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Applications

Applications and Matrices: Widely used in many fields

Kirchhoff’s Law: Matrices used to find currents in an electric circuit

At any node in an electrical circuit, the sum of currents flowing
into that node is equal to the sum of currents flowing out of that
node

The directed sum of the electrical potential differences (voltage)
around any closed network is zero
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Kirchhoff’s Law

Kirchhoff’s Law applied to the circuit above gives the system of
equations

5i1 + 5i2 = V

i3 − i4 − i5 = 0

2i4 − 3i5 = 0

i1 − i2 − i3 = 0

5i2 − 7i3 − 2i4 = 0

or
AI = B

with I = [i1, i2, i3, i4, i5]T , B = [V, 0, 0, 0, 0]T , and

A =


5 5 0 0 0
0 0 1 −1 −1
0 0 0 2 −3
1 −1 −1 0 0
0 5 −7 −2 0


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Kirchhoff’s Law – MatLab Solution

From above, we want to solve AI = b or
5 5 0 0 0
0 0 1 −1 −1
0 0 0 2 −3
1 −1 −1 0 0
0 5 −7 −2 0




i1
i2
i3
i4
i5

 =


V
0
0
0
0


If V = 1.5, then MatLab gives the solution

i1
i2
i3
i4
i5

 =


0.185047
0.114953
0.070093
0.042056
0.028037


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MatLab Solution (Easy) – AI = b

There are multiple ways where MatLab solves the above system

AI = b

A\b

inv(A)*b

linsolve(A,b)

rref([A,b])

Are all of these calculations the same?

Which methods are more efficient and why?

How does MatLab perform these calculations and what problems
arise?
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Linear System

Linear System: Operations to simplify

E1 : a11x1 + a12x2 + ...+ a1nxn = b1

E2 : a21x1 + a22x2 + ...+ a2nxn = b2
...

En : an1x1 + an2x2 + ...+ annxn = bn

Ei can be multiplied by a nonzero constant λ with the resulting
equation used in place of Ei (Denoted (λEi)→ (Ei).)

Ej can be multiplied by any constant λ and added to Ei with
the resulting equation used in place of Ei (Denoted
(Ei + λEj)→ (Ei).)

Ei and Ej can be transposed in order. (Denoted (Ei)←→ (Ej).)
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Solving Ax = b

Let A be an n× n matrix and x and b be n× 1 vectors.

Consider the system of linear equations given by

Ax = b

The solution set x satisfies one of the following:

1 The system has a single unique solution

2 The system has infinitely many solutions

3 The system has no solution

Note that the system has a unique solution if and only if
det(A) 6= 0 or equivalently A is nonsingular (it has an inverse)
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Gaussian Elimination

Elimination Process: We want to describe the step-by-step process
to solve

E1 : a11x1 + a12x2 + ...+ a1nxn = a1,n+1

E2 : a21x1 + a22x2 + ...+ a2nxn = a2,n+1

...

En : an1x1 + an2x2 + ...+ annxn = an,n+1

Begin by creating the augmented matrix A = [aij ] for 1 ≤ i ≤ n
and 1 ≤ j ≤ n+ 1

We desire a programmable process for creating an equivalent
system with an upper triangular matrix, which is then readily
solved by backward substitution
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Gaussian Elimination

We take the original n× n linear system and create the
augmented matrix A = [aij ] for 1 ≤ i ≤ n and 1 ≤ j ≤ n+ 1

Algorithm (Gaussian Elimination)

For i = 1, ..., n− 1, do the next 3 steps

1 Let p be the smallest integer with i ≤ p ≤ n and api 6= 0.
If no integer p can be found, then OUTPUT: no unique
solution exists and STOP

2 If p 6= i, then perform (Ep)←→ (Ei) (pivoting)
3 For j = i+ 1, ..., n do the following:

1 Set mji = aji/aii

2 Perform (Ej −mjiEi)→ (Ej) (producing a leading zero
element in Row j)

4 If ann = 0, then OUTPUT: no unique solution exists
and STOP

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Linear Algebra: Part A —
(10/42)



