Math 541 - Numerical Analysis Lecture Notes - Linear Algebra: Part A

Joseph M. Mahaffy, $\langle j m a h a f f y @ m a i l . s d s u . e d u\rangle$
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://jmahaffy.sdsu.edu

$$
\text { Spring } 2018
$$

Gaussian Elimination

$L U$ Factorization

Outline

(1) Applications
(2) Gaussian Elimination

- Solving $A x=b$
- Partial Pivoting
(3) $L U$ Factorization
- Example
- General $L U$ Factorization
- MatLab Program for solving $A x=b$

Applications

Applications and Matrices: Widely used in many fields
Kirchhoff's Law: Matrices used to find currents in an electric circuit

- At any node in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node
- The directed sum of the electrical potential differences (voltage) around any closed network is zero

spso

Kirchhoff's Law

Kirchhoff's Law applied to the circuit above gives the system of equations

$$
\begin{aligned}
5 i_{1}+5 i_{2} & =V \\
i_{3}-i_{4}-i_{5} & =0 \\
2 i_{4}-3 i_{5} & =0 \\
i_{1}-i_{2}-i_{3} & =0 \\
5 i_{2}-7 i_{3}-2 i_{4} & =0
\end{aligned}
$$

or

$$
A I=B
$$

with $I=\left[i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right]^{T}, B=[V, 0,0,0,0]^{T}$, and

$$
A=\left(\begin{array}{rrrrr}
5 & 5 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 2 & -3 \\
1 & -1 & -1 & 0 & 0 \\
0 & 5 & -7 & -2 & 0
\end{array}\right)
$$

Kirchhoff's Law - MatLab Solution

From above, we want to solve $A I=b$ or

$$
\left(\begin{array}{rrrrr}
5 & 5 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 2 & -3 \\
1 & -1 & -1 & 0 & 0 \\
0 & 5 & -7 & -2 & 0
\end{array}\right)\left(\begin{array}{c}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5}
\end{array}\right)=\left(\begin{array}{l}
V \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

If $V=1.5$, then MatLab gives the solution

$$
\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5}
\end{array}\right)=\left(\begin{array}{l}
0.185047 \\
0.114953 \\
0.070093 \\
0.042056 \\
0.028037
\end{array}\right)
$$

MatLab Solution (Easy) - $A I=b$

There are multiple ways where MatLab solves the above system

$$
A I=b
$$

- $A \backslash b$
- inv (A) *b
- linsolve (A,b)
- rref([A,b])
- Are all of these calculations the same?
- Which methods are more efficient and why?
- How does MatLab perform these calculations and what problems arise?

Linear System

Linear System: Operations to simplify

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{array}
$$

- E_{i} can be multiplied by a nonzero constant λ with the resulting equation used in place of E_{i} (Denoted $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$.)
- E_{j} can be multiplied by any constant λ and added to E_{i} with the resulting equation used in place of E_{i} (Denoted $\left.\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right).\right)$
- E_{i} and E_{j} can be transposed in order. (Denoted $\left(E_{i}\right) \longleftrightarrow\left(E_{j}\right)$.)

Solving $A x=b$

Let A be an $n \times n$ matrix and x and b be $n \times 1$ vectors.
Consider the system of linear equations given by

$$
A x=b
$$

The solution set x satisfies one of the following:
(1) The system has a single unique solution
(2) The system has infinitely many solutions
(3) The system has no solution

Note that the system has a unique solution if and only if $\operatorname{det}(A) \neq 0$ or equivalently A is nonsingular (it has an inverse)

Gaussian Elimination

Elimination Process: We want to describe the step-by-step process to solve

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=a_{1, n+1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=a_{2, n+1} \\
& \vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=a_{n, n+1}
\end{array}
$$

Begin by creating the augmented matrix $A=\left[a_{i j}\right]$ for $1 \leq i \leq n$ and $1 \leq j \leq n+1$

We desire a programmable process for creating an equivalent system with an upper triangular matrix, which is then readily solved by backward substitution

Gaussian Elimination

We take the original $n \times n$ linear system and create the augmented matrix $A=\left[a_{i j}\right]$ for $1 \leq i \leq n$ and $1 \leq j \leq n+1$

Algorithm (Gaussian Elimination)

