Math 337 Solutions Review Exam 1
1. a. This is a linear differential equation,so it can be written

Ccll_i + (0.2t — 2)y =0, with  p(t) = e (0:21=2)dt _ 0172t

where p(t) is the integrating factor. It follows:

d 2_ 2_
- (eo.lt 2ty) —0 or 0120y (1) =

It follows that y(t) = Ce2t01* The initial condition y(0) = 10 = C. Hence, the solution is

y(t) = 10247018,

b. This is a time varying differential equation. It can be written

y(t):/(2—%)dt:2t—4ln(t)—|—0.

The initial condition y(1) = 5 = 2+C, which implies C' = 3. Hence, the solutionis y(t) = 2¢ — 4 In(¢) + 3.

c. This is a separable differential equation. It can be written
/2y dy = /3t2 dt or i) =3+ C.
It follows that y(t) = £v/t3 + C. The initial condition y(0) = 4 = +/C, which implies C = 16.

Hence, the solution is
y(t) = Vi3 + 16.

d. This is the logistic growth differential equation, which can be written

d d
Y _ 0.02y (1 - i) or 0,02y = —0.000542,

dt 40 dt
which is a Bernoulli’s equation. Make the substitution u = y' =2 =y, so 3_1; = —y‘Qz—?. Multiply
the equation above by —y~2, and
d d
—y—Qd—i £0.02571 =0.0005  or d—? +0.02u = 0.0005,

which is a linear equation with integrating factor u(t) = e%9%. Thus,

d
7 (") = 00005 or  OPu(t) = 0.025¢" 4 C.

Hence, with the initial condition

1
ol u(t) = 0.025 + Ce®% or 01=0.025+C, so C=0.075.
y



It follows that
1 40

T 0.025 + 0.075¢0020 1 4 3002

y(t)

e. Rewrite the equation as

d
3y—6t+(3t+4y)d—? —0.

Since BMT(yt’y) =3 = %, this equation is exact. Integrating we see

/ (3y — 6t)dt = 3ty — 3t + h(y) and / (3t + 4y)dy = 3ty + 2y* + k(2).
It is clear that the potential function is
B(t,y) = 3ty — 3t> + 2> = C.
With the initial condition y(0) = 4, the solution becomes

b(t,y) = 3ty — 3t> + 2% = 32.

f. This linear DE equation can be rewritten

d 2 1
d—?i - 79 — A2sin(4t),  so  p(t)=e J 2= -
Thus,
% <t%> = 4sin(4t) or % = —cos(4t) + C.

It follows that
y(t) = Ct? —t?cos(4t), so 2=C —cos(4) or C =2+ cos(4).
Hence, the solution is

y(t) = (2 4 cos(4))t* — t% cos(4t).

g. This is a linear and separable differential equation. We solve this time using separable techniques.

The equation can be written
/ dy / 2tdt
y J 241

The right integral uses the substitution u = t? 4 1, so du = 2t dt. Hence,

d
Inly(t) = /—“ —lnju|+C =l +1)+C
u
y(t) _ eln(t2+1)+0 _ A(t2 + 1)’
where A = e“. The initial condition y(0) = 3 = A, which implies A = 3. Hence, the solution is

y(t) = 3(t* + 1).



h. This is a separable differential equation. It can be written
/eydy = /etdt or eV =el +C.

It follows that y(t) = In(e! + C). The initial condition y(0) = 6 = In(1 + C), which implies
C = €5 — 1. Hence, the solution is

y(t) = In(ef +e® —1).

i. Rewrite this equation y(0) = 6

dy
t_ 24 (ef —2y)—= =0.
ye + (e y)dt

Since aMT(;’y) =el = %, this equation is exact. Integrating we see

/(yet —2)dt = ye! — 2t +h(y) and /(et —2y)dy = yet — y* + k(t).
It is clear that the potential function is
o(t,y) = ye' =2t —y* = C.
With the initial condition y(0) = 4, the solution becomes

ot y) = y(t)el — 2t —y2(t) =4 — 16 = —12.

j- The DE
dy 3t
E + y=vye
is a Bernoulli’s equation, where we make the substitution u = y'=3 = y=2, so ‘fi—? = —2y*3%.
Multiplying the above equation by —2y~3, we obtain the linear DE in u(t)
d d
—2y73d—i —2y 2= —2¢! or d—ZtL —2u = —2¢.

