Math 541 －Numerical Analysis

Lecture Notes－Computer Arithmetic and Finite Precision

> Joseph M. Mahaffy,\langle jmahaffy@mail.sdsu.edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Cente
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2018

Finite Precision
－Binary Representation
－Something Missing ．．．Gaps
（2）Numerical Errors
－Sources of Numerical Error
－Subtractive Cancellation
（3）
Algorithms and Convergence
－Rate of Convergence

Finite Precision

Computers use a finite number of bits（0＇s and 1＇s）to represent numbers．

For instance，an 8－bit unsigned integer（a．k．a a＂char＂）is stored：

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
0	1	0	0	1	1	0	1

Here， $2^{6}+2^{3}+2^{2}+2^{0}=64+8+4+1=77$ ，which represents the upper－case character＂M＂（US－ASCII）．

Outline

Finite Precision
 Numerical Errors Algorithms and Convergence
 Binary Representation Something Missing ．．．Gaps

 Finite Precision

 Finite Precision
 A 64－bit real number，double

The Binary Floating Point Arithmetic Standard 754－1985 （IEEE－The Institute for Electrical and Electronics Engineers） standard specified the following layout for a 64 －bit real number：

$$
\mathrm{s}_{10} \mathbf{c}_{9} \ldots \mathbf{c}_{1} \mathbf{c}_{\mathbf{0}} \mathbf{m}_{51} \mathbf{m}_{50} \ldots \mathbf{m}_{1} \mathbf{m}_{0}
$$

where

Symbol	Bits	Description
s	1	The sign bit $-0=$ positive， $1=$ negative
c	11	The characteristic（exponent）
m	52	The mantissa

$$
r=(-1)^{s} 2^{c-1023}(1+m), \quad c=\sum_{k=0}^{10} c_{k} 2^{k}, \quad m=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

Examples: Finite Precision

$$
r=(-1)^{s} 2^{c-1023}(1+f), \quad c=\sum_{k=0}^{10} c_{k} 2^{k}, \quad m=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

Example 1: The number 3.0
010000000000100

$$
r_{1}=(-1)^{0} \cdot 2^{2^{10}-1023} \cdot\left(1+\frac{1}{2}\right)=1 \cdot 2^{1} \cdot \frac{3}{2}=3.0
$$

Example 2: The Smallest Positive Real Number
001 $r_{2}=(-1)^{0} \cdot 2^{0-1023} \cdot\left(1+2^{-52}\right)=\left(1+2^{-52}\right) \cdot 2^{-1023} \cdot 1 \approx 10^{-308}$

Binary Representation Something Missing ... Gaps
Algorithms and Convergence

A gap of 2^{-1075} doesn＇t seem too bad．．．
However，the size of the gap depends on the value itself．．．
Consider $r=3.0$
010000000000100 and the next value

01000000000010001
The difference is $\frac{2}{2^{52}} \approx 4.4 \cdot 10^{-16}$

```
```

Something Missing ... Gaps

```
```

```
```

Something Missing ... Gaps

```
```

Numerical Errors
Algorithms and Convergence

The Relative Gap

It makes more sense to factor the exponent out of the discussion and talk about the relative gap：

Exponent	Gap	Relative Gap（Gap／Exponent）
2^{-1023}	2^{-1075}	2^{-52}
2^{1}	2^{-51}	2^{-52}
2^{1023}	2^{971}	2^{-52}

Any difference between numbers smaller than the local gap is not representable，e．g．any number in the interval

$$
\left[3.0,3.0+\frac{1}{2^{51}}\right)
$$

is represented by the value 3.0 ．
The MatLab command eps（for epsilon tolerance）gives double precision，which is

$$
2^{-52} \approx 2.2204 \times 10^{-16}
$$

At the other extreme，the difference between

011111111110111

and the previous value
011111111110110
is $\frac{2^{1023}}{2^{52}}=2^{971} \approx 1.99 \cdot 10^{292}$ ．
That＇s a＂fairly significant＂gap！！！
The number of atoms in the observable universe can be estimated to be no more than $\sim 10^{80}$ ．

Finite Precision
Numerical Errors

Algorithms and Convergence | Binary Representation |
| :--- |
| Something Missing ．．．Gaps |

Floating point＂numbers＂represent intervals！
Since（most）humans find it hard to think in binary representation， from now on we will for simplicity and without loss of generality assume that floating point numbers are represented in the normalized floating point form as．．
k－digit decimal machine numbers

$$
\pm 0 . d_{1} d_{2} \cdots d_{k-1} d_{k} \cdot 10^{n}
$$

where

$$
1 \leq d_{1} \leq 9, \quad 0 \leq d_{i} \leq 9, \quad i \geq 2, \quad n \in \mathbb{Z}
$$