Applications
Gaussian Elimination

LU Factorization

Solving Ax = b
Partial Pivoting

Back Substitution

The previous algorithm produces an augmented matrix with the
first n columns creating an upper triangular matrix, U = [uij ]

Algorithm (Back Substitution)

Set xn = un,n+1/unn

For i = n− 1, ..., 1 set

xi =
1

uii

ui,n+1 −
n∑

j=i+1

uijxj


OUTPUT (x1, ..., xn)
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Gaussian Elimination Operations

The previous algorithms solve

Ax = b

There were numerous Multiplications/divisions and
Additions/subtractions in the Gaussian elimination and back
substitution

These calculations are readily counted

Multiplications/divisions total

n3

3
+ n2 − n

3

Additions/subtractions total

n3

3
+
n2

2
− 5n

6

which means that arithmetic operations are proportional to n3,
the dimension of the system
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Partial Pivoting

After pivoting our Algorithm uses the new pivot element to
produce 0 below in the remaining rows

The operation is
mji = aji/aii

If aii is small compared to aji, then mji � 1, which can introduce
significant round-off error

Further computations compound the original error

In addition, the back substitution using the small aii also
introduces more error, which means that the round-off error
dominates the calculations

Pivoting Strategy: Row exchanges are done to reduce round-off
error
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Partial Pivoting – Example

Example: Consider the following system of equations:

E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78

Apply Gaussian elimination to this system with 4-digit arithmetic
with rounding and compare to the exact solution, which is x1 = 10.00
and x2 = 1.000

Solution: The first pivot element is a11 = 0.003000, which is small,
and its multiplier is

m21 =
5.291

0.003000
= 1763.666̄

rounding to m21 = 1764, which is large
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Partial Pivoting – Example

Example (cont): Performing (E2 −m21E1)→ (E2) with
appropriate rounding gives

0.003000x1 + 59.14x2 = 59.17

−104300x2 ≈ −104400

while the exact system is

0.003000x1 + 59.14x2 = 59.17

−104309.376̄x2 = −104309.376̄

The disparity in m21a13 and a23 has introduced round-off error,
but it has not been propagated
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Partial Pivoting – Example

Example (cont): Back substitution yields

x2 ≈ 1.001,

which is close to the actual value x2 = 1.000

However, the small pivot a11 = 0.003000 gives

x1 =
59.17− (59.14)(1.001)

0.003000
= −10.00,

while the actual value is x1 = 10.00

The round-off error comes from the small error of 0.001 multiplied
by

59.14

0.003000
≈ 20000

For this system is is very easy to see where the error occurs and
propagates, but it becomes much harder in larger systems
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Partial Pivoting

Partial Pivoting: To avoid the difficulty in the previous Example,
we select the largest magnitude element in the column below the
diagonal and perform a pivoting with this row

Specifically, determine the smallest p ≥ k such that

|apk| = max
k≤i≤n

|aik|

and perform (Ek)←→ (Ep)

If this is done on the previous Example, then the 4-digit rounding
answer agrees with the exact answer
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Gaussian Elimination with Partial Pivoting

To perform Gaussian Elimination with Partial Pivoting, we use
the previous Gaussian Elimination and Back substitution
algorithms with the replacement of the first step by the following:

Algorithm (Gaussian Elimination with Partial Pivoting)

1 Find the smallest p ≥ k such that

|apk| = max
k≤i≤n

|aik|.

If |apk| = 0, then OUTPUT: no unique solution exists and
STOP

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Linear Algebra: Part A —
(18/42)



Applications
Gaussian Elimination

LU Factorization

Solving Ax = b
Partial Pivoting

Gaussian Elimination with Partial Pivoting

This Gaussian Elimination with Partial Pivoting procedure is
relatively easy to code and provides a “reasonably” stable algorithm
for solving Ax = b

Further improvements with additional costs that are O(n3) can be
accomplished by pivoting both rows and columns

This strategy is recommended for systems where accuracy is essential
and the additional execution time is justified (roughly doubles the
execution time)
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Example 1 of 4

Example: Consider the following system:

10x1 − 7x2 = 7

−3x1 + 2x2 + 6x3 = 4

5x1 − x2 + 5x3 = 6

This is written as the matrix equation 10 −7 0
−3 2 6
5 −1 5

 x1
x2
x3

 =

 7
4
6


The first step is accomplished by adding 0.3 times the first equation
to the second equation and subtracting 0.5 times the first equation
from the third equation:

(0.3R1 +R2)→ (R2) and (−0.5R1 +R3)→ (R3)
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Example 2 of 4

Example: This operation is the first pivot

(0.3R1 +R2)→ (R2) and (−0.5R1 +R3)→ (R3)

Resulting in  10 −7 0
0 −0.1 6
0 2.5 5

 x1
x2
x3

 =

 7
6.1
2.5


The second pivot could perform the operation (25R2 +R3)→ (R3),
but in general, we select the largest coefficient and perform a
pivoting (minimizing roundoff error), which in this case, is

(R3)←→ (R2)

resulting in  10 −7 0
0 2.5 5
0 −0.1 6

 x1
x2
x3

 =

 7
2.5
6.1


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Example 3 of 4

Example: Now the second pivot is 2.5, and x2 is eliminated from
the third equation by

(0.04R2 +R3)→ (R3)

Resulting in  10 −7 0
0 2.5 5
0 0 6.2

 x1
x2
x3

 =

 7
2.5
6.2


This produces an Upper Triangular Matrix

The solution is obtained by back substitution, so

6.2x3 = 6.2 or x3 = 1

The next equation is

2.5x2 + 5(1) = 2.5 or x2 = −1

The final equation is

10x1 − 7(−1) = 7 or x1 = 0
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Example 4 of 4

Example: This set of operations can be compactly written in matrix
notation

L =

 1 0 0
0.5 1 0
−0.3 −0.04 1

 U =

 10 −7 0
0 2.5 5
0 0 6.2

 P =

 1 0 0
0 0 1
0 1 0


where U is the final coefficient matrix, L contains the multipliers

used in the elimination, and P describes all the pivoting

With these matrices,
LU = PA,

which means the original coefficient matrix is expressed in terms of
products of matrices with simpler structures
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LU Factorization Example 1 of 6

Example Reviewed: Return to the steps of Gaussian
Elimination in previous example, starting with

(0.3R1 +R2)→ (R2)

This can be written

M1A =

 1 0 0
0.3 1 0
0 0 1

 10 −7 0
−3 2 6
5 −1 5

 =

 10 −7 0
0 −0.1 6
5 −1 5


Similarly, (−0.5R1 +R3)→ (R3) can be written

M2(M1A) =

 1 0 0
0 1 0

−0.5 0 1

 10 −7 0
0 −0.1 6
5 −1 5

 =

 10 −7 0
0 −0.1 6
0 2.5 5


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LU Factorization Example 2 of 6

Example Reviewed: Exchanging rows uses a permutation
matrix, P23

(R2)←→ (R3)

This can be written

P23(M2M1A) =

 1 0 0
0 0 1
0 1 0

 10 −7 0
0 −0.1 6
0 2.5 5

 =

 10 −7 0
0 2.5 5
0 −0.1 6


Similarly, (0.04R2 +R3)→ (R3) can be written

M3(P23M2M1A) =

 1 0 0
0 1 0
0 0.04 1

 10 −7 0
0 2.5 5
0 −0.1 6

 =

 10 −7 0
0 2.5 5
0 0 6.2


Thus,

U = M3P23M2M1A
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LU Factorization Example 3 of 6

Example Reviewed: We are solving

Ax = b,

so
M3P23M2M1Ax = M3P23M2M1b or Ux = y,

which is easily solved by back substitution
This implies that

U = M3P23M2M1A or A = M−1
1 M−1

2 P−1
23 M−1

3 U = L1L2P
−1
23 L3U

However,

M−1
1 = L1 =

 1 0 0
0.3 1 0
0 0 1

−1

=

 1 0 0
−0.3 1 0
0 0 1


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LU Factorization Example 4 of 6