- For $i=1, \ldots, n-1$, do the next $\mathbf{3}$ steps
(1) Let p be the smallest integer with $i \leq p \leq n$ and $a_{p i} \neq 0$. If no integer p can be found, then OUTPUT: no unique solution exists and STOP
(2) If $p \neq i$, then perform $\left(E_{p}\right) \longleftrightarrow\left(E_{i}\right)$ (pivoting)
(3) For $j=i+1, \ldots, n$ do the following:
(1) Set $m_{j i}=a_{j i} / a_{i i}$
(2) Perform $\left(E_{j}-m_{j i} E_{i}\right) \rightarrow\left(E_{j}\right)$ (producing a leading zero element in Row j)
(4) If $a_{n n}=0$, then OUTPUT: no unique solution exists and STOP

Back Substitution

The previous algorithm produces an augmented matrix with the first n columns creating an upper triangular matrix, $U=\left[u_{i j}\right]$

Algorithm (Back Substitution)

- Set $x_{n}=u_{n, n+1} / u_{n n}$
- For $i=n-1, \ldots, 1$ set

$$
x_{i}=\frac{1}{u_{i i}}\left[u_{i, n+1}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right]
$$

- OUTPUT $\left(x_{1}, \ldots, x_{n}\right)$

Gaussian Elimination Operations

The previous algorithms solve

$$
A x=b
$$

There were numerous Multiplications/divisions and
Additions/subtractions in the Gaussian elimination and back substitution
These calculations are readily counted

- Multiplications/divisions total

$$
\frac{n^{3}}{3}+n^{2}-\frac{n}{3}
$$

- Additions/subtractions total

$$
\frac{n^{3}}{3}+\frac{n^{2}}{2}-\frac{5 n}{6}
$$

which means that arithmetic operations are proportional to n^{3}, the dimension of the system

Partial Pivoting

After pivoting our Algorithm uses the new pivot element to produce $\mathbf{0}$ below in the remaining rows

The operation is

$$
m_{j i}=a_{j i} / a_{i i}
$$

If $a_{i i}$ is small compared to $a_{j i}$, then $m_{j i} \gg 1$, which can introduce significant round-off error

Further computations compound the original error
In addition, the back substitution using the small $a_{i i}$ also introduces more error, which means that the round-off error dominates the calculations

Pivoting Strategy: Row exchanges are done to reduce round-off error

Partial Pivoting - Example

Example: Consider the following system of equations:

$$
\begin{array}{ll}
E_{1}: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
E_{2}: & 5.291 x_{1}-6.130 x_{2}=46.78
\end{array}
$$

Apply Gaussian elimination to this system with 4-digit arithmetic with rounding and compare to the exact solution, which is $x_{1}=10.00$ and $x_{2}=1.000$

Solution: The first pivot element is $a_{11}=0.003000$, which is small, and its multiplier is

$$
m_{21}=\frac{5.291}{0.003000}=1763.66 \overline{6}
$$

rounding to $m_{21}=1764$, which is large

Partial Pivoting - Example

Example (cont): Performing $\left(E_{2}-m_{21} E_{1}\right) \rightarrow\left(E_{2}\right)$ with appropriate rounding gives

$$
\begin{aligned}
0.003000 x_{1}+59.14 x_{2} & =59.17 \\
-104300 x_{2} & \approx-104400
\end{aligned}
$$

while the exact system is

$$
\begin{aligned}
0.003000 x_{1}+59.14 x_{2} & =59.17 \\
-104309.37 \overline{6} x_{2} & =-104309.37 \overline{6}
\end{aligned}
$$

The disparity in $m_{21} a_{13}$ and a_{23} has introduced round-off error, but it has not been propagated

Partial Pivoting - Example

Example (cont): Back substitution yields

$$
x_{2} \approx 1.001
$$

which is close to the actual value $x_{2}=1.000$
However, the small pivot $a_{11}=0.003000$ gives

$$
x_{1}=\frac{59.17-(59.14)(1.001)}{0.003000}=-10.00,
$$

while the actual value is $x_{1}=10.00$
The round-off error comes from the small error of 0.001 multiplied by

$$
\frac{59.14}{0.003000} \approx 20000
$$

For this system is is very easy to see where the error occurs and propagates, but it becomes much harder in larger systems

Partial Pivoting

Partial Pivoting: To avoid the difficulty in the previous Example, we select the largest magnitude element in the column below the diagonal and perform a pivoting with this row