Quantifying the Error

Any real number can be written in the form

$$
r= \pm 0 . d_{1} d_{2} \cdots d_{\infty} \cdot 10^{n}
$$

given infinite patience and storage space.
We can obtain the floating-point representation $f l(r)$ in two ways:
(1) Truncating (chopping) - just keep the first k digits (In MatLab use floor (r))
(2) Rounding - if $d_{k+1} \geq 5$ then add 1 to d_{k}. Truncate. (Standard for most languages)

Examples

$$
f \mathrm{l}_{t, 5}(\pi)=0.31415 \cdot 10^{1}, \quad f \mathrm{l}_{r, 5}(\pi)=0.31416 \cdot 10^{1}
$$

In both cases, the error introduced is called the roundoff error.
SDSO

Let p^{*} be and approximation to p, then..
Definition (The Absolute Error)

$$
\left|p-p^{*}\right|
$$

Definition (The Relative Error)

$$
\frac{\left|p-p^{*}\right|}{|p|}, \quad p \neq 0
$$

Definition (Significant Digits)

The number of significant digits is the largest value of t for which

$$
\frac{\left|p-p^{*}\right|}{|p|}<5 \cdot 10^{-t}
$$

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 - (14/33)

$$
\begin{gathered}
\begin{array}{c}
\text { Finite Precision } \\
\text { Numerical Errors }
\end{array} \\
\text { Algorithms and Convergence }
\end{gathered} \begin{gathered}
\text { Sources of Numerical Error } \\
\text { Subtractive Cancellation }
\end{gathered}
$$

Rounding 5-digit arithmetic

$$
\begin{array}{r}
\left(0.96384 \cdot 10^{5}+0.26678 \cdot 10^{2}\right)-0.96410 \cdot 10^{5}= \\
\left(0.96384 \cdot 10^{5}+0.00027 \cdot 10^{5}\right)-0.96410 \cdot 10^{5}= \\
0.96411 \cdot 10^{5}-0.96410 \cdot 10^{5}=0.10000 \cdot 10^{1}
\end{array}
$$

Truncating 5-digit arithmetic

$$
\begin{gathered}
\left(0.96384 \cdot 10^{5}+0.26678 \cdot 10^{2}\right)-0.96410 \cdot 10^{5}= \\
\left(0.96384 \cdot 10^{5}+0.00026 \cdot 10^{5}\right)-0.96410 \cdot 10^{5}= \\
0.96410 \cdot 10^{5}-0.96410 \cdot 10^{5}=0.0000 \cdot 10^{0}
\end{gathered}
$$

Rearrangement changes the result:

$$
\begin{gathered}
\left(0.96384 \cdot 10^{5}-0.96410 \cdot 10^{5}\right)+0.26678 \cdot 10^{2}= \\
-0.26000 \cdot 10^{2}+0.26678 \cdot 10^{2}=0.67800 \cdot 10^{0}
\end{gathered}
$$

Numerically, order of computation matters! (This is a HARD problem)

Consider the recursive relation

$$
x_{n+1}=1-(n+1) x_{n} \quad \text { with } \quad x_{0}=1-\frac{1}{e} .
$$

This sequence can be shown to converge to $\mathbf{0}$
Subtractive cancellation produces an error，which is approximately equal to the machine precision times n ！．

Example：Proof of Convergence to 0
The recursive relation is

$$
x_{n+1}=1-(n+1) x_{n}
$$

with

$$
x_{0}=1-\frac{1}{e}=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+.
$$

From the recursive relation

$$
\begin{aligned}
x_{1} & =1-x_{0}=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots \\
x_{2} & =1-2 x_{1}=\frac{1}{3}-\frac{2}{4!}+\frac{2}{5!}-\ldots \\
x_{3} & =1-3 x_{2}=\frac{3!}{4!}-\frac{3!}{5!}+\frac{3!}{6!}-\ldots \\
& \vdots \\
x_{n} & =1-n x_{n-1}=\frac{n!}{(n+1)!}-\frac{n!}{(n+2)!}+\frac{n!}{(n+3)!}-
\end{aligned}
$$

This shows that

$$
x_{n}=\frac{1}{n+1}-\frac{1}{(n+1)(n+2)}+\ldots \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Subtraction Error