Example Reviewed: Similarly, M−12 = L2 and M−13 = L3 with

L2 =

 1 0 0
0 1 0

−0.5 0 1

 and L3 =

 1 0 0
0 1 0
0 −0.04 1


The permutation matrix is its own inverse, so

P23 = P−1
23 =

 1 0 0
0 0 1
0 1 0

 or P23 · P23 = I

Consider

LP23 =

 1 0 0
l21 1 0
l31 0 1

 1 0 0
0 0 1
0 1 0

 =

 1 0 0
l21 0 1
l31 1 0


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LU Factorization Example 5 of 6

Example Reviewed: Multiplying by the permutation matrix

P23LP23 =

 1 0 0
l31 1 0
l21 0 1


Since I = P 2

23 and P−123 = P23, we have

A = P 2
23A = L1L2P23L3U

P23A = (P23L1L2P23)L3U

P23A = LU

where

L =

 1 0 0
0.5 1 0
−0.3 0.04 1


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LU Factorization Example 6 of 6

Example Reviewed: Multiplying by the permutation matrix

P23LP23 =

 1 0 0
l31 1 0
l21 0 1


Since I = P 2

23 and P−123 = P23, we have

A = P 2
23A = L1L2P23L3U

P23A = (P23L1L2P23)L3U

P23A = LU

where

L =

 1 0 0
0.5 1 0
−0.3 0.04 1


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General LU Factorization

The previous Example was a 3× 3 matrix, so how does this
generalize for solving, Ax = b, with A n× n?

The process, described in the algorithm earlier, can be accomplished
with matrices as described above in the LU factorization:

PA = LU

1 Examine the diagonal elements, k = 1..n, successively

2 Find the largest element in magnitude below each of these
diagonal elements and perform a pivoting

3 Use the diagonal element to pivot and eliminate all other
elements below this diagonal element

4 Repeat the process until k = n
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General LU Factorization

In LU Factorization from a matrix perspective we seek

PA = LU, with P = Pn−1Pn−2 · ... · P2P1,

where Pk switches the kth row with some row beneath it, selecting the
largest element in the kth column below in the transformed matrix

Recall that P−1k = Pk

Also, created elimination matrices, Mk, which perform row
operations to eliminate elements in the kth column below the diagonal
element

The matrix Mk has ones on the diagonal, and subdiagonal elements
are ≤ 1

Need to build a sequence of matrices Pk and Mk such that

Mn−1Pn−1Mn−2Pn−2 · ... ·M1P1A = U,

where U is an upper diagonal matrix
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General LU Factorization

We need to create the appropriate lower diagonal matrix, L, from
our equation

Mn−1Pn−1Mn−2Pn−2 · ... ·M1P1A = U.

Define matrices M ′
k as follows:

M ′
n−1 = Mn−1

M ′
n−2 = Pn−1Mn−2P

−1
n−1

M ′
n−3 = Pn−1Pn−2Mn−3P

−1
n−2P

−1
n−1

... = ...

M ′
k = Pn−1 · · ·Pk+1MkP

−1
k+1 · · ·P

−1
n−1,

where each M ′
k has the same structure as Mk with the subdiagonal

permuted

Minimal work shows

Mn−1Pn−1 · · ·M1P1 = M ′
n−1 · · ·M ′

1 · Pn−1 · · ·P1
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General LU Factorization

Thus,

Mn−1Pn−1Mn−2Pn−2 · ... ·M1P1A = U

(M ′
n−1 · · ·M ′

1) · (Pn−1 · · ·P1)A = U

PA = LU,

where

P = Pn−1 · · ·P1 and L = (M ′
n−1 · · ·M ′

1)−1

Since each M ′
k is a unit lower diagonal matrix, then the product

M ′
n−1 · · ·M ′

1 forms a unit lower diagonal matrix, which by choice
has all subdiagonal elements ≤ 1

The inverse L = (M ′
n−1 · · ·M ′

1)−1 is easily found by simply negating
the subdiagonal entries, completing our General LU Factorization
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Program by Cleve Moler for LU Factorization of a matrix A, which
starts by finding the size of A