This has the integrating factor u(t) = e=%, so

d

7 (672tu(t)) = —2¢ " or e 2u(t) =271 4 C.

It follows that

= u(t) = 2¢" + Ce*, S0 1=2+C or C=-1

Thus,



2. a. The solution to the white lead problem is P(t) = 10e~*, where ¢t = 0 represents 1970. From
the data at 1975, we have 8.5 = 10e™°F or ¢°* = 10/8.5 = 1.17647. Thus, k = 0.032504 yr—'. To
find the half-life, we compute 5 = 10e ™", so t = In(2)/k = 21.33 yr is the half-life of lead-210.

b. The differential equation can be written P’ = —k(P — r/k), so we make the substitution
z(t) = P(t) — r/k. This leaves the initial value problem

N

"= —kz, 2(0)=P0)—r/k=10—r/k,

which has the solution z(t) = (P(0) — r/k)e~* = P(t) — r /k. Thus, the solution is

P(t) = (10 = %) e M 4 - = 2.3086 ' 4 76914,

where k£ = 0.032504. In the limit,

lim P(t) = 7.6914 disintegrations per minute of 2'°Pb.

t—o00

3. a. The differential equation describing the temperature of the tea satisfies
H'=—k(H —21), H(0)=85and H(5) = 81.
Make the substitution z(t) = H(t) — 21, which gives the differential equation
2= —kz, 2(0)=H(0) - 21 =64.
The solution becomes z(t) = 64e~* = H(t) — 21 or
H(t) = 64e~ " + 21,

To find k, we solve H(5) = 81 = 64e~°% 4 21 or ¢°* = 64/60 = 1.0667. Thus, k = 0.012908 min~'.
The water was at boiling point when 64e= % + 21 = 100 or e * = 79/64. It follows that ¢ =
—1In(79/64)/k = —16.3 min. This means that the talk went 16.3 min over its scheduled ending.

b. To obtain a temperature of at least 93°C, then we need to find the time that satisfies H(t) =
93 = 64e " + 21, so e * = 72/64 = 1.125. Solving for ¢ gives t = —In(72/64)/k = —9.125 min. It
follows that you must arrive at the hot water within 16.3 — 9.1 = 7.2 min of the scheduled end of
the talks.

4. a. Substituting the parameters into the differential equation gives

/
C

1
= 1—06(22000 —2000c) = —0.002(c — 11).
We make the substitution z(t) = ¢(t) — 11, which gives the initial value problem z’ = —0.002z with
2(0) = ¢(0) — 11 = —11. The solution of this differential equation is z(t) = —11e 70992 = ¢(¢) — 11,
SO
c(t) = 11 — 1170002,



b. Solve the equation c(t) = 11 — 11e7%092¢ = 5 50 09920 = 11/6 or t = 500In(11/6) =
303.1 days. The limiting concentration

li =11
A3z, )
The graph is below.
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5. The differential equation is separable, so write
/T*%dT _ k:/dt or  2TH(t) = kt+C.

It follows that

() = (/-ct-;C){

2 2
The initial condition T'(0) = 1 implies C' = 2, so T(t) = (& +1)". Since T(4) = (4 +1)" = 25,
2k +1 =5 or k=2. Thus, the solution for the spread of the disease in this orchard is

T(t) = (t+ 1)

When t = 10, T(10) = 121.

6. The differential equation with the information in the problem is given by:

dH
—r = —k(H-25),  H(0)=35,

where t = 0is 7 AM. We make the change of variables z(t) = H(t) — 25, so 2(0) = 10. The problem
now becomes

d
d—j — —kz,  2(0) =10,
which has the solution
2(t) =10e™™ or H(t) =25+ 10e ™.



From the information at 9 AM, we see

10
10 In (g5
H(2)=335=25+10c or =2 or k= (28 ) = 0.081259.
It follows that
H(t) = 25 4 10 031299,
The time of death is found by solving
_ B 14 In(1.4)
H(t)) =39 =25 10 0.081259t4 0.081259t4 _ — = t,=———~""  — _41407.
(fa) Fi0e o e 10 7 T T0.081259

It follows that the time of death is 4 hours and 8.4 min before the body is found, which gives the
time of death around 2:52 AM.

7. a. The solution of the Malthusian growth model is B(t) = 1000¢e%%?, The population doubles
when the bacteria reaches 2000, so 1000e%%? = 2000 or %0 = 2. Thus, 0.01¢ = In(2) or
t = 1001n(2) ~ 69.3 min for the population to double.

b. The model with time-varying growth is a separable differential equation, so

B » iB »
=001 -¢)B o /B _0.01/(1 et

In|B(t)| = 0.01(t+e ) +C or B(t) = Aeh0t+te)
where A = . With the initial condition, B(0) = 1000 = Ae%%' or A = 10007901, Thus, the
solution to this time-varying growth model is

B(t) = 1000 *01(t+e™ 1),

c. The Malthusian growth model gives B(5) = 1051 and B(60) = 1822, while the modified growth
model gives B(5) = 1041 and B(60) = 1804.

8. a. The solution to the Malthusian growth model is given by P(t) = 100e%2¢. This population
doubles when 100 e%2? = 200 or ¢"2* = 2, so t = 5In(2) ~ 3.466 yrs.

b. This model, including the modification for habitat encroachment, is a separable differential
equation. It can be written

dp
/? = /(0.2 —0.02t)dt  or  In|P|=02t—0.01t>+C.

It follows that P(t) = e0-21-0-014C — A02t-001¢* whore A = ¢C. The initial condition P(0) =
100 = A, which implies A = 100. Hence, the solution satisfies

P(t) = 100 %2001,

c. We examine the differential equation in Part b and see that % = 0 when 0.2 — 0.02t = 0,
which implies that ¢ = 10. Thus, the maximum of population is P(10) = 100e ~ 271.8. If we
solve P(t) = 100e%2t-001%* — 100 then this is equivalent to e®2t=001¢* — 1 or 0.2¢ — 0.01£2 =
—0.01¢(t — 20) = 0. Thus, either ¢ = 20 (or 0), so the population returns to 100 after 20 years.
The graph of the population can be seen below.
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9. a. This population of cells in a declining medium satisfies a separable differential equation, which
can be written

/ P23dp = / 03¢ %%t or  3PY3(t) = —-30e" %M 1 3C.

It follows that P'/3(t) = —10e7001% 4 C, s0 P(t) = (C — 10 6*0'0”)3. The initial condition P(0) =
1000 = (C' — 10)3, which implies C' = 20. The solution is given by

P(t) = (20 — 10¢*! t)?’ .

b. This population doubles when P(t) = (20 — 106*0'0“)3 = 2000, so 20 — 10e7%01t = 102 or
e=001t — 9 Y3 Tt follows that ¢ = 100 In (ﬁ) ~ 30.1 hr. For large ¢, lim;_o0 e %01t = 0, s0
limy o P(t) = 20% = 8000. Thus, there is a horizontal asymptote at P = 8000, so the population
tends towards this value. The graph of the population can be seen above.

10. a. The change in amount of phosphate, P(t), is found by adding the amount entering and
subtracting the amount leaving.

dP
—r = 20010 — 200 ¢(t),

where ¢(t) is the concentration in the lake with ¢(t) = P(t)/10,000. By dividing the equation by
the volume, the concentration equation is given by

d
d—j —0.2—0.02c = —0.02(c — 10),  ¢(0) =0.
With the substitution z(t) = ¢(¢) — 10, the equation above reduces to the problem
d
d—i = 002z,  2(0)=—10,
which has the solution z(t) = —10e~%%2¢. Thus, the concentration is given by

c(t) =10 — 10e7002¢,

b. The differential equation describing the growth of the algae is given by

dA
— 0.5(1 — ¢—0:02t) 42/3
= 0.5(1 —e )



By separating variables, we see

/A*2/3dA - 05/ 0020 gy
3AY3() = 0.5(t+50e7 02 4

o—0.02t 3
Aty = <0.5(t+503 )+C’>

L . 2540\ 3
From the initial condition A(0) = 1000, we have 1000 = ( 2= . It follows that C' = 5, so
3

£ 4507002 10
A(t) = ( ;

11. a. Write the differential equation d—w = —0.2(w — 80), then z(¢) = w(t) — 80. It follows that

d
d—’j =02z,  2(0) = —80,

with the solution z(t) = —80e~%-?* = w(t) — 80. Thus,

w(t) =80 (1 - 02).
For a 40 kg alligator, w(t) = 40 = 80 (1 — e~ %2") or 40 = 80~ s0 % = 2 or 0.2t = In(2).
Thus, t = 51n(2) ~ 3.47 years. b. The pesticide accumulation is given by

‘il]; =600 (80 (1)),  P(0)=0.

The solution is given by
= 48 000/ e™02) dt = 48,000 (¢ + 5e ) + C,
The initial condition gives P(0) = 0 = 240,000 + C, so C' = —240,000. Hence,
P(t) = 48,000 (t + 5¢~2") — 240,000,

The amount of pesticide in the alligator at age 5 is P(5) = 48,000 (5 + 5e~!) — 240,000 =
240,000e~! ~ 88291 pug.

c. The pesticide concentration for a 5 year old alligator is

P() 88,291
1000w(5) 80,000 (1 —e~1)

c(5) = ~ 1.75 ppm.

12. a. The differential equation can be written:

de
— = —0.004(c — 15
dt (C )7



so we make the substitution z(t) = ¢(t) — 15. Since ¢(0) = 0, it follows that z(0) = —15.

solution of the substituted equation is given by:

2(t) = —15e %004 — () — 15
c(t) = 15— 15e 0004,

The limiting concentration satisfies:

. _ 3
tlggo c(t) =15 mg/m".

b. We begin by separating variables, which gives:

dc
= —0.001 / (4- 0172
/0—15 0.00 /( cos(0.0172t)) dt
sin(0.0172¢)
In(c(t) — 15) = —0.001 (4t — ————=
n(c(t) 5) 0.00 ( oorr )—1—0
c(t) = 15+A6—0.001(4t_%)

The

It is easy to see that the initial condition ¢(0) = 0 implies that A = —15. Thus, the solution to this

problem is given by:

c(t) = 15 — 15 ¢~ 0-001(4¢=58.145in(0.0172t))

13. a. We separate variables, so

/M—3/4dM _ —k:/dt or AMY4 = _kt + 40

= (-5’

From the initial condition, M (0) = 16 = C*, it follows that C' = 2. From the information that

M(10) = 1 = (2 — 10k/4)*, we have k = 0.4, so
M(t) = (2 = 0.1t)%.
The fruit vanishes in 20 days.

b. We separate variables again to find:

/ M=34AM = —0.8 / e 00%dt or AM'V* = —00'082 e 00 440

M(t) = (10e7002 4 0)4.

From the initial condition, M (0) = 16 = (10 + C)%, it follows that C' = —8, so

M(t) = (10e700% - 8)4 .



Solving 10e~%0% = 8 which is when the fruit vanishes, we find ¢ = 501In(5/4). Thus, the fruit
vanishes in 11.157 days.

14. a. The general solution to the Malthusian growth problem with the initial condition P(0) = 60
is
P(t) = 60e".
We are given that 2 weeks later P(2) = 80 = 60 ¢®", so it follows that r = 1 In (%) = 0.14384. This
gives the solution:
P(t) — 60 60.1438415'

It is easy to see that the population doubles when 120 = 6014384t 50 0.14384 ¢4 = In(2) or the
doubling time is

= 4.819 weeks.

b. We begin by separating variables, so the general solution satisfies:
dP b2 2
/? - /(a—bt) dt or W(P(t) =at—=-+C or P(t)=c et
Since the initial value is P(0) = 60, it follows that ¢ = 60. Thus,
2
P(t) = 60217,

We now use the data at t = 2 and 4 weeks. It follows from the solution above that

80 = 60e2% 720
90 = 60e*280,

We rearrange the terms and take logarithms of both sides to get

4
2a—2b = In|(-=
a n(3)
3
4a—-8b = In(-|.
. a(3)
We solve these equations simultaneously to obtain
2b=1n(3) - 51 (5).
3 2 2
so b= 0.042475. But a = b+ 11n(4/3) or a = 0.1863. It follows that the solution is

P(t) = 60 £0-18631-0.021237 2
The population reaches a maximum when the derivative is zero, which occurs when ty4; = § =
4.3865, so the maximum population is P(tq.) = 90.286.
. : . dy -
15. a. For the differential equation i t(2 — y), the Euler formula is given by

