[>

Below we see how to enter a function in Maple.
$>f:=x \rightarrow \cos (\cos (x)) ;$

$$
\begin{equation*}
f:=x \rightarrow \cos (\cos (x)) \tag{1}
\end{equation*}
$$

The statement below integrates the function from 0 to $\mathrm{Pi} / 2$. The indefinite integral (which cannot be done in this case) would simply have an x after the comma.
> $\operatorname{int}\left(f(x), x=0 . . \frac{\mathrm{Pi}}{2}\right)$;

$$
\begin{equation*}
\frac{1}{2} \pi \operatorname{BesselJ}(0,1) \tag{2}
\end{equation*}
$$

The evalf(\%) command evaluates the previous expression (\%) in floating point arithmetic,
then stores the value in F .
$\overline{>} F:=\operatorname{evalf}(\%) ;$

$$
\begin{equation*}
F:=1.201969716 \tag{3}
\end{equation*}
$$

The series command allows you to produce a Taylor series. The $x=0$ says that this series is in x and is centered at 0 . The 10 at the end gives the number of terms in the series. Equivalently, you can use the taylor command. The evalf command obtains decimal coefficients.

$$
\begin{align*}
& {\left[\begin{array}{l}
>\operatorname{series}(f(x), x=0,10) ; \\
\cos (1)+\frac{1}{2} \sin (1) x^{2}+\left(-\frac{1}{8} \cos (1)-\frac{1}{24} \sin (1)\right) x^{4}+\left(\frac{1}{48} \cos (1)-\frac{7}{360} \sin (1)\right) x^{6} \\
\quad+\left(\frac{1}{960} \cos (1)+\frac{209}{40320} \sin (1)\right) x^{8}+\mathrm{O}\left(x^{10}\right)
\end{array}\right.} \\
& {\left[\begin{array}{l}
>\operatorname{taylor}(f(x), x=0,10) ; \\
\cos (1)+\frac{1}{2} \sin (1) x^{2}+\left(-\frac{1}{8} \cos (1)-\frac{1}{24} \sin (1)\right) x^{4}+\left(\frac{1}{48} \cos (1)-\frac{7}{360} \sin (1)\right) x^{6} \\
\quad+\left(\frac{1}{960} \cos (1)+\frac{209}{40320} \sin (1)\right) x^{8}+O\left(x^{10}\right)
\end{array}\right.} \tag{4}\\
& \begin{array}{l}
>\text { evalf }(\%) ; \\
0.5403023059+0.4207354924 x^{2}-0.1025990793 x^{4}-0.00510563777 x^{6} \\
\quad+0.004924606465 x^{8}+O\left(x^{10}\right)
\end{array}
\end{align*}
$$

We can readily convert this into a polynomial by either copying the terms we want into a new function or using the convert function. The convert command produces an expression P, to which we use the unapply command to create a function of x.

$$
\left.\begin{array}{l}
{\left[\begin{array}{rl}
> & P:=\text { convert }(\%, \text { polynom }) ; P 8:=\text { unapply }(P, x) ; \\
P:= & 0.5403023059+0.4207354924 x^{2}-0.1025990793 x^{4}-0.00510563777 x^{6} \\
& +0.004924606465 x^{8}
\end{array}\right.} \\
P 8:=x \rightarrow 0.5403023059+0.4207354924 x^{2}-0.1025990793 x^{4}-0.00510563777 x^{6} \\
\\
\quad+0.004924606465 x^{8}
\end{array}\right] \begin{aligned}
> & P 8(1) ; \tag{7}
\end{aligned}
$$