Specifically, determine the smallest $p \geq k$ such that

$$
\left|a_{p k}\right|=\max _{k \leq i \leq n}\left|a_{i k}\right|
$$

and perform $\left(E_{k}\right) \longleftrightarrow\left(E_{p}\right)$
If this is done on the previous Example, then the 4 -digit rounding answer agrees with the exact answer

Gaussian Elimination with Partial Pivoting

To perform Gaussian Elimination with Partial Pivoting, we use the previous Gaussian Elimination and Back substitution algorithms with the replacement of the first step by the following:

Algorithm (Gaussian Elimination with Partial Pivoting)
(1) Find the smallest $p \geq k$ such that

$$
\left|a_{p k}\right|=\max _{k \leq i \leq n}\left|a_{i k}\right|
$$

If $\left|a_{p k}\right|=0$, then OUTPUT: no unique solution exists and STOP
$L U$ Factorization

Gaussian Elimination with Partial Pivoting

This Gaussian Elimination with Partial Pivoting procedure is relatively easy to code and provides a "reasonably" stable algorithm for solving $A x=b$

Further improvements with additional costs that are $\mathcal{O}\left(n^{3}\right)$ can be accomplished by pivoting both rows and columns

This strategy is recommended for systems where accuracy is essential and the additional execution time is justified (roughly doubles the execution time)

Example

Example: Consider the following system:

$$
\begin{aligned}
10 x_{1}-7 x_{2} & =7 \\
-3 x_{1}+2 x_{2}+6 x_{3} & =4 \\
5 x_{1}-x_{2}+5 x_{3} & =6
\end{aligned}
$$

This is written as the matrix equation

$$
\left(\begin{array}{ccc}
10 & -7 & 0 \\
-3 & 2 & 6 \\
5 & -1 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
7 \\
4 \\
6
\end{array}\right)
$$

The first step is accomplished by adding 0.3 times the first equation to the second equation and subtracting 0.5 times the first equation from the third equation:

$$
\left(0.3 R_{1}+R_{2}\right) \rightarrow\left(R_{2}\right) \quad \text { and } \quad\left(-0.5 R_{1}+R_{3}\right) \rightarrow\left(R_{3}\right)
$$

Example

2 of 4

Example: This operation is the first pivot

$$
\left(0.3 R_{1}+R_{2}\right) \rightarrow\left(R_{2}\right) \quad \text { and } \quad\left(-0.5 R_{1}+R_{3}\right) \rightarrow\left(R_{3}\right)
$$

Resulting in

$$
\left(\begin{array}{ccc}
10 & -7 & 0 \\
0 & -0.1 & 6 \\
0 & 2.5 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
7 \\
6.1 \\
2.5
\end{array}\right)
$$

The second pivot could perform the operation $\left(25 R_{2}+R_{3}\right) \rightarrow\left(R_{3}\right)$, but in general, we select the largest coefficient and perform a pivoting (minimizing roundoff error), which in this case, is

$$
\left(R_{3}\right) \longleftrightarrow\left(R_{2}\right)
$$

resulting in

$$
\left(\begin{array}{ccc}
10 & -7 & 0 \\
0 & 2.5 & 5 \\
0 & -0.1 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
7 \\
2.5 \\
6.1
\end{array}\right)
$$

Example

Example: Now the second pivot is 2.5 , and x_{2} is eliminated from the third equation by

$$
\left(0.04 R_{2}+R_{3}\right) \rightarrow\left(R_{3}\right)
$$

Resulting in

$$
\left(\begin{array}{ccc}
10 & -7 & 0 \\
0 & 2.5 & 5 \\
0 & 0 & 6.2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
7 \\
2.5 \\
6.2
\end{array}\right)
$$

This produces an Upper Triangular Matrix
The solution is obtained by back substitution, so

$$
6.2 x_{3}=6.2 \quad \text { or } \quad x_{3}=1
$$

The next equation is

$$
2.5 x_{2}+5(1)=2.5 \quad \text { or } \quad x_{2}=-1
$$

The final equation is

$$
10 x_{1}-7(-1)=7 \quad \text { or } \quad x_{1}=0
$$

Example

4 of 4

Example: This set of operations can be compactly written in matrix notation
$L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.3 & -0.04 & 1\end{array}\right) \quad U=\left(\begin{array}{ccc}10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2\end{array}\right) \quad P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
where U is the final coefficient matrix, L contains the multipliers used in the elimination, and P describes all the pivoting