Ynt1 = Yn +h (tn(2 = yn)) = yn +0.25 (t4(2 — yn)) -

For this problem, yg = 4, we can use the Euler’s formula to create the following table:



to =0 Yo = 4

t1 =025 | y1 = yo+ 0.25 (t()

t2 =05 | y2=y1 +0.25(

t3 = 0.75 | y3 = yo + 0.25 (f2
(

2—y0)=4+025(0)(2—4) =4

t1(2— 1)) = 4 + 0.25(0.25)(2 — 4) = 3.875
(2—y)) =
(2-y3) =

—12)) = 3.875 + 0.25(0.5)(2 — 3.875) = 3.6406
y3)) = 3.6406 + 0.25(0.75)(2 — 3.6406) = 3.3330

ty =1.0 ys = ys + 0.25 (13

Thus, the approximate the solution at ¢t = 1 is y4 ~ y(1) = 3.3330.

b. The differential equation is a separable differential equation. If we write the differential

d
equation d_i = —t(y — 2), then we have the following integrals:

dy
— = — [tdt
/y—2 /

t2
Inly—2| = —E—FC’
y(t) =2 = e BP0 = gt/
y(t) = 2+ Ae /2

With the initial condition, we find that A = 2. Thus, the solution to the initial value problem is
y(t) =242/
It follows that y(1) = 2 + 279 ~ 3.21306. The error between the actual and Euler’s solution is

oo W —y() _ |, (3:3330 — 3.21306)

= 3.73%.
y(1) 3.21306 %

16. a. For the differential equation, E = —0.05R+0.2¢7 %% with R(0) = 10 and h = 1, the Euler’s
formula is

Ry+1 = R, + h(—0.05R,, + 0.26_0'01tn) — R, — 0.05R,, 4+ 0.2¢=0-01tn_

Iterating this, we create a table

to=0 ] Ry =10

ti=1| R = Ry—0.06Ry + 0.2 90 =10 - 0.54+0.2=9.7

ta=2| Ry =Ry —0.05R; +0.2¢7 0011 =97 —0.485 + 0.198 = 9.413
ts =3 | R3 = Ry — 0.05Ry + 0.2e70-012 = 9,413 — 0.471 + 0.096 = 9.138

Thus, the approximate the solution at ¢t = 3 is Ry ~ R(3) = 9.138.

b. The DE is linear and can be written

C;—R +0.05R = 0.2¢7%01  with  p(t) = "0,
It follows that it can be written
d

7 (CORM) =022 or PPR(H) = 0.2 / Ot = 50U 4 (.



Thus,
R(t) =5e 00" 4 Ce7 0% or  R(0)=10=5+C.

The solution is R(t) = 5729 4 5790 The correct solution at t = 3 is R(3) = 9.15576. The
percent error between the correct solution and the Euler solution

(R(3) — Ry) _ | (9-15576 — 9.138)

100
R(3) 9.15576

= 0.19%.

17. (Allee effect) Consider the DE given by the model:

dP 9

=P (9-0.01(P ~70°) = A(P).

The equilibria of this population model satisfy P (9 — 0.01(P — 70)?) = 0. Thus, P. = 0, 40, and
100. From the phase portrait below, it is easy to see that the equilibria P, = 0 and 100 are stable,
while P, = 40 is unstable. The carrying capacity for this population is P, = 100, and the critical
threshold number of animals required to avoid extinction is P, = 40.
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18. a. The solution follows the logistic growth solution seen in 1. d. The solution is

10,000

Ft) = ——————.
®) 50 + 150e—0-4

b. This is a standard logistic growth model, so the equilibria are F, = 0 and 200 (thousand).
Below is a sketch of the function with the phase portrait. The equilibrium F, = 0 is unstable, while
the carrying capacity, F, = 200 (thousand), is a stable equilibrium.
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c. With harvesting, the right hand side of the differential equation is written

F
0A4F <1 - %) — 15 = —0.002F2 + 0.4F — 15 = —0.002(F — 50)(F — 150).
It follows that the equilibria are F, = 50 and 150 (thousand). Above is a sketch of the function
with the phase portrait. The equilibrium F, = 50 (thousand) is the critical number of fish needed
to avoid extinction and this equilibrium is unstable. The carrying capacity, F, = 150 (thousand),
is a stable equilibrium.



