Math 541 －Numerical Analysis
 Lecture Notes－Introduction to Numerical Analysis

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu

$$
\text { Spring } 2018
$$

Outline

(1) The Class - Overview

- Contact Information, Office Hours
- Text \& Topics
- Other Numerical Analysis Courses
- Grading
- Expectations and Procedures
(2) The Class...
- MatLab
- Formal Prerequisites
(3) Introduction
- The What? Why? and How?
(4) Application
- Analysis

The Class - Overview The Class... Introduction Application

Contact Information, Office Hours Text \& Topics
Other Numerical Analysis Courses Grading
Expectations and Procedures

Contact Information

Professor Joseph Mahaffy

Office	GMCS-593
Email	jmahaffy@mail.sdsu.edu
Web	http://jmahaffy.sdsu.edu
Phone	$(619) 594-3743$
Office Hours	MW: 12:00-13:50 in MLC and by appointment

Basic Information: Text/Topics

Text:
Cleve Moler: Numerical Computing in Matlab
(1) Mathematical Preliminaries - Taylor's series
(2) MatLab Basics
(3) Error Analysis
(4) Zeros of Functions
(6) Numerical Integration - Quadrature
(Numerical Linear Algebra
(1) Interpolation - Splines
(8) Least Squares

Other Numerical Analysis Courses

- Math 542: Numerical Solutions of Differential Equations
- Initial-Value Problems for ODEs
- Boundary Value Problems for ODEs
- Math 543: Numerical Matrix Analysis
- Iterative Techniques in Matrix Algebra
- Approximating Eigenvalues
- Math 693A: Advanced Numerical Analysis (Numerical Optimization)
- Numerical Solution of Nonlinear Systems of Equations
- Math 693B: Advanced Numerical Analysis (Numerics for PDEs)
- Numerical Solution of PDEs

The Class - Overview The Class... Introduction Application

Basic Information: Grading

Approximate Grading

$$
\begin{array}{lr}
\hline \text { Homework, including WeBWorK* } & 45 \% \\
\text { Lab Report }^{+} & 5 \% \\
\text { Exams and Final }
\end{array}
$$

* Both theoretical and implementation (programming) MatLab will be the primary programming language.
+ Formal Lab Reports will be written on several applied problems.
\times Likely to be 2 Midterms and Final with part being Takehome. Final: Monday, May 7, 10:30-12:30.

Expectations and Procedures, I

- Most class attendance is OPTIONAL - Homework and announcements will be posted on the class web page. If/when you attend class:
- Please be on time.
- Please pay attention.
- Please turn off mobile phones.
- Please be courteous to other students and the instructor.
- Abide by university statutes, and all applicable local, state, and federal laws.

The Class - Overview The Class... Introduction Application

Expectations and Procedures, II

- Please, turn in assignments on time. (The instructor reserves the right not to accept late assignments.)
- The instructor will make special arrangements for students with documented learning disabilities and will try to make accommodations for other unforeseen circumstances, e.g. illness, personal/family crises, etc. in a way that is fair to all students enrolled in the class. Please contact the instructor EARLY regarding special circumstances.
- Students are expected and encouraged to ask questions in class!
- Students are expected and encouraged to to make use of office hours! If you cannot make it to the scheduled office hours: contact the instructor to schedule an appointment! SOSO

The Class - Overview The Class... Introduction Application

Expectations and Procedures, III

- Missed midterm exams: Don't miss exams! The instructor reserves the right to schedule make-up exams, make such exams oral presentation, and/or base the grade solely on other work (including the final exam).
- Missed final exam: Don't miss the final! Contact the instructor ASAP or a grade of incomplete or F will be assigned.
- Academic honesty: Submit your own work. Any cheating will be reported to University authorities and a ZERO will be given for that HW assignment or Exam.

MatLab

- Students can obtain MatLab from ROHAN Academic Computing.
- Google SDSU MatLab or access http://wwwrohan.sdsu.edu/~download/matlab.html.
- MatLab and Maple can also be accessed in the Computer Labs GMCS 421, 422, and 425.
- You may also want to consider buying the student version of MatLab: http://www.mathworks.com/

Math 541: Formal Prerequisites

Math 254 or Math 342A or AE 280

- These courses all have sections on basic Linear Algebra and assume knowledge of Calculus (especially Taylor's Theorem)

CS 107 or Math 242

- These courses introduce basic Computer Programming

Math 541: Introduction - What we will learn

(1) Numerical tools for problem solving
(2) How to translate mathematical problems into MatLab code
(3) Error and convergence analysis

- Computational mathematics has errors
- Must understand sources of errors and improvement of algorithms
(4) How to implement Calculus on computers: Solve $f(x)=0$, Integration, ...
(5) Use MatLab to solve problems in Linear Algebra
(6) Work with data: Fitting with splines and least squares best fits

Math 541: Introduction - Why???

Q: Why are numerical methods needed?

A: To accurately approximate the solutions of problems that cannot be solved exactly.