With these matrices,

$$
L U=P A,
$$

which means the original coefficient matrix is expressed in terms of products of matrices with simpler structures

LU Factorization Example

Example Reviewed: Return to the steps of Gaussian Elimination in previous example, starting with

$$
\left(0.3 R_{1}+R_{2}\right) \rightarrow\left(R_{2}\right)
$$

This can be written

$$
M_{1} A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
10 & -7 & 0 \\
-3 & 2 & 6 \\
5 & -1 & 5
\end{array}\right)=\left(\begin{array}{ccc}
10 & -7 & 0 \\
0 & -0.1 & 6 \\
5 & -1 & 5
\end{array}\right)
$$

Similarly, $\left(-0.5 R_{1}+R_{3}\right) \rightarrow\left(R_{3}\right)$ can be written

$$
M_{2}\left(M_{1} A\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-0.5 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
10 & -7 & 0 \\
0 & -0.1 & 6 \\
5 & -1 & 5
\end{array}\right)=\left(\begin{array}{ccc}
10 & -7 & 0 \\
0 & -0.1 & 6 \\
0 & 2.5 & 5
\end{array}\right)
$$

LU Factorization Example

2 of 6

Example Reviewed: Exchanging rows uses a permutation matrix, P_{23}

$$
\left(R_{2}\right) \longleftrightarrow\left(R_{3}\right)
$$

This can be written

$$
P_{23}\left(M_{2} M_{1} A\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
10 & -7 & 0 \\
0 & -0.1 & 6 \\
0 & 2.5 & 5
\end{array}\right)=\left(\begin{array}{ccc}
10 & -7 & 0 \\
0 & 2.5 & 5 \\
0 & -0.1 & 6
\end{array}\right)
$$

Similarly, $\left(0.04 R_{2}+R_{3}\right) \rightarrow\left(R_{3}\right)$ can be written
$M_{3}\left(P_{23} M_{2} M_{1} A\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.04 & 1\end{array}\right)\left(\begin{array}{ccc}10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.1 & 6\end{array}\right)=\left(\begin{array}{ccc}10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2\end{array}\right)$
Thus,

$$
U=M_{3} P_{23} M_{2} M_{1} A
$$

LU Factorization Example

Example Reviewed: We are solving

$$
A x=b,
$$

SO

$$
M_{3} P_{23} M_{2} M_{1} A x=M_{3} P_{23} M_{2} M_{1} b \quad \text { or } \quad U x=y,
$$

which is easily solved by back substitution
This implies that

$$
U=M_{3} P_{23} M_{2} M_{1} A \quad \text { or } \quad A=M_{1}^{-1} M_{2}^{-1} P_{23}^{-1} M_{3}^{-1} U=L_{1} L_{2} P_{23}^{-1} L_{3} U
$$

However,

$$
M_{1}^{-1}=L_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-0.3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

LU Factorization Example

Example Reviewed: Similarly, $M_{2}^{-1}=L_{2}$ and $M_{3}^{-1}=L_{3}$ with

$$
L_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-0.5 & 0 & 1
\end{array}\right) \quad \text { and } \quad L_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -0.04 & 1
\end{array}\right)
$$

The permutation matrix is its own inverse, so

$$
P_{23}=P_{23}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \text { or } \quad P_{23} \cdot P_{23}=I
$$

Consider

$$
L P_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 0 & 1 \\
l_{31} & 1 & 0
\end{array}\right)
$$

LU Factorization Example

5 of 6

Example Reviewed: Multiplying by the permutation matrix

$$
P_{23} L P_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
l_{31} & 1 & 0 \\
l_{21} & 0 & 1
\end{array}\right)
$$

Since $I=P_{23}^{2}$ and $P_{23}^{-1}=P_{23}$, we have

$$
\begin{aligned}
A= & P_{23}^{2} A=L_{1} L_{2} P_{23} L_{3} U \\
& P_{23} A=\left(P_{23} L_{1} L_{2} P_{23}\right) L_{3} U \\
& P_{23} A=L U
\end{aligned}
$$

where

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 1 & 0 \\
-0.3 & 0.04 & 1
\end{array}\right)
$$

