Math 541 - Numerical Analysis Lecture Notes – Zeros and Roots

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2018

5051

Outline

Bisection Method

- Example and Program
- Rate of Convergence

2 Newton's Method

- Tangent Lines
- Iterative Scheme
- MatLab Newton's Method
- Rate of Convergence

Secant Method

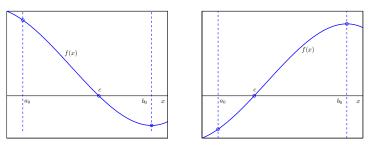
- MatLab Secant Method
- Rate of Convergence

Summary

- Example
- Modifying Newton's Method

Intermediate Value Theorem

- Suppose f is continuous on the interval (a_0, b_0) and $f(a_0) \cdot f(b_0) < 0$
 - This means the function changes sign at least once in the interval
- The Intermediate Value Theorem guarantees the existence of $c \in (a_0, b_0)$ such that f(c) = 0 (could be more than one)



Example and Program Rate of Convergence

The Bisection Method

5050

The **Bisection Method** approximates the root (f(c) = 0) of a **continuous function** that changes sign at least once for $x \in [a_0, b_0]$

- Thus, $f(a_0) \cdot f(b_0) < 0$
- Iteratively find the **midpoint**

$$m_k = \frac{a_k + b_k}{2}$$

• If
$$f(m_k) = 0$$
, we're done

- Check if $f(m_k) \cdot f(b_k) < 0$ or $f(m_k) \cdot f(a_k) < 0$
- If $f(m_k) \cdot f(b_k) < 0$, then $c \in [m_k, b_k]$ and we take $a_{k+1} = m_k$ and $b_{k+1} = b_k$
- Otherwise $f(m_k) \cdot f(a_k) < 0$, and $c \in [a_k, m_k]$, so we take $b_{k+1} = m_k$ and $a_{k+1} = a_k$

Example and Program Rate of Convergence

The Bisection Method

The **Bisection Method** for solving f(c) = 0 from the previous slide:

• Constructs a sequence of intervals containing the root c:

$$(a_0, b_0) \supset (a_1, b_1) \supset \cdots \supset (a_{n-1}, b_{n-1}) \supset (a_n, b_n) \ni c$$

• After k steps

$$|b_k - a_k| = \frac{1}{2}|b_{k-1} - a_{k-1}| = \left(\frac{1}{2}\right)^k |b_0 - a_0|$$

• At step k, the midpoint $m_k = \frac{a_k + b_k}{2}$ is an estimate for the root c with

$$m_k - d_k \le c \le m_k + d_k, \qquad d_k = \left(\frac{1}{2}\right)^{k+1} |b_0 - a_0|$$

Example and Program Rate of Convergence

Convergence is slow:

- At each step we gain one binary digit in accuracy
- Since 10⁻¹ ≈ 2^{-3.3}, it takes on average 3.3 iterations to gain one decimal digit of accuracy
- Note: The rate of convergence is completely independent of the function *f*
- We are only using the **sign of** *f* at the endpoints of the interval(s) to make decisions on how to update
- By making more effective use of the values of *f* we can attain significantly faster convergence

Example and Program Rate of Convergence

1 of 5

5051

(7/45)

Example: Bisection Method

The bisection method applied to

$$f(x) = \left(\frac{x}{2}\right)^2 - \sin(x) = 0$$

with $(a_0, b_0) = (1.5, 2.0)$, and $(f(a_0), f(b_0)) = (-0.4350, 0.0907)$ gives:

k	a_k	b_k	m_k	$f(m_k)$
0	1.5000	2.0000	1.7500	-0.2184
1	1.7500	2.0000	1.8750	-0.0752
2	1.8750	2.0000	1.9375	0.0050
3	1.8750	1.9375	1.9062	-0.0358
4	1.9062	1.9375	1.9219	-0.0156
5	1.9219	1.9375	1.9297	-0.0054
6	1.9297	1.9375	1.9336	-0.0002
7	1.9336	1.9375	1.9355	0.0024
8	1.9336	1.9355	1.9346	0.0011
9	1.9336	1.9346	1.9341	0.0004