We can chain these commands together to obtain the quadratic we are seeking with ; separating the commands.
$\operatorname{series}(f(x), x=0,3) ; \operatorname{evalf}(\%)$;
$P:=$ convert $(\%$, polynom $) ; P 2:=$ unapply $(P, x) ;$

$$
\begin{gather*}
\cos (1)+\frac{1}{2} \sin (1) x^{2}+\mathrm{O}\left(x^{4}\right) \\
0.5403023059+0.4207354924 x^{2}+\mathrm{O}\left(x^{4}\right) \\
P:=0.5403023059+0.4207354924 x^{2} \\
P 2:=x \rightarrow 0.5403023059+0.4207354924 x^{2} \tag{9}
\end{gather*}
$$

We integrate this second order polynomial over the interval 0 to $\mathrm{Pi} / 2$ and find the $\%$ error compared to the actual value.

$$
\left[>I P:=\operatorname{int}\left(P 2(x), x=0 . . \frac{\mathrm{Pi}}{2}\right) ; \frac{100 \cdot(I P-F)}{F} ;\right.
$$

We can individually find the derivatives to compute the Taylor coefficients with the diff command. The $x \$ 2$ means taking the 2 nd derivative.
$>\operatorname{diff}(f(x), x)$;

$$
\begin{equation*}
\sin (\cos (x)) \sin (x) \tag{11}
\end{equation*}
$$

$>\operatorname{diff}(f(x), x \$ 2)$;

$$
\begin{equation*}
-\cos (\cos (x)) \sin (x)^{2}+\sin (\cos (x)) \cos (x) \tag{12}
\end{equation*}
$$

Next we want to obtain the Taylor's series about $x 0=\mathrm{Pi} / 4$ and show how to produce LaTeX code for the result.

$$
\begin{align*}
& >x 0:=\frac{\mathrm{Pi}}{4} ; \\
& \quad \begin{aligned}
&>0:=\frac{1}{4} \pi \\
& \cos \left(\frac{1}{2} \sqrt{2}\right)+\frac{1}{2} \operatorname{series}(f(x), x=x 0,10) ; \\
&\left.+\frac{1}{4} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\right) \sqrt{2}\left(x-\frac{1}{4} \pi\right)+\left(-\frac{1}{4} \cos \left(\frac{1}{2} \sqrt{2}\right)\right. \\
&\left.-\frac{1}{8} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\right)\left(x-\frac{1}{4} \pi\right)^{3}+\left(\frac{1}{32} \cos \left(\frac{1}{2} \sqrt{2}\right)\right. \\
&\left.-\frac{1}{12} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\right)\left(x-\frac{1}{4} \pi\right)^{4}+\left(\frac{1}{12} \cos \left(\frac{1}{2} \sqrt{2}\right)\right. \\
&\left.-\frac{1}{192} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\right)\left(x-\frac{1}{4} \pi\right)^{5}+\left(\frac{1}{128} \cos \left(\frac{1}{2} \sqrt{2}\right)\right. \\
&\left.+\frac{139}{5760} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\right)\left(x-\frac{1}{4} \pi\right)^{6}+\left(-\frac{79}{5760} \cos \left(\frac{1}{2} \sqrt{2}\right)\right. \\
&\left.+\frac{607}{80640} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\right)\left(x-\frac{1}{4} \pi\right)^{7}+\left(-\frac{715}{129024} \cos \left(\frac{1}{2} \sqrt{2}\right)\right. \\
&\left.-\frac{11}{2688} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\right)\left(x-\frac{1}{4} \pi\right)^{8}+\left(\frac{19}{13440} \cos \left(\frac{1}{2} \sqrt{2}\right)\right.
\end{aligned} \tag{13}
\end{align*}
$$

```
            - \frac{24167}{11612160}\operatorname{sin}(\frac{1}{2}\sqrt{}{2})\sqrt{}{2})(x-\frac{1}{4}\pi\mp@subsup{)}{}{9}+\textrm{O}((x-\frac{1}{4}\pi\mp@subsup{)}{}{10})
            evalf(%);
0.7602445972 + 0.4593626847 (x-0.7853981635) + 0.0396201931 (x-0.7853981635 )
    -0.3049018205 (x-0.7853981635) 3}-0.05280280379 (x-0.7853981635)4,
    +0.05856868846 (x-0.7853981635) 5}+0.02811004049(x-0.7853981635) 6 
    -0.003511461127 (x-0.7853981635)}\mp@subsup{)}{}{7}-0.007972639835 (x-0.7853981635) 8.
    -0.000837282702 (x-0.7853981635) 9}+\textrm{O}((x-0.7853981635) '0 )
> latex (%);
    ( 0.7602445972+ 0.4593626847\, \left( x- 0.7853981635 \right) +
    0.0396201931\, \left( x- 0.7853981635 \right) ^{2}-
    0.3049018205\,
    \left( x- 0.7853981635 \right) ^{3}- 0.05280280379\, \left( x-
    0.7853981635 \right) ^{4}+ 0.05856868846\, \left( x-
    0.7853981635
        \right) ^{5}+ 0.02811004049\, \left( x- 0.7853981635 \right) ^
    {6}-
        0.003511461127\, \left( x- 0.7853981635 \right) ^{7}-
        0.007972639835
\, \left( x- 0.7853981635 \right) ^{8}- 0.000837282702\, \left(
x-
    0.7853981635 \right) ^{9}+O \left( \left( x- 0.7853981635
    \right) ^{
10} \right) )
```