LU Factorization Example

Example Reviewed: Multiplying by the permutation matrix

$$
P_{23} L P_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
l_{31} & 1 & 0 \\
l_{21} & 0 & 1
\end{array}\right)
$$

Since $I=P_{23}^{2}$ and $P_{23}^{-1}=P_{23}$, we have

$$
\begin{aligned}
A= & P_{23}^{2} A=L_{1} L_{2} P_{23} L_{3} U \\
& P_{23} A=\left(P_{23} L_{1} L_{2} P_{23}\right) L_{3} U \\
& P_{23} A=L U
\end{aligned}
$$

where

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 1 & 0 \\
-0.3 & 0.04 & 1
\end{array}\right)
$$

General LU Factorization

The previous Example was a 3×3 matrix, so how does this generalize for solving, $A x=b$, with $A n \times n$?

The process, described in the algorithm earlier, can be accomplished with matrices as described above in the $L U$ factorization:

$$
P A=L U
$$

(1) Examine the diagonal elements, $k=1 . . n$, successively
(2) Find the largest element in magnitude below each of these diagonal elements and perform a pivoting
(3) Use the diagonal element to pivot and eliminate all other elements below this diagonal element
(a) Repeat the process until $k=n$

General LU Factorization

In $L U$ Factorization from a matrix perspective we seek

$$
P A=L U, \quad \text { with } \quad P=P_{n-1} P_{n-2} \cdot \ldots \cdot P_{2} P_{1}
$$

where P_{k} switches the $k^{t h}$ row with some row beneath it, selecting the largest element in the $k^{t h}$ column below in the transformed matrix
Recall that $P_{k}^{-1}=P_{k}$
Also, created elimination matrices, M_{k}, which perform row operations to eliminate elements in the $k^{\text {th }}$ column below the diagonal element

The matrix M_{k} has ones on the diagonal, and subdiagonal elements are ≤ 1
Need to build a sequence of matrices P_{k} and M_{k} such that

$$
M_{n-1} P_{n-1} M_{n-2} P_{n-2} \cdot \ldots \cdot M_{1} P_{1} A=U
$$

where U is an upper diagonal matrix

General $L U$ Factorization

We need to create the appropriate lower diagonal matrix, L, from our equation

$$
M_{n-1} P_{n-1} M_{n-2} P_{n-2} \cdot \ldots \cdot M_{1} P_{1} A=U
$$

Define matrices M_{k}^{\prime} as follows:

$$
\begin{aligned}
M_{n-1}^{\prime} & =M_{n-1} \\
M_{n-2}^{\prime} & =P_{n-1} M_{n-2} P_{n-1}^{-1} \\
M_{n-3}^{\prime} & =P_{n-1} P_{n-2} M_{n-3} P_{n-2}^{-1} P_{n-1}^{-1} \\
\ldots & =\cdots \\
M_{k}^{\prime} & =P_{n-1} \cdots P_{k+1} M_{k} P_{k+1}^{-1} \cdots P_{n-1}^{-1},
\end{aligned}
$$

where each M_{k}^{\prime} has the same structure as M_{k} with the subdiagonal permuted
Minimal work shows

$$
M_{n-1} P_{n-1} \cdots M_{1} P_{1}=M_{n-1}^{\prime} \cdots M_{1}^{\prime} \cdot P_{n-1} \cdots P_{1}
$$

General $L U$ Factorization

Thus,

$$
\begin{aligned}
M_{n-1} P_{n-1} M_{n-2} P_{n-2} \cdot \ldots \cdot M_{1} P_{1} A & =U \\
\left(M_{n-1}^{\prime} \cdots M_{1}^{\prime}\right) \cdot\left(P_{n-1} \cdots P_{1}\right) A & =U \\
P A & =L U,
\end{aligned}
$$

where

$$
P=P_{n-1} \cdots P_{1} \quad \text { and } \quad L=\left(M_{n-1}^{\prime} \cdots M_{1}^{\prime}\right)^{-1}
$$

Since each M_{k}^{\prime} is a unit lower diagonal matrix, then the product $M_{n-1}^{\prime} \cdots M_{1}^{\prime}$ forms a unit lower diagonal matrix, which by choice has all subdiagonal elements ≤ 1

The inverse $L=\left(M_{n-1}^{\prime} \cdots M_{1}^{\prime}\right)^{-1}$ is easily found by simply negating the subdiagonal entries, completing our General $L U$ Factorization

MatLab Program for $L U$ Factorization

Program by Cleve Moler for $L U$ Factorization of a matrix A, which starts by finding the size of A

```
1 function [L,U,P] = lutx(A)
2 ~ \% L U T X ~ T r i a n g u l a r ~ f a c t o r i z a t i o n , ~ t e x t b o o k ~ v e r s i o n ~
3% [L,U, P] = lutx(A) produces a unit lower ...
    triangular matrix L,
4% an upper triangular matrix U, and a ...
    permutation vector p,
5 % So that L*U = A (P,:)
6
    % Copyright 2014 Cleve Moler
    % Copyright 2014 The MathWorks, Inc.
9
10 [n,n] = sizee(A);
11 P = (1:n)';
```


MatLab Program for $L U$ Factorization

Find the largest element for pivoting

```
13 for k = 1:n-1
14
15 % Find index of largest element below diagonal ...
    in k-th column
    [r,m] = max(abs (A (k:n,k)));
    m=m+k-1;
    % Skip elimination if column is zero
    if (A (m,k) f 0)
```


MatLab Program for $L U$ Factorization

Pivot about $\left\{a_{k k}\right\}$

```
22
23
24
25
26
27
28
29
30
31
32
33
34
35 end
36 end
```


MatLab Program for $L U$ Factorization

Produce the output matrices, L and U

```
38 % Separate result
39 L = tril(A,-1) + eye(n,n);
40 U = triu(A);
```

Most of the time of execution is performed on the line $A(i, j)=A(i, j)-A(i, k) * A(k, j)$;
At the $k^{\text {th }}$ step, matrix multiplications are performed to create zeros below the diagonal and an $(n-k) \times(n-k)$ submatrix in the lower right corner

This would require a double nested loop for a non-vector computer language

MatLab Program for Back Substitution

Back Substitution completes the solution of $A x=b$

First check for special matrix forms

```
function x = bslashtx(A,b)
% BSLASHTX Solve linear system (backslash)
% x = bslashtx(A,b) solves A*x = b
[n,n] = size(A);
if isequal(triu(A,1), zeros(n,n))
    % Lower triangular
    x = forward(A,b);
    return
elseif isequal(tril(A,-1), zeros(n,n))
    % Upper triangular
    x = backsubs (A,b);
    return
```


MatLab Program for Back Substitution

Continue special matrix forms

```
14 elseif isequal(A,A')
15 [R,fail] = chol(A);
16 if \negfail
17 % Positive definite
18 y = forward( (',b) ;
19 x = backsubs (R,y);
20 return
21 end
22 end
```


MatLab Program for Back Substitution

Use the previous $L U$ Factorization to perform Back Substitution

```
23 % Triangular factorization
24 [L,U,P] = lutx(A);
25
26 % Permutation and forward elimination
27 y = forward(L,b(p));
28
29 % Back substitution
30 x = backsubs(U,Y);
```

The program first calls the $L U$ Factorization, then calls on two other subroutines to use the permutation, then Back Substitute

MatLab Program for Back Substitution

The permutation is performed by the line
$\mathrm{y}=$ forward (L, b(p));
with the code

```
1 function x = forward(L, x)
2 % FORWARD. Forward elimination.
3 % For lower triangular L, x = forward(L,b) solves ...
    L*x = b.
4 [n,n] = size(L);
5 x(1) = x(1)/L(1,1);
6 for k = 2:n
7 j = 1:k-1;
8 x(k) = (x(k) - L(k,j)*x(j))/L(k,k);
9 end
```


MatLab Program for Back Substitution

The Back Substitution is called in the line
$\mathrm{x}=$ backsubs (U, y);

```
1 function x = backsubs(U, x)
2 % BACKSUBS. Back substitution.
3 % For upper triangular U, X = backsubs(U,b) ...
    solves U*x = b.
4 [n,n] = size(U);
5 x (n) = x (n)/U(n,n);
6 for k = n-1:-1:1
7 j = k+1:n;
8 x(k) = (x(k) - U(k,j)*x(j))/U(k,k);
9 end
```

This gives the value of x and completes the solution of $A x=b$