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Example and Program Rate of Convergence

Example: Bisection Method

This MatLab code can easily be modified to any *function*

```
function root = bisection(a,b,tol)
1
  %BISECTION METHOD - Modify function below, then can
2
       find its roots in [a,b] to tolerance tol
3
  8
   f = Q(x) (x/2) \cdot 2 - sin(x);
4
   while (abs(b-a) > tol)
5
       m = (a+b)/2;
6
       if (f(m) == 0)
7
           break;
8
      elseif(f(b) * f(m) < 0)
9
            a = m;
10
   else
11
           b = m;
12
       end
13
   end
14
   root = m;
15
```

Demonstrate in class

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Example and Program Rate of Convergence

This MatLab code (2 Slides) graphically shows example

```
1
  % WARNING: This example ASSUMES that f(a)<0<f(b)...
x = 1.5:0.001:2;
3 f = inline((x/2), 2-\sin(x)', x');
4 a = 1.5:
5 b = 2.0;
6 for k = 0:9
7 plot(x, f(x), 'k-', 'linewidth', 2)
  axis([1.45 2.05 -0.5 .15])
8
9 grid on
  hold on
10
11 plot([a b],f([a b]),'ko','linewidth',5)
   plot([1.45 2.05],[0 0],'r:')
12
  hold off
13
```


Example and Program

Example: Bisection Method

18

19

20

21

22

end

14 m = (a+b)/2;15 if (f(m) < 0) $16 \ a = m;$ 17 else b = m;end pause print('-depsc',['bisec' int2str(k) '.eps'],'-f1');

The next Slides show the **output**

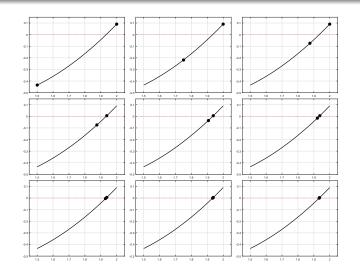
4 of 5

Bisection Method

Newton's Method Secant Method Summary **Example and Program** Rate of Convergence

Example: Bisection Method

5050



Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Example and Program Rate of Convergence

Stopping Criteria

When do we stop? We can (1) keep going until successive iterates are close:

$$|m_k - m_{k-1}| < \epsilon$$

or (2) close in relative terms

$$\frac{|m_k - m_{k-1}|}{|m_k|} < \epsilon$$

or (3) the function value is small enough

 $|f(m_k)| < \epsilon$

No choice is perfect. In general, where no additional information about f is known, the second criterion is the preferred one (since it comes the closest to testing the relative error).

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Zeros and Roots - (12/45)

Example and Program Rate of Convergence

Rate of Convergence

Suppose an algorithm generates a sequence of approximations, c_n , which approaches a limit, c_* , or

 $\lim_{n \to \infty} c_n = c_*$

How quickly does $c_n \to c_*$?

Definition (Rate of Convergence)

If a sequence c_1, c_2, \ldots, c_n converges to a value c_* and if there exist real numbers $\lambda > 0$ and $\alpha \ge 1$ such that

$$\lim_{n \to \infty} \frac{|c_{n+1} - c_*|}{|c_n - c_*|^{\alpha}} = \lambda$$

then we say that α is the *rate of convergence* of the sequence.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes – Zeros and Roots – (13/45)

Summarv

Example and Program Rate of Convergence

Cauchy Sequence

Definition (Cauchy Sequence)

Consider a sequence c_1, c_2, \ldots, c_n of real numbers. This sequence is called a *Cauchy sequence*, if for every $\varepsilon > 0$, there is a positive integer N such that for all natural numbers m, n > N,

$$|x_m - x_n| < \varepsilon.$$

From the properties of real numbers (*completeness*), a *Cauchy* sequence, $\{c_n\}$ converges to a unique real number c_* .