For our problem in the notes we want the second order Taylor polynomial, so as before we write:
$>\operatorname{series}(f(x), x=x 0,3)$; $\operatorname{evalf}(\%)$;
$T:=\operatorname{convert}(\%$, polynom $) ; T 2:=\operatorname{unapply}(T, x) ;$
$\cos \left(\frac{1}{2} \sqrt{2}\right)+\frac{1}{2} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\left(x-\frac{1}{4} \pi\right)+\left(-\frac{1}{4} \cos \left(\frac{1}{2} \sqrt{2}\right)\right.$
$\left.+\frac{1}{4} \sin \left(\frac{1}{2} \sqrt{2}\right) \sqrt{2}\right)\left(x-\frac{1}{4} \pi\right)^{2}+\mathrm{O}\left(\left(x-\frac{1}{4} \pi\right)^{3}\right)$
$0.7602445972+0.4593626847(x-0.7853981635)+0.0396201931(x-0.7853981635)^{2}$
$+\mathrm{O}\left((x-0.7853981635)^{3}\right)$
$T:=0.3994619883+0.4593626847 x+0.0396201931(x-0.7853981635)^{2}$
$T 2:=x \rightarrow 0.3994619883+0.4593626847 x+0.0396201931(x-0.7853981635)^{2}$
[We now compare the error by integrating P2 over the first half of interval + integrating T2 over the second half of the interval as compared to the actual value.

$$
\left[>I 1:=\operatorname{int}\left(P 2(x), x=0 . . \frac{\mathrm{Pi}}{4}\right) ; I 2:=\operatorname{int}\left(T 2(x), x=\frac{\mathrm{Pi}}{4} . . \frac{\mathrm{Pi}}{2}\right) ; I 3:=I 1+I 2 ; \frac{100 \cdot(I 3-F)}{F} ;\right.
$$

LLet us create some graphic displays of our regions.

EWith different domains we need overlapping plots and a special package.
$\stackrel{>}{ } \rightarrow$ with (plots) :

$$
\begin{aligned}
& \quad>\operatorname{Pt1}:=\operatorname{plot}\left(f(x), x=0 . . \frac{\mathrm{Pi}}{2}\right): \operatorname{Pt2}:=\operatorname{plot}\left(P 2(x), x=0 . . \frac{\mathrm{Pi}}{4}\right): \operatorname{Pt} 3:=\operatorname{plot}\left(T 2(x), x=\frac{\mathrm{Pi}}{4}\right. \\
& \left.\quad . . \frac{\mathrm{Pi}}{2}\right): \\
&
\end{aligned}
$$

$\stackrel{ }{\square}$

