \\
0.913 & 0.659
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0.217}{0.254}
$$

Perform Gaussian Elimination with partial pivoting，beginning with $R_{1} \longleftrightarrow R_{2}$
The multiplier is $m_{1}=\frac{0.780}{0.913}=0.854$ and the operation is $R_{2} \rightarrow R_{2}-m_{1} R_{1}$ ，resulting in

$$
\left(\begin{array}{cc}
0.913 & 0.659 \\
0 & 0.001
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0.254}{0.001}
$$

This gives

$$
x_{2}=\frac{0.001}{0.001} \quad \text { and } \quad x_{1}=\frac{0.254-0.659}{0.913}=-0.443
$$

50

Roundoff Error－Example

Example from before is：

$$
\left(\begin{array}{ll}
0.780 & 0.563 \\
0.913 & 0.659
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0.217}{0.254}
$$

and 3 －digit arithmetic gave the solution

$$
x_{1}=-0.443 \quad \text { and } \quad x_{2}=1.000
$$

The residual is easily calculated
$r=b-A x_{*}=\binom{0.217-0.780(-0.443)+0.563(1.000)}{0.254-0.913(-0.443)+0.659(1.000)}=\binom{-0.000460}{-0.000541}$
which has each component $<10^{-3}$
It is easy to see that the actual solution is

$$
\binom{x_{1}}{x_{2}}=\binom{1.000}{-1.000}
$$

which is far from the computed solution
Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉（6／21）
\(\left.\begin{array}{|c|l}Roundoff Errors

Norms

Condition Number\end{array}\right)\)| Vector Norms |
| :--- |
| Norm of Matrix |

Definition（ l_{p} Norm）

Consider an n－dimensional vector $x=\left[x_{1}, \ldots, x_{n}\right]^{T}$ ．The l_{p} norm for the vector x is defined by the following：

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Almost always the norms use $p=1, p=2$（Euclidean or distance），or $p=\infty(\max)$
For $x=\binom{x_{1}}{x_{2}}$ ，we have $\left.\|x\|_{2}=\left(x_{1}^{2}+x_{2}^{2}\right)\right)^{1 / 2}$

Unit Circles

Consider $\|x\| \leq 1$ in different norms

5050

Vector Norms

Norm of Matrix
－

Norms

Let $x=\left[x_{1}, \ldots, x_{n}\right]^{T} \in \mathbb{R}^{n}$ ，then the norms for $p=1, p=2$ ，or $p=\infty$ satisfy：

$$
\begin{aligned}
\|x\|_{1} & =\sum_{i=1}^{n}\left|x_{i}\right| \\
\|x\|_{2} & =\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}} \\
\|x\|_{\infty} & =\max _{i}\left\{\left|x_{i}\right|\right\}
\end{aligned}
$$

Property（Norm）

Given an n－dimensional vector $x=\left[x_{1}, \ldots, x_{n}\right]^{T}$ ，then：

$$
\begin{array}{ll}
\|x\|>0, & \text { if } x_{i} \neq 0 \text { for some } i, \\
\|x\|=0, & \text { if } x_{i}=0 \text { for all } i . \\
\hline
\end{array}
$$

Roundoff Errors Condition Number	Vector Norms Norm of Matrix
Norm of a Matrix	

Definition（Matrix Norm）

A matrix norm on the set of all $n \times n$ matrices is a real－valued function，$\|\cdot\|$ ，defined on this set，satisfying for all $n \times n$ matrices A and B and all real numbers α ：
（1）$\|A\| \geq 0$ ；
（2）$\|A\|=0$ ，if and only if A is $\mathbf{0}$ ，the matrix with all entries 0 ；
（3）$\|\alpha A\|=|\alpha|\|A\|$ ；
（4）$\|A+B\| \leq\|A\|+\|B\|$ ；
（c）$\|A B\| \leq\|A\|\|B\|$ ；

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right|=0.8
$$

Norm of a Matrix

Norm of a Matrix：There are a number of norms on a matrix．The most common norm for a matrix is defined by the vector norms for \mathbb{R}^{n}

Theorem（Matrix Norm）

If $\|\cdot\|$ is a vector norm on \mathbb{R}^{n} ，then

$$
\|A\|=\max _{\|x\|=1}\|A x\|=\max _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}
$$

is a matrix norm．
It follows that for any x

$$
\|A\| \geq \frac{\|A x\|}{\|x\|} \quad \text { or } \quad\|A x\| \leq\|A\|\|x\|
$$