Q: What kind of applications can benefit from numerical studies?
A: Engineering, physics, chemistry, computer, biological and social sciences.

Image processing / computer vision, computer graphics (rendering, animation), climate modeling, weather predictions, "virtual" crash-testing of cars, medical imaging ($\mathrm{CT}=$ Computed Tomography), AIDS research (virus decay vs. medication), financial math...

Math 541: Introduction - Computing Efficiency

Numerical tools for problem solving:

- Computers are getting faster, but the computer's speed is only one (a big one for sure!) part of the overall performance for a computation...
- Computing speed depends on FLOPS (floating-point operations or number of additions and multiplications) and memory accesses. These are largely questions of computer architecture and won't be examined in this course much.
- Numerical Algorithms are the center of this course, and their efficiency affects performance.

Research Problem from my Work

Genetic Control by Repression

Structure of the trp Operon

Model for Conrol by Repression

- $x_{1}(t)$ is the concentration of mRNA
- $x_{2}(t)$ is the concentration of the tryptophan (endproduct)
- Endproduct inhibition or a negative feedback system can result in oscillatory behavior
- System of first order delay differential equations (DDE):

$$
\begin{aligned}
\frac{d x_{1}(t)}{d t} & =\frac{a_{1}}{1+k x_{2}^{n}(t-R)}-b_{1} x_{1}(t) \\
\frac{d x_{2}(t)}{d t} & =a_{2} x_{1}(t)-b_{2} x_{2}(t)
\end{aligned}
$$

- Solve numerically, such as MatLab's dde23.m delay differential equation solver

Simulation of Repression Model

With $a_{1}=2, a_{2}=b_{1}=b_{2}=1, n=4$, and $R=2$, the model is simulated using MatLab's dde23.m

Math 542 studies the Runge-Kutta-Felberg method for numerically integrating ordinary differential equations, a related method

MatLab code available from Website.

Equilibrium Analysis

- Qualitative analysis of a differential equation begins by finding all equilibria
- Equilibria solve the derivatives equal to zero

$$
\begin{array}{r}
\frac{a_{1}}{1+k \bar{x}_{2}^{n}}-b_{1} \bar{x}_{1}=0 \\
a_{2} \bar{x}_{1}-b_{2} \bar{x}_{2}=0
\end{array}
$$

- This is a system of nonlinear equations equal to zero
- This easily reduces to a nonlinear scalar equation,

$$
\frac{a_{1}}{1+k \bar{x}_{2}^{n}}-\frac{b_{1} b_{2}}{a_{2}} \bar{x}_{2}=0 \quad \text { with } \quad \bar{x}_{1}=\frac{b_{2}}{a_{2}} \bar{x}_{2}
$$

- This course numerically solves $f(x)=0$

Characteristic Equation

- The characteristic equation is used to study the local (linear) behavior near an equilibrium.
- The characteristic equation for a DDE is found like ODEs (Math 537), but the result is an exponential polynomial with an infinite number of solutions:

$$
\left|\begin{array}{cc}
-b_{1}-\lambda & f^{\prime}\left(\bar{x}_{2}\right) e^{-\lambda R} \\
a_{2} & -b_{2}-\lambda
\end{array}\right|=0
$$

- This produces:

$$
\left(\lambda+b_{1}\right)\left(\lambda+b_{2}\right)-a_{2} f^{\prime}\left(\bar{x}_{2}\right) e^{-\lambda R}=0
$$

- Need to find complex solutions to this equation

Characteristic Equation-Finding Eigenvalues

- The numerical simulation showed damped oscillations, which suggests that all eigenvalues have negative real part.
- The characteristic equation is studied by letting $\lambda=\mu+i \nu$, which gives

$$
\left(\mu+i \nu+b_{1}\right)\left(\mu+i \nu+b_{2}\right)-a_{2} f^{\prime}\left(\bar{x}_{2}\right) e^{-\mu R}(\cos (\nu R)-i \sin (\nu R))=0
$$

- This is solved numerically by simultaneously finding the real and imaginary parts equal to zero
- Solving two nonlinear equations in two unknowns uses vector and matrix methods to extend our technique for solving $f(x)=0$
- We may get to these algorithms in this class, but they certainly appear in Math 693A

Characteristic Equation-Numerical Eigenvalues

- This course examines some of the basics behind the packages for solving these problems
- MatLab allows users to examine the coding algorithm, so knowledge from this course helps you better choose among different packages.
- We employed Maple's fsolve routine, and the first three pairs of eigenvalues with the largest imaginary parts are found:

$$
\begin{aligned}
& \lambda_{1,2}=-0.19423 \pm 0.98036 i \\
& \lambda_{3,4}=-0.55573 \pm 3.9550 i \\
& \lambda_{5,6}=-0.68084 \pm 7.07985 i
\end{aligned}
$$

- These eigenvalues show the damped oscillatory behavior and indicate the intervals between maxima are about 2π time units.

Maple code available from Website.