SDSU

Example and Program Rate of Convergence

Rate of Convergence - Cauchy

A Numerical algorithm produces a sequence of approximations, $\{c_n\}$, which is hopefully converging to a limit, c_* , which is **NOT** known.

How can the sequence $\{c_n\}$ be used to find the *rate of convergence*?

Definition (Rate of Cauchy Convergence)

If a sequence c_1, c_2, \ldots, c_n converges and if there exist real numbers $\lambda > 0$ and $\alpha \ge 1$ such that

$$\lim_{n \to \infty} \frac{|c_{n+1} - c_n|}{|c_n - c_{n-1}|^{\alpha}} = \lambda$$

then we say that α is the *rate of convergence* of the sequence.

Example and Program Rate of Convergence

Numerical Rate of Convergence

Suppose a Numerical algorithm produces a sequence of approximations, $\{c_n\}$.

The *rate of Cauchy convergence*, α , for the sequence $c_1, c_2, ..., c_n$ is derived from the existence of real numbers $\lambda > 0$ and $\alpha \ge 1$ with

$$\lim_{n \to \infty} \frac{|c_{n+1} - c_n|}{|c_n - c_{n-1}|^{\alpha}} = \lambda.$$

By taking logarithms of the expression above, we have

$$\ln |c_{n+1} - c_n| = \alpha \ln |c_n - c_{n-1}| + \ln(\lambda).$$

Let $Y_n = \ln |c_{n+1} - c_n|$ and $X_n = \ln |c_n - c_{n-1}|$, which are readily computed from the sequence, then the *rate of Cauchy convergence*, α , is approximated by the *slope* of the best fitting line through (X_n, Y_n) .

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Zeros and Roots - (16/45)

Example and Program Rate of Convergence

Rate of Convergence - Bisection Method

Let c_* be a **root** of f, so $f(c_*) = 0$

Let $m_n = \frac{a_n+b_n}{2}$ be the **midpoint** between the endpoints of the interval $[a_n, b_n]$, which comes from n iterations of the **Bisection** Method and where $c_* \in [a_n, b_n]$

Earlier we showed that at most

$$|m_n - c_*| \le \frac{1}{2^{n+1}} |b_0 - a_0|$$

Form the *sequence of midpoints* with $c_n = m_n$, then from the worst case scenario

$$|c_n - c_*| \le \frac{1}{2^{n+1}} |b_0 - a_0|$$
 or $\frac{|c_{n+1} - c_*|}{|c_n - c_*|} \approx \frac{1}{2}$

It follows that for Bisection Method $\alpha = 1$, so the *rate of convergence* is linear

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Lecture Notes – Zeros and Roots – (17/45)

 Bisection Method
 Tangent Lines

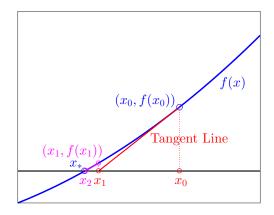
 Newton's Method
 Iterative Scheme

 Secant Method
 MatLab – Newton's Method

 Summary
 Rate of Convergence

Tangent Lines

Start at x_0 , then follow **tangent lines** of f(x) to their zeroes. Iterate these zeroes **converging** to $\{x_n\}_{n=0}^{\infty} \to x_*$ with $f(x_*) = 0$.



505

(18/45)

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes – Zeros and Roots

Tangent Lines Iterative Scheme MatLab – Newton's Method Rate of Convergence

Tangent Lines

- The graphic from previous slide seems to show rapid convergence to the zero of f(x)
- The graph shows the use of properties of f(x)
- Does this sequence always converge to x_* ?
- Assuming convergence, how rapidly does this sequence converge?
- The Method employs techniques from Calculus
- Technique is called **Newton's Method**
- What are properties of Newton's Method?