5050
－

Rounding Error

Consider a system of equations

$$
A x=b
$$

Assume that A is known，and there is an error in x with $x+\delta x$

$$
A(x+\delta x)=b+\delta b
$$

This assumes a roundoff error in x and the result of A acting on x produces a roundoff error δb
With norms we see for $A(\delta x)=\delta b$

$$
\|A(\delta x)\|=\|\delta b\| \quad \text { or } \quad\|\delta b\| \leq\|A\|\|\delta x\|
$$

or

$$
\|\delta x\| \geq \frac{1}{\|A\|}\|\delta b\|
$$

If A is invertible，then $\delta x=A^{-1}(\delta b)$

$$
\|\delta x\|=\left\|A^{-1}(\delta b)\right\| \leq\left\|A^{-1}\right\|\|\delta b\|
$$

Definition（Alternate：Condition Number）
The Condition Number for a matrix A satisfies：

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\| .
$$

The Condition Number，$\kappa(A)$ ，measures how much impact roundoff has

Error in Solution

Properties

For the perturbation，

$$
\|\delta x\|=\left\|A^{-1}(\delta b)\right\| \leq\left\|A^{-1}\right\|\|\delta b\|=\kappa(A) \frac{\|\delta b\|}{\|A\|}
$$

From $A x=b$ ，we have $\|b\| \leq\|A\|\|x\|$ or $\frac{1}{\|A\|} \leq \frac{\|x\|}{\|b\|}$
It follows that

$$
\|\delta x\| \leq \kappa(A) \frac{\|\delta b\|}{\|A\|} \leq \kappa(A)\|\delta b\| \frac{\|x\|}{\|b\|}
$$

Rearranging

$$
\frac{\|\delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\delta b\|}{\|b\|}
$$

The relative error in b gives the relative error provided $\kappa(A) \approx 1$
Roughly，$\kappa(A)=\left\|A^{-1}\right\|\|A\|$ measures the relative error
magnification factor

Example with l_{1}－norm

Example with l_{1}－norm：Let

$$
A=\left(\begin{array}{ll}
4.1 & 2.8 \\
9.7 & 6.6
\end{array}\right), \quad b=\binom{4.1}{9.7}, \quad x=\binom{1}{0}
$$

Clearly，$A x=b$ with

$$
\|b\|=13.8 \quad \text { and } \quad\|x\|=1
$$

Make a small perturbation，so

$$
\bar{b}=\binom{4.11}{9.70}
$$

The solution becomes

$$
\bar{x}=\binom{0.34}{0.97}
$$

Let $\delta b=b-\bar{b}$ and $\delta x=x-\bar{x}$ ，then

$$
\|\delta b\|=0.01 \quad \text { and } \quad\|\delta x\|=1.63
$$

SDSO

Some properties of the Condition Number

Property（Basic Properties）

（1）The Condition Number satisfies

$$
\kappa(A) \geq 1
$$

（2）If P is a Permutation Matrix，then

$$
\kappa(P)=1
$$

（3）If D is a Diagonal Matrix，then

$$
\kappa(D)=\frac{\max \left|d_{i i}\right|}{\min \left|d_{i i}\right|}
$$

Example with l_{1}－norm

Example with l_{1}－norm：From before

$$
\|\delta b\|=0.01 \quad \text { and } \quad\|\delta x\|=1.63
$$

Thus，a small perturbation in b completely changes x
The relative changes are

$$
\frac{\|\delta b\|}{\|b\|}=0.0007246 \quad \text { and } \quad \frac{\|\delta x\|}{\|x\|}=1.63
$$

Because $\kappa(A)$ is the maximum magnification factor

$$
\kappa(A) \geq \frac{1.63}{0.0007246}=2249.4
$$

The b and δb were chosen to give the maximum，so $\kappa(A)=2249.4$

Condition Number and Gaussian Elimination

The Condition Number plays a fundamental role in the analysis of roundoff errors during the solution of Gaussian Elimination
Assume that A and b are exact and x_{*} is obtained from the floating point arithmetic of the machine with ϵ precision

Assuming no singularities, the following inequalities can be established:

$$
\begin{aligned}
\frac{\left\|b-A x_{*}\right\|}{\|A\|\left\|x_{*}\right\|} & \leq \rho \epsilon \\
\frac{\left\|x-x_{*}\right\|}{\left\|x_{*}\right\|} & \leq \rho \kappa(A) \epsilon
\end{aligned}
$$

where $\rho \approx 10$
The first inequality implies that the relative residual is approximately the same as the machine roundoff error

The second inequality implies that the relative error requires A is nonsingular, and the roundoff error scales with the condition number, $\kappa(A)$