1 function [L,U,p] = lutx(A)
2 %LUTX Triangular factorization, textbook version
3 % [L,U,p] = lutx(A) produces a unit lower ...

triangular matrix L,
4 % an upper triangular matrix U, and a ...

permutation vector p,
5 % so that L*U = A(p,:)
6

7 % Copyright 2014 Cleve Moler
8 % Copyright 2014 The MathWorks, Inc.
9

10 [n,n] = size(A);
11 p = (1:n)';
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MatLab Program for LU Factorization

Find the largest element for pivoting

13 for k = 1:n-1
14

15 % Find index of largest element below diagonal ...
in k-th column

16 [r,m] = max(abs(A(k:n,k)));
17 m = m+k-1;
18

19 % Skip elimination if column is zero
20 if (A(m,k) 6= 0)
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MatLab Program for LU Factorization

Pivot about {akk}

22 % Swap pivot row
23 if (m 6= k)
24 A([k m],:) = A([m k],:);
25 p([k m]) = p([m k]);
26 end
27

28 % Compute multipliers
29 i = k+1:n;
30 A(i,k) = A(i,k)/A(k,k);
31

32 % Update the remainder of the matrix
33 j = k+1:n;
34 A(i,j) = A(i,j) - A(i,k)*A(k,j);
35 end
36 end
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MatLab Program for LU Factorization

Produce the output matrices, L and U

38 % Separate result
39 L = tril(A,-1) + eye(n,n);
40 U = triu(A);

Most of the time of execution is performed on the line
A(i,j)= A(i,j)- A(i,k)*A(k,j);

At the kth step, matrix multiplications are performed to create zeros
below the diagonal and an (n− k)× (n− k) submatrix in the lower
right corner

This would require a double nested loop for a non-vector computer
language
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Back Substitution completes the solution of Ax = b

First check for special matrix forms

1 function x = bslashtx(A,b)
2 % BSLASHTX Solve linear system (backslash)
3 % x = bslashtx(A,b) solves A*x = b
4

5 [n,n] = size(A);
6 if isequal(triu(A,1),zeros(n,n))
7 % Lower triangular
8 x = forward(A,b);
9 return

10 elseif isequal(tril(A,-1),zeros(n,n))
11 % Upper triangular
12 x = backsubs(A,b);
13 return
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Continue special matrix forms

14 elseif isequal(A,A')
15 [R,fail] = chol(A);
16 if ¬fail
17 % Positive definite
18 y = forward(R',b);
19 x = backsubs(R,y);
20 return
21 end
22 end
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Use the previous LU Factorization to perform Back Substitution

23 % Triangular factorization
24 [L,U,p] = lutx(A);
25

26 % Permutation and forward elimination
27 y = forward(L,b(p));
28

29 % Back substitution
30 x = backsubs(U,y);

The program first calls the LU Factorization, then calls on two
other subroutines to use the permutation, then Back Substitute
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The permutation is performed by the line
y = forward(L,b(p));
with the code

1 function x = forward(L,x)
2 % FORWARD. Forward elimination.
3 % For lower triangular L, x = forward(L,b) solves ...

L*x = b.
4 [n,n] = size(L);
5 x(1) = x(1)/L(1,1);
6 for k = 2:n
7 j = 1:k-1;
8 x(k) = (x(k) - L(k,j)*x(j))/L(k,k);
9 end

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Linear Algebra: Part A —
(41/42)



Applications
Gaussian Elimination

LU Factorization

Example
General LU Factorization
MatLab Program for solving Ax = b

MatLab Program for Back Substitution

The Back Substitution is called in the line
x = backsubs(U,y);

1 function x = backsubs(U,x)
2 % BACKSUBS. Back substitution.
3 % For upper triangular U, x = backsubs(U,b) ...

solves U*x = b.
4 [n,n] = size(U);
5 x(n) = x(n)/U(n,n);
6 for k = n-1:-1:1
7 j = k+1:n;
8 x(k) = (x(k) - U(k,j)*x(j))/U(k,k);
9 end

This gives the value of x and completes the solution of Ax = b
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