Tangent Lines Iterative Scheme MatLab – Newton's Method Rate of Convergence

Newton's Method for Root Finding

1 of 2

Recall: we are looking for x^* so that $f(x^*) = 0$.

If $f \in C^2[a, b]$, and we know $x^* \in [a, b]$ (possibly by the intermediate value theorem), then we can formally Taylor expand around a point x close to the root:

$$0 = f(x^*) = f(x) + (x^* - x)f'(x) + \frac{(x - x^*)^2}{2}f''(\xi(x)), \quad \xi(x) \in [x, x^*].$$

If we are close to the root, then $|x - x^*|$ is small, which means that $|x - x^*|^2 \ll |x - x^*|$, hence we make the approximation:

$$0 \approx f(x) + (x^* - x)f'(x), \quad \Leftrightarrow \quad x^* \approx x - \frac{f(x)}{f'(x)}.$$

Bisection Method Tangent Lines Newton's Method Secant Method Summary

Iterative Scheme Rate of Convergence

Newton's Method for Root Finding

Newton's Method for root finding is based on the approximation

$$x^* \approx x - \frac{f(x)}{f'(x)}$$

which is valid when x is close to x^* .

Newton's Method

Newton's Method is an iterative scheme, where given an x_{n-1} , we compute

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

If x_0 is "sufficiently close" to a **root**, x^* , of f(x), then iterations x_n give *improved approximations* of x^* , as $n \to \infty$

Geometrically, x_n is the intersection of the tangent of the function at x_{n-1} and the x-axis.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Lecture Notes – Zeros and Roots – (21/45)

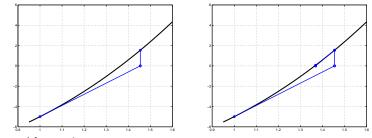
 Bisection Method
 Tangent Lines

 Newton's Method
 Iterative Scheme

 Secant Method
 MatLab - Newton's Method

 Summary
 Rate of Convergence

Two Steps of Newton for $f(x) = x^3 + 4x^2 - 10 = 0$



Start with $p_0 = 1$

$$p_2 = p_1 - \frac{p_1^3 + 4p_1^2 - 10}{3p_1^2 + 8p_1} = 1.36890040106952$$

$$p^* = 1.365230013$$
 From MAPLE

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Zeros and Roots - (22/45)

5050

 Bisection Method
 Tangent Lines

 Newton's Method
 Iterative Scheme

 Secant Method
 MatLab - Newton's Method

 Summary
 Rate of Convergence

MatLab Newton Code

```
function p = newton(p0,tol,Nmax)
1
2 %NEWTON'S METHOD: Enter f(x), f'(x), x0, tol, Nmax
3 f = Q(x) x^3 + 4 x^2 - 10;
  fp = Q(x) 3 * x^2 + 8 * x;
4
  p = p0 - f(p0)/fp(p0);
5
  i = 1;
6
   while (abs(p - p0) > tol)
7
       q = 0q
8
       p = p0 - f(p0) / fp(p0);
9
      i = i + 1;
10
11
       if (i > Nmax)
           fprintf('Fail after %d iterations\n', Nmax);
12
           break
13
       end
14
15
   end
   end
16
```

Bisection Method	Tangent Lines
Newton's Method	Iterative Scheme
Secant Method	MatLab – Newton's Method
Summary	Rate of Convergence

Finding a Starting Point for Newton's Method

Recall our initial argument that when $|x - x^*|$ is small, then $|x - x^*|^2 \ll |x - x^*|$, and we can neglect the second order term in the Taylor expansion.

In order for Newton's method to converge we need a *good starting point!*

Theorem

Let $f(x) \in C^2[a, b]$. If $x^* \in [a, b]$ such that $f(x^*) = 0$ and $f'(x^*) \neq 0$, then there exists a $\delta > 0$ such that Newton's method generates a sequence $\{x_n\}_{n=1}^{\infty}$ converging to x^* for any initial approximation $x_0 \in [x^* - \delta, x^* + \delta]$.

The theorem is interesting, but quite useless for practical purposes. In practice: Pick a starting value x_0 , iterate a few steps. Either the iterates converge quickly to the root, or it will be clear that convergence is unlikely.

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Zeros and Roots - (24/45)

Bisection Method	Tangent Lines
Newton's Method	Iterative Scheme
Secant Method	MatLab – Newton's Method
Summary	Rate of Convergence

Newton's Method – Rate of Convergence

1 of 3

Suppose x^* is a root of f(x) and consider the Taylor expansion of $f(x^*)$ about x_n

$$0 = f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{f''(\xi_n)}{2}(x^* - x_n)^2,$$

where
$$\xi_n \in (x^*, x_n)$$

Dividing by $f'(x_n)$ gives

$$\frac{f(x_n)}{f'(x_n)} + (x^* - x_n) = -\frac{f''(\xi_n)}{2f'(x_n)}(x^* - x_n)^2$$

but $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, so

$$(x^* - x_{n+1}) = -\frac{f''(\xi_n)}{2f'(x_n)}(x^* - x_n)^2$$

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Zeros and Roots - (25/45)

 Bisection Method
 Tangent Lines

 Newton's Method
 Iterative Scheme

 Secant Method
 MatLab – Newton's Method

 Summary
 Rate of Convergence

Newton's Method – Rate of Convergence

Taking absolute values

$$\frac{x^* - x_{n+1}|}{|x^* - x_n|^2} = \frac{|f''(\xi_n)|}{2|f'(x_n)|},$$

so by our definition for *rate of convergence*, Newton's Method has *quadratic convergence* provided

- $f'(x) \neq 0$, for all $x \in I$, where $I = [x^* r, x^* + r]$ for some $r \geq |x^* x_0|$
- 2) f''(x) is continuous for all $x \in I$
- **3** x_0 is "sufficiently close" to x^*

 Bisection Method
 Tangent Lines

 Newton's Method
 Iterative Scheme

 Secant Method
 MatLab – Newton's Method

 Summary
 Rate of Convergence

Newton's Method – Rate of Convergence

"Sufficiently close" means

• We can ignore higher order terms of the Taylor expansion

•
$$\frac{|f''(x_n)|}{2|f'(x_n)|} < C \frac{|f''(x^*)|}{|f'(x^*)|}$$
 for some $C < \infty$

•
$$C \frac{|f''(x^*)|}{|f'(x^*)|} |x^* - x_n| < 1$$
 for all n

 \mathbf{If}

$$M = \sup_{x \in I} \frac{|f''(x)|}{2|f'(x)|},$$

we have convergence for an initial point x_0 provided $M|x^* - x_0| < 1$

3 of 3

5050

 Bisection Method
 Tangent Lines

 Newton's Method
 Iterative Scheme

 Secant Method
 MatLab – Newton's '

 Summary
 Rate of Convergence

MatLab Newton Example

```
function z = newtoneger(p0,tol,Nmax)
1
2 %NEWTON'S METHOD: Enter f(x), f'(x), x0, tol, Nmax
3 f = Q(x) x^3 + 4 x^2 - 10;
4 fp = @(x) 3 \times x^2 + 8 \times x;
5 p = p0 - f(p0)/fp(p0);
6 z = [p]; i = 1;
   while (abs(p - p0) \ge tol)
7
       p0 = p;
8
       p = p0 - f(p0) / fp(p0);
9
     z = [z, p];
10
     i = i + 1;
11
    if (i > Nmax)
12
            fprintf('Fail after %d iterations\n', Nmax);
13
           break
14
       end
15
16
   end
17
   end
```

1

 Bisection Method
 Tangent Lines

 Newton's Method
 Iterative Scheme

 Secant Method
 MatLab – Newton's Method

 Summary
 Rate of Convergence

MatLab Newton Example

The previous code generates Newton iterates to solve

$$f(x) = x^3 + 4x^2 - 10 = 0$$

with the first **five** iterates being:

Quadratic convergence suggests examining:

$$Q_n = \frac{|z_{n+1} - z_n|}{|z_n - z_{n-1}|^2}.$$

Substituting the sequence $\{z_n\}$ into the fraction above gives:

$$Q_2 = 0.49949, \quad Q_3 = 0.49069, \quad Q_4 = 0.49025.$$

 Bisection Method
 Tangent Lines

 Newton's Method
 Iterative Scheme

 Secant Method
 MatLab – Newton's Method

 Summary
 Rate of Convergence

MatLab Newton Example

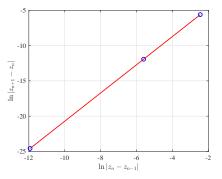
```
xlab = \frac{|x|}{|z_{n}-z_{n-1}|}
                                         % X-label
1
2 ylab = \frac{1}{n+1}-z_{n+1}
                                             % Y-label
3 mytitle = ''; % Title
4 z = newtoneger(1, 1e-7, 20);
5 %z = secanteger(1,2,1e-9,20);
6 N = length(z);
7 xx = log(abs(z(2:N-1)-z(1:N-2)));
s yy = log(abs(z(3:N)-z(2:N-1)));
9 p = polyfit(xx, yy, 1)
10 x1 = min(xx); x2 = max(xx);
11 v1 = p(1) * x1 + p(2);
12 \quad y^2 = p(1) * x^2 + p(2);
13 plot(xx,yy,'bo','MarkerSize',7);
14 hold on
15 plot([x1,x2],[y1,y2],'r-','LineWidth',1.5);
  grid
16
```

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes – Zeros and Roots — (30/45)

3

MatLab Newton Example

The previous program plots $Y_n = \ln |z_{n+1} - z_n|$ vs. $X_n = \ln |z_n - z_{n-1}|$ and finds the slope, which is the **rate of convergence**.



The program gives the best fitting line:

$$Y_n = 2.0017 \, X_n - 0.69493.$$

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Zeros and Roots - (31/45)

5050

Bisection Method	Tangent Lines
Newton's Method	Iterative Scheme
Secant Method	MatLab – Newton's Method
Summary	Rate of Convergence

Summary: Newton's Method

Newton's Method solves f(x) = 0 very efficiently

- Converges *quadratically* to the solution
- Roughly doubles the digits with each iteration when close
- Simple algorithm: Zero crossing of tangent line

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Problems:

- Difficult to determine the range of initial conditions for which Newton's method converges
- Algorithm often fails to converge
- Problems if f'(x) = 0
- Computing the derivative can be "expensive"
- If the zero of f(x) isn't simple, then convergence is *linear*

MatLab - Secant Method Rate of Convergence

Secant Method

Main weakness of **Newton's Method** is computing the derivative

- Computing the derivative can be difficult
- Derivative often needs many more arithmetic operations

One solution is to **Approximate the Derivative** By definition,

$$f'(x_{n-1}) = \lim_{x \to x_{n-1}} \frac{f(x) - f(x_{n-1})}{x - x_{n-1}}$$

Take $x = x_{n-2}$, then an approximation is

$$f'(x_{n-1}) \approx \frac{f(x_{n-2}) - f(x_{n-1})}{x_{n-2} - x_{n-1}}$$

MatLab - Secant Method Rate of Convergence

Secant Method

The approximation

$$f'(x_{n-1}) \approx \frac{f(x_{n-2}) - f(x_{n-1})}{x_{n-2} - x_{n-1}}$$

is inserted into Newton's method to give

Secant Method

The **Secant Method** is an **iterative scheme**, where given an x_{n-2} and x_{n-1} , we compute

$$x_n = x_{n-1} - \frac{f(x_{n-1})(x_{n-2} - x_{n-1})}{f(x_{n-2}) - f(x_{n-1})}$$

