Math 541 －Numerical Analysis
 Lecture Notes－Calculus and Taylor＇s Theorem

Joseph M．Mahaffy，

〈jmahaffy＠mail．sdsu．edu〉Department of Mathematics and Statistics
Dynamical Systems Group
Calculus Review
－Definitions
－Taylor＇s Theorem

Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2018

Definitions
Taylor＇s Theorem
Why Review Calculus？？？
Background Material－A Crash Course in Calculus

It＇s a good warm－up for our brains

When developing numerical schemes we will use theorems from calculus to guarantee that our algorithms make sense．

If the theory is sound，when our programs fail we look for bugs in the code！

Key concepts from Calculus
－Limits
－Continuity
－Differentiability
－Taylor＇s Theorem

The most fundamental concept in Calculus is the limit．

Definition（Limit）

A function f defined on a set X of real numbers $X \subset \mathbb{R}$ has the limit L at x_{0} ，written

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

if given any real number $\epsilon>0$ ，there exists a real number $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $x \in X$ and $0<\left|x-x_{0}\right|<\delta$ ．

Definition（Continuity（at a point））

Let f be a function defined on a set X of real numbers，and $x_{0} \in X$ ．Then f is continuous at x_{0} if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

It is important to note that computers only have discrete representation，not continuous．

Thus，the computer is often making approximations．

Derivative

Definition（Differentiability（at a point））

Let f be a function defined on an open interval containing x_{0} $\left(a<x_{0}<b\right) . f$ is differentiable at x_{0} if

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \quad \text { exists. }
$$

If the limit exists，$f^{\prime}\left(x_{0}\right)$ is the derivative at x_{0} ．Note：This is the slope of the tangent line at $f\left(x_{0}\right)$ ．

The derivative is used often in this course，and sometimes an approximate derivative is adequate． the remainder term（truncation error）．

Note：$f^{(n+1)}$ exists on $[a, b]$ ，but is not necessarily continuous．

Important Examples：Below are important functions studied in Calculus

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\cos (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
\sin (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Example 1：Approximate sin

From Taylor＇s theorem $\sin (x)$ with x near $\frac{\pi}{6}$

$$
\begin{aligned}
\sin (x)= & \left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n}}{d x^{n}} \sin (x)\right|_{x=\frac{\pi}{6}}\left(x-\frac{\pi}{6}\right)^{n} \\
= & \sin \left(\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{6}\right)\left(x-\frac{\pi}{6}\right)- \\
& \frac{1}{2!} \sin \left(\frac{\pi}{6}\right)\left(x-\frac{\pi}{6}\right)^{2}-\frac{1}{3!} \cos \left(\frac{\pi}{6}\right)\left(x-\frac{\pi}{6}\right)^{3}+\ldots
\end{aligned}
$$

But $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$

Example 1：Approximate $\sin (x)$ with x near $\frac{\pi}{6}$ We know $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ ，so what about $\sin \left(\frac{\pi}{6}+0.1\right)$

Since $f(x) \in \mathcal{C}^{\infty}(-\infty, \infty)$ ，we can use Taylor＇s theorem：

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}
\end{aligned}
$$

With information above and $x=\frac{\pi}{6}+0.1$ ，we have

$$
\begin{aligned}
\sin (x)= & \frac{1}{2}\left[1-\frac{1}{2!}\left(x-\frac{\pi}{6}\right)^{2}+\frac{1}{4!}\left(x-\frac{\pi}{6}\right)^{4}-\ldots\right] \\
& +\frac{\sqrt{3}}{2}\left[\left(x-\frac{\pi}{6}\right)-\frac{1}{3!}\left(x-\frac{\pi}{6}\right)^{3}+\ldots\right] \\
= & \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{6}\right)^{2 n}+\frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x-\frac{\pi}{6}\right)^{2 n+1}
\end{aligned}
$$

It follows that $\sin \left(\frac{\pi}{6}+0.1\right)$ satisfies：

$$
\sin \left(\frac{\pi}{6}+0.1\right)=\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(0.1)^{2 n}+\frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}(0.1)^{2 n+1}
$$