Numerical Errors

The recursive relation $x_{n+1}=1-(n+1) x_{n}$ with $x_{0}=1-\frac{1}{e}$

```
clear
x(1) = 1-1/exp (1);
s(1) = 1;
f(1) = 1;
for i = 2:21
x(i) = 1-(i-1)*x(i-1);
s(i) = 1/i;
f(i) = (i-1)*f(i-1);
9 end
10 n = 0:20;
11 z = [n; x; s; f];
12 fprintf(1, '\n\n n x(n) 1/(n+1) n!\n\n')
13 fprintf(1, '%2.0f %13.8f %10.8f %10.3g\n',z)
```

n	x_{n}	$n!$	n	x_{n}	$n!$
0	0.63212056	1	11	0.07735223	$3.99 \mathrm{e}+007$
1	0.36787944	1	12	0.07177325	$4.79 \mathrm{e}+008$
2	0.26424112	2	13	0.06694778	$6.23 \mathrm{e}+009$
3	0.20727665	6	14	0.06273108	$8.72 \mathrm{e}+010$
4	0.17089341	24	15	0.05903379	$1.31 \mathrm{e}+012$
5	0.14553294	120	16	0.05545930	$2.09 \mathrm{e}+013$
6	0.12680236	720	17	0.05719187	$3.56 \mathrm{e}+014$
7	0.11238350	$5.04 \mathrm{e}+003$	18	-0.02945367	$6.4 \mathrm{e}+015$
8	0.10093197	$4.03 \mathrm{e}+004$	19	1.55961974	$1.22 \mathrm{e}+017$
9	0.09161229	$3.63 \mathrm{e}+005$	20	-30.19239489	$2.43 \mathrm{e}+018$
10	0.08387707	$3.63 \mathrm{e}+006$			

Consider the MatLab computation near $x=1$ of

$$
\begin{gathered}
y=x^{7}-7 x^{6}+21 x^{5}-35 x^{4}+35 x^{3}-21 x^{2}+7 x-1 \\
\text { compared to } \quad y=(x-1)^{7}
\end{gathered}
$$

```
% Rounding Error Graph
x = 0.988:0.0001:1.012;
y = x.^` - 7*x.^ 6 + 21*x.^5 - 35*x.^^4 + ...
    35*x.^3 - 21*x.^2 + 7*x - 1;
YY = (x - 1).^7;
plot(x,y,'k-','linewidth',1.5);
hold on
plot(x,yy,'r-','linewidth',1.5);
grid
```

```
Rate of Convergence
```


Algorithms

Definition（Algorithm）

An algorithm is a procedure that describes，in an unambiguous manner，a finite sequence of steps to be performed in a specific order．

In this class，the objective of an algorithm is to implement a procedure to solve a problem or approximate a solution to a problem．

There are many collection of algorithms＂out there＂called Numerical Recipes

Subtraction Error

The program graphs $x \in[0.988,1.012]$ with the two forms of function：

$$
y=x^{7}-7 x^{6}+21 x^{5}-35 x^{4}+35 x^{3}-21 x^{2}+7 x-1=(x-1)^{7}
$$

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉 inite Precision
Numerical Errors
Algorithms and Convergence
Rate of Convergence
Key Concepts for Numerical Algorithms

Definition（Stability ）

An algorithm is said to be stable if small changes in the input， generates small changes in the output．
－At some point we need to quantify what＂small＂means！
－If an algorithm is stable for a certain range of initial data， then is it said to be conditionally stable．
－Stability issues are discussed in great detail in Math 543 and our Dynamical Systems classes．

Suppose $E_{0}>0$ denotes the initial error，and E_{n} represents the error after n operations．
－If $E_{n} \approx \mathcal{C} E_{0} \cdot n$（for a constant \mathcal{C} ，which is independent of n ）， then the growth is linear．
－If $E_{n} \approx \mathcal{C}^{n} E_{0}, \mathcal{C}>1$ ，then the growth is exponential－in this case the error will dominate very fast（undesirable scenario）．
－Linear error growth is usually unavoidable，and in the case where \mathcal{C} and E_{0} are small the results are generally acceptable． Stable algorithm．
－Exponential error growth is unacceptable．Regardless of the size of E_{0} the error grows rapidly．－Unstable algorithm．
－One property of chaos in a dynamical system is the exponential growth of any error in initial conditions－leading to unpredictable behavior

Rate of Convergence

	Finite Precision Numerical Errors Algorithms and Convergence	Rate of Convergence
Example		

