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Introduction

Introduction

Introduction

@ This is the second part of notes for Systems of Two 1°¢ Order
Differential Equations

@ Part A has the topics below

o A motivating example of a Greenhouse/Rockbed system of
passive heating

e Solutions for the example above - illustrating key techniques

e Graphs for direction fields and phase portraits

e MatLab and Maple introduced for these problems

@ Part B has the following topics

o Definitions and theorems for Systems of Two 1% Order
Differential Equations

e Superposition and linear independence

e Solving with eigenvalue techniques

o Analysis of different cases with their phase portraits S0SJ
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Solutions of Two 1°! Order Linear DEs . ; . )
Existence and Uniqueness

General Linear System - 2D

General System of Two 1°¢ Order Linear DEs
@1\ _ ( pu()zr + pra(t)ze + g1(t) (1)
To pa1(t)w1 + paa(t)ze + g2(t) )’

which can be written
x=P(t)x+g(t),

where

T pua(t)  pra(t) > < 91(t) >
x ( T2 > ’ ®) ( p21(t) paa(t) )’ and - g(t) ga(t)
System (1) is a 1! order linear system of DEs of dimension 2

If g(t) = 0, then System (1) is homogeneous; otherwise it is
nonhomogeneous
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Solutions of Two 1°! Order Linear DEs

Existence and Uniqueness

Two 1% Order Linear DEs

Existence and Uniqueness for Two 1°! Order Linear DEs

Theorem (Existence and Uniqueness)

Let each of the functions pi11,...,p22, 91, and gs be continuous on an
open interval I = {t|t € (o, B)}, let to be any point in I, and let x19
and xo0 be any given numbers. Then there exists a unique solution to
the system (1):

( i > _ < p11(t)x1 + pra(t)ze + g1(t) )

To p21(t)x1 + po2(t)z2 + g2(t)

that also satisfies the initial conditions

z1(to) = 10, x2(to) = w20.

Further the solution exists throughout the interval I.
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Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE A
Eigenvalue Problem

Linear Autonomous System

Linear Autonomous System: If the coefficient matrix P and
vector function g are independent of time, i.e., constants, then we
have the linear autonomous system

x = Ax + b,
with constant matrix A and constant vector b.
The equilibrium solutions or critical points are found by solving:
Ax,=-b or x. = —A"'b.

The change of variables y = x — x. allows us to concentrate on the
homogeneous linear system with constant coefficients

y=Ay
SDSO
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Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE A
Eigenvalue Problem

Superposition Principle

Theorem (Superposition Principle)

Suppose that x1(t) and x2(t) are solutions of the equation
x(t) = Ax(t).
Then the expression

x(t) = e1x1(t) + caxa(t),

where c¢1 and cy are arbitrary constants, is also a solution.

We use the linearity of differentiation and matrices to show this

X(t) = % (C1X1 (t) + CoXo (t)) = X1 (t) + coxXq (t)
= 1 AX(t) + c2Axa2(t) = A (c1x1(t) + caxa(t)) = Ax(t)

SDSJT
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Superposition and Linear Independence
Fundamental Solution
Eigenvalue Problem

Homogeneous Linear System of Autonomous DE

Wronskian and Linear Independence

Definition (Wronskian)

Suppose that x;(t) = [111(t), 221 (¢)]T and x2(t) = [112(t), 222 (t)]T .
The Wronskian of the solutions x;(¢) and x2(t) is given by the
determinant

Definition (Linear Independence of Solutions)

Suppose that x1 () and x2(¢) are solutions of x(t) = Ax(t) on some
interval I. We say that x; and x5 are linearly dependent if there
exists a constant k such that

x1(t) = kxa(t), for all ¢ in I.

Otherwise, x; and x5 are linearly independent. P

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (8/54)



Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE A
Eigenvalue Problem

Wronskian and Linear Independence

Theorem (Wronskian and Linear Independence)

Suppose that
() 0 o-(20)

are solutions of X(t) = Ax(t) on an interval I. Then x; and x5 are
linearly independent if and only if the Wronskian

Wx1,x2](t) # 0, for all ¢ in I.

The two linearly independent solutions of x(t) = Ax(t) are often
called a fundamental set of solutions
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Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE Beeviine Prelbern

Fundamental Solutions

Theorem (Fundamental Solutions)

Suppose that x1(t) and x2(t) are two solutions of
x(t) = Ax(t @)

and that their Wronskian is not zero on an interval I. Then x1 and
Xy form a fundamental set of solutions for (2), and the general
solution is given by

x(t) = e1x1(t) + caxa(t),

where c¢1 and cy are arbitrary constants. If there is a given initial
condition x(ty) = xo, where Xg is any constant vector, then this
condition determines the constants c1 and co uniquely.
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Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE e g i e

Solving x = Ax

Consider the general problem

where
x — T 7 A — ail a2 .
T2 a1 a2
We attempt a solution of the form
x = eMy, SO AeMy = AeMy

At

Since e™' is never zero,

Av =)v or (A= AI)v=0,
where I is the 2 x 2 identity matrix

This is the classic eigenvalue problem SDSO



Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE e g i e

Figenvalue Problem

Thus, solving the homogeneous DE %x(t) = Ax(¢) is equivalent to
solving the eigenvalue problem

(A-AX)v=0 with A= ( @ a2 )
a21 A22

From Linear Algebra (Math 254) the eigenvalues are found by

solving

aip — A ai2
a21 aze — A

det |A — MI| =

’ 0.
This gives the characteristic equation
A2 — (a11 + az2) A + ar1a2a — agpaz; =0

This is a quadratic equation, so easily