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Zeros and Roots -

(34/45)

MatLab - Secant Method Rate of Convergence

MatLab Secant Code

```
function xn = secant(x0,x1,tol,Nmax)
1
2 %SECANT METHOD: Enter f(x), x0, x1, tol, Nmax
3 f = Q(x) x^3 + 4 x^2 - 10;
   xn = x1 - f(x1) * (x1-x0) / (f(x1) - f(x0));
4
  i = 1;
5
   while (abs(xn - x1) > tol)
6
7
       x0 = x1;
8
       x1 = xn;
       xn = x1 - f(x1) * (x1-x0) / (f(x1) - f(x0));
9
    i = i + 1;
10
   if (i > Nmax)
11
           fprintf('Fail after %d iterations\n', Nmax);
12
           break
13
       end
14
15 end
   end
16
```

MatLab - Secant Method Rate of Convergence

Secant Method – Convergence

The **Secant method** satisfies:

$$f'(x_{n-1}) \approx \frac{f(x_{n-2}) - f(x_{n-1})}{x_{n-2} - x_{n-1}}$$

- Algorithm requires two initial starting points
- New iterate is the zero crossing of the *secant line*
- Do **NOT** need a derivative, only **function** evaluations
- Order of Convergence is *superlinear*
 - Order of Convergence has been shown to be the *golden* ratio, $\phi = \frac{1+\sqrt{5}}{2} \approx 1.6$
 - Faster than **Bisection method**, but slower than **Newton's method**

MatLab - Secant Method Rate of Convergence

MatLab Secant Example

```
function z = secanteger(x0, x1, tol, Nmax)
1
2 %SECANT METHOD: Enter f(x), x0, x1, tol, Nmax
3 f = Q(x) x^3 + 4 x^2 - 10;
   xn = x1 - f(x1) * (x1-x0) / (f(x1) - f(x0));
4
5 z = [xn]; i = 1;
   while (abs(xn - x1) \ge tol)
6
       x0 = x1:
7
       x1 = xn;
8
       xn = x1 - f(x1) * (x1-x0) / (f(x1) - f(x0));
9
     z=[z,xn];
10
    i = i + 1;
11
    if (i > Nmax)
12
            fprintf('Fail after %d iterations\n', Nmax);
13
           break
14
       end
15
16
   end
17
   end
```

MatLab - Secant Method Rate of Convergence

MatLab Secant Example

The previous code generates Secant iterates to solve

$$f(x) = x^3 + 4x^2 - 10 = 0$$

with the first **seven** iterates being:

 $z = \begin{bmatrix} 1.263157894736842, & 1.338827838827839, & 1.366616394719345, \\ & 1.365211902631857, & 1.365230001110859, & 1.365230013414206 \\ & 1.365230013414097 \end{bmatrix}$

Superlinear convergence with $\alpha = \frac{1+\sqrt{5}}{2}$ suggests examining:

$$S_n = \frac{|z_{n+1} - z_n|}{|z_n - z_{n-1}|^{\alpha}}.$$

Substituting the sequence $\{z_n\}$ into the fraction above gives:

$$S_2 = 1.8105, \quad S_3 = 0.4628, \quad S_4 = 0.7465, \quad S_5 = 0.5799, \quad S_6 = 0.6871,$$

which is roughly constant.

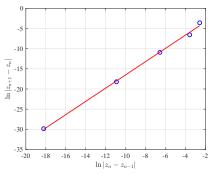
Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Lecture Notes – Zeros and Roots – (38/45)

MatLab - Secant Method Rate of Convergence

MatLab Secant Example

The program with the Secant method on Slide 30 plots $Y_n = \ln |z_{n+1} - z_n|$ vs. $X_n = \ln |z_n - z_{n-1}|$ and finds the slope, which is the *rate of convergence*.