Examining the infinite sums，we see both the $(0.1)^{n}$ and the factorials in the denominator resulting terms going to zero
We truncate the series at $n=N$ ，gives the approximation at
$x=\frac{\pi}{6}+0.1$

$$
\sin \left(\frac{\pi}{6}+0.1\right) \approx \frac{1}{2} \sum_{n=0}^{N} \frac{(-1)^{n}}{(2 n)!}(0.1)^{2 n}+\frac{\sqrt{3}}{2} \sum_{n=0}^{N} \frac{(-1)^{n}}{(2 n+1)!}(0.1)^{2 n+1}
$$

Truncating the series at $n=N$ leaves a polynomial of order $2 N+1$

$$
T_{N}(x)=\frac{1}{2} \sum_{n=0}^{N} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{6}\right)^{2 n}+\frac{\sqrt{3}}{2} \sum_{n=0}^{N} \frac{(-1)^{n}}{(2 n+1)!}\left(x-\frac{\pi}{6}\right)^{2 n+1},
$$

where x is＂close＂to $\frac{\pi}{6}$

Example 1：Approximate sin

Below is the graph of $y=\sin (x)$ with the Taylor polynomial fits of order 1,3 ，and 5 ，passing through $x_{0}=\frac{\pi}{6}$

We observe even a cubic polynomial fits the sine function well

The error or remainder satisfies：
$R_{N}(x)=\frac{1}{2} \sum_{n=N+1}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{6}\right)^{2 n}+\frac{\sqrt{3}}{2} \sum_{n=N+1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x-\frac{\pi}{6}\right)^{2 n+1}$,

Thus， $\sin \left(\frac{\pi}{6}+0.1\right)=T_{N}\left(\frac{\pi}{6}+0.1\right)+R_{N}\left(\frac{\pi}{6}+0.1\right)$
If we use the approximation from the previous page with $x=\frac{\pi}{6}+0.1$ ， we find the following polynomial evaluations：

	Poly Order	Approximation	Error
$\sin \left(\frac{\pi}{6}+0.1\right)$	∞	0.58396036	
$T_{1}\left(\frac{\pi}{6}+0.1\right)$	1	0.58660254	0.45246%
$T_{2}\left(\frac{\pi}{6}+0.1\right)$	3	0.58395820	-0.00037%
$T_{3}\left(\frac{\pi}{6}+0.1\right)$	5	0.58396036	$8.56 \times 10^{-8} \%$

The remainder term in Taylor＇s theorem is useful for finding bounds on the error．

Recall

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{(n+1)}
$$

with $\xi \in\left(x_{0}, x\right)$ ．However，we rarely know ξ ．
A bound on the error satisfies

$$
\begin{aligned}
\max _{x \in\left[x_{0}-\delta, x_{0}+\delta\right]}\left|R_{n}(x)\right| & =\max _{x \in\left[x_{0}-\delta, x_{0}+\delta\right]} \frac{\left|f^{(n+1)}(\xi)\right|}{(n+1)!}\left|x-x_{0}\right|^{(n+1)} \\
& \leq \frac{\delta^{n+1}}{(n+1)!} \max _{x \in\left[x_{0}-\delta, x_{0}+\delta\right]}\left|f^{(n+1)}(\xi)\right|
\end{aligned}
$$

For this example，the $(n+1)^{s t}$ derivative of $f(x)=\sin (x)$ satisfies

$$
\left|f^{(n+1)}(\xi)\right| \leq 1
$$

and we are taking $\delta=0.1$
It follows that

$$
\begin{aligned}
\max _{x \in\left[x_{0}-\delta, x_{0}+\delta\right]}\left|R_{n}(x)\right| & \leq \frac{\delta^{n+1}}{(n+1)!} \max _{x \in\left[x_{0}-\delta, x_{0}+\delta\right]}\left|f^{(n+1)}(\xi)\right| \\
& \leq \frac{\delta^{n+1}}{(n+1)!} \leq \frac{(0.1)^{n+1}}{(n+1)!}
\end{aligned}
$$