Consider what happens in 5－digit rounding arithmetic，where the initial starting conditions are rounded．

$$
p_{0}^{*}=1.0000, \quad p_{1}^{*}=0.33333
$$

which modifies the constants（by solving the general solution for c_{1} and c_{2} with the p_{0}^{*} and p_{1}^{*} ）

$$
c_{1}^{*}=1.0000, \quad c_{2}^{*}=-0.12500 \cdot 10^{-5}
$$

The generated sequence is

$$
p_{n}^{*}=1.0000(0.33333)^{n}-\underbrace{0.12500 \cdot 10^{-5}(3.0000)^{n}}_{\text {Exponential Growth }}
$$

p_{n}^{*} quickly becomes a very poor approximation to p_{n} due to the exponential growth of the initial roundoff error．

The recursive equation

$$
p_{n}=\frac{10}{3} p_{n-1}-p_{n-2}, \quad n=2,3, \ldots, \infty
$$

has the exact solution

$$
p_{n}=c_{1}\left(\frac{1}{3}\right)^{n}+c_{2} 3^{n}
$$

for any constants c_{1} and c_{2} ．（Determined by starting values．）
In particular，if $p_{0}=1$ and $p_{1}=\frac{1}{3}$ ，we get $c_{1}=1$ and $c_{2}=0$ ，so $p_{n}=\left(\frac{1}{3}\right)^{n}$ for all n ．
What happens with some rounding error，as we don＇t know $\frac{1}{3}$ exactly？

Reducing the Effects of Roundoff Error

－The effects of roundoff error can be reduced by using higher－order－digit arithmetic such as the double or multiple－precision arithmetic available on most computers．
－Disadvantages in using double precision arithmetic are that it takes more computation time，and the growth of the roundoff error is not eliminated but only postponed．
－Sometimes，but not always，it is possible to reduce the growth of the roundoff error by restructuring the calculations．

Examples：Rate of Convergence

Definition（Rate of Convergence）

Suppose the sequence $\beta=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ converges to zero，and $\underline{\alpha}=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to a number α ．

If there exists $K>0$ ：$\left|\alpha_{n}-\alpha\right|<K \beta_{n}$ ，for n large enough，then we say that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to α with a Rate of Convergence $\mathcal{O}\left(\beta_{n}\right)$（＂Big Oh of β_{n}＂）．
We write

$$
\alpha_{n}=\alpha+\mathcal{O}\left(\beta_{n}\right)
$$

Note：The sequence $\beta=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is usually chosen to be

$$
\beta_{n}=\frac{1}{n^{p}}
$$

for some positive value of p ．
5050

Examples：Rate of Convergence

Example 2：Consider the sequence（as $n \rightarrow \infty$ ）

$$
\alpha_{n}=\sin \left(\frac{1}{n}\right)-\frac{1}{n}
$$

The Maclaurin series expansion for $\sin (x)$ is：

$$
\sin \left(\frac{1}{n}\right) \sim \frac{1}{n}-\frac{1}{6 n^{3}}+\mathcal{O}\left(\frac{1}{n^{5}}\right)
$$

Hence

$$
\left|\alpha_{n}\right|=\left|\frac{1}{6 n^{3}}+\mathcal{O}\left(\frac{1}{n^{5}}\right)\right|
$$

It follows that

$$
\alpha_{n}=\mathbf{0}+\mathcal{O}\left(\frac{1}{n^{3}}\right)
$$

Note：

$$
\mathcal{O}\left(\frac{1}{n^{3}}\right)+\mathcal{O}\left(\frac{1}{n^{5}}\right)=\mathcal{O}\left(\frac{1}{n^{3}}\right), \quad \text { since } \quad \frac{1}{n^{5}} \ll \frac{1}{n^{3}}
$$

Examples: Rate of Convergence

Example 2-b: Consider the function $\alpha(h)$ (as $h \rightarrow 0$)

$$
\alpha(h)=\sin (h)-h
$$

The Maclaurin series expansion for $\sin (x)$ is:

$$
\sin (h) \sim h-\frac{h^{3}}{6}+\mathcal{O}\left(h^{5}\right)
$$

Hence

$$
|\alpha(h)|=\left|\frac{h^{3}}{6}+\mathcal{O}\left(h^{5}\right)\right|
$$

It follows that

$$
\lim _{h \rightarrow 0} \alpha(h)=\mathbf{0}+\mathcal{O}\left(h^{3}\right)
$$

Note:

$$
\mathcal{O}\left(h^{3}\right)+\mathcal{O}\left(h^{5}\right)=\mathcal{O}\left(h^{3}\right), \quad \text { since } \quad h^{5} \ll h^{3}, \quad \text { as } \quad h \rightarrow 0
$$