The program gives the best fitting line:

$$Y_n = 1.6444 \, X_n - 0.057042.$$

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Zeros and Roots - (39/45)

Root Finding Methods

The **Bisection method**

- Very stable Algorithm Good technique to find starting point for Newton's method
- Costs only one function evaluation, so rapid iterations
- *Linear* convergence, so slow (3.3 iterations/digit)

The Secant method

- Hard to find starting points (Unknown **basin of attraction**)
- Costs only two function evaluations, so rapid iterations
- Superlinear convergence, $\alpha \approx 1.62$, which is pretty fast

The Newton's method

- Hard to find starting points (Unknown **basin of attraction**)
- Finding and evaluating derivative requires more machine work at each iteration
- *Quadratic* convergence is very fast doubling the digits at each iteration

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu)

Lecture Notes – Zeros and Roots – (40/45)

Example

Return to Example:

$$f(x) = x^3 + 4x^2 - 10$$

We know the root is between x = 1 and x = 1.5. (Use for **Bisection** and **Secant** methods)

n	Bisection	Secant	Newton
1	1.25	1.33898305084745	1.4545454545454545
2	1.375	1.36356284991687	1.36890040106951
3	1.3125	1.36525168742565	1.36523660020211
4	1.34375	1.36522999568865	1.36523001343536
5	1.359375	1.36523001341391	1.36523001341409
6	1.3671875	1.36523001341409	
7	1.36328125		
8	1.365234375		
9	1.3642578125		
10	1.36474609375		
11	1.364990234375		
12	1.3651123046875		

505

Example Modifying Newton's Method

Modifying Newton's Method

The local nature of **Newton's method** means that we are stuck with problems of finding the **basin of attraction** for the root, p^* , where $f(p^*) = 0$

The **Bisection method** is a stable routine often used to narrow the search of p_0 , so that **Newton's method** converges

Another major problem is that **Newton's method** breaks when $f'(p^*) = 0$ (division by zero).

The good news is that this problem can be fixed!

— We need a short discussion on the *multiplicity of zeroes*.

Example Modifying Newton's Method

Multiplicity of Zeroes

1 of 2

Definition (Multiplicity of a Root)

A solution p^* of f(x) = 0 is a **zero of multiplicity** m of f if for $x \neq p^*$ we can write

$$f(x) = (x - p^*)^m q(x), \quad \lim_{x \to p^*} q(x) \neq 0$$

Basically, q(x) is the part of f(x) which does not contribute to the zero of f(x)

If m = 1 then we say that f(x) has a *simple zero*.

Theorem

 $f \in C^1[a, b]$ has a simple zero at p^* in (a, b) if and only if $f(p^*) = 0$, but $f'(p^*) \neq 0$.

Example Modifying Newton's Method

Multiplicity of Zeroes

Theorem (Multiplicity and Derivatives)

The function $f \in C^m[a, b]$ has a zero of multiplicity m at p^* in (a, b) if and only if

$$0 = f(p^*) = f'(p^*) = \cdots f^{(m-1)}(p^*), \quad but \ f^{(m)}(p^*) \neq 0.$$

We know that Newton's method runs into trouble when we have a zero of multiplicity higher than 1

Newton's method only converges *linearly* in these cases

Halley's method is a modification that converges *cubically*, in general, and *quadratically* for higher order roots

Example Modifying Newton's Method

Halley's Method for Zeroes of Higher Multiplicity

Halley's Method (for Zeroes of Multiplicity ≥ 2)

$$x_{n+1} = x_n - \frac{f(x_n)f'(x_n)}{[f'(x_n)]^2 - f(x_n)f''(x_n)}$$

Drawbacks:

We have to compute f''(x) — more expensive and possibly another source of numerical and/or measurement errors.

We have to compute a more complicated expression in each iteration — more expensive.

Roundoff errors in the denominator — both f'(x) and f(x) approach zero, so we are computing the difference between two small numbers; a serious cancellation risk.