We saw the error for $T_{2}(x)$（cubic fit）was 2.16×10^{-6} ．
The error approximation gives

$$
E_{3}(x) \leq \frac{(0.1)^{4}}{4!} \approx 4.17 \times 10^{-6}
$$

which is only double the actual error

Our function is clearly $\mathcal{C}^{\infty}(-\infty, \infty)$ ，so Taylor＇s theorem readily applies

$$
f(x)=\cos (\cos (x))=\sum_{0}^{\infty} \frac{1}{n!} \frac{d^{n} f(0)}{d x^{n}} x^{n}
$$

There is no easy form for $\frac{d^{n} f(0)}{d x^{n}}$ ，but taking a few terms is not hard

$$
\begin{aligned}
f(0) & =\cos (\cos (0))=\cos (1) \\
f^{\prime}(0) & =\sin (\cos (0)) \sin (0)=0 \\
f^{\prime \prime}(0) & =-\cos (\cos (0)) \sin ^{2}(0)+\sin (\cos (0)) \cos (0)=\sin (1)
\end{aligned}
$$

It follows that a quadratic approximating polynomial is：

$$
f(x) \approx P_{2}(x)=\cos (1)+\frac{\sin (1)}{2} x^{2}
$$

The $2^{\text {nd }}$ order Maclaurin series expansion $P_{2}(x)=\cos (1)+\frac{\sin (1)}{2} x^{2}$ is easily integrable

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \cos (\cos (x)) d x & \approx \int_{0}^{\frac{\pi}{2}}\left(\cos (1)+\frac{\sin (1)}{2} x^{2}\right) d x \\
& =\left.\left(\cos (1) x+\frac{\sin (1) x^{3}}{6}\right)\right|_{0} ^{\frac{\pi}{2}} \\
& =\frac{\pi \cos (1)}{2}+\frac{\pi^{3} \sin (1)}{48} \approx 1.392265
\end{aligned}
$$

which is larger than the actual value (1.201970) as seen in the graph． This is a 15.8% error，so not great．

Example 2：Integrate $\cos (\cos (x))$

The integral is now approximated by
$\int_{0}^{\frac{\pi}{4}} \cos (\cos (x)) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos (\cos (x)) d x \approx \int_{0}^{\frac{\pi}{4}} P_{2}(x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} T_{2}(x) d x$,
where

$$
\begin{aligned}
& P_{2}(x) \approx 0.54030+0.42074 x^{2} \text { and } \\
& T_{2}(x) \approx 0.76024+0.45936\left(x-\frac{\pi}{4}\right)+0.039620\left(x-\frac{\pi}{4}\right)^{2}
\end{aligned}
$$

However，integrating these quadratic polynomials is easy

$$
\int_{0}^{\frac{\pi}{4}} P_{2}(x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} T_{2}(x) d x \approx 0.492297+0.745172=1.237469
$$

which is only a 2.95% error from the actual value

How much is the error improved if the interval is divided into two equal intervals？

This time we use Taylor＇s expansions around $x_{0}=0$ and $x_{0}=\frac{\pi}{4}$ ，and again truncate with $2^{\text {nd }}$ order polynomials

About $x_{0}=\frac{\pi}{4}$ ，Taylor＇s series is

$$
\begin{aligned}
T_{2}(x)= & \cos \left(\frac{\sqrt{2}}{2}\right)+\frac{\sqrt{2} \sin \left(\frac{\sqrt{2}}{2}\right)}{2}\left(x-\frac{\pi}{4}\right) \\
& +\left(\frac{\sqrt{2} \sin \left(\frac{\sqrt{2}}{2}\right)}{4}-\frac{\cos \left(\frac{\sqrt{2}}{2}\right)}{4}\right)\left(x-\frac{\pi}{4}\right)^{2} \\
\approx & 0.76024+0.45936\left(x-\frac{\pi}{4}\right)+0.039620\left(x-\frac{\pi}{4}\right)^{2}
\end{aligned}
$$

Example 2：Integrate $\cos (\cos (x))$

The figure below shows a diagram for the computations done above with two approximating quadratics for finding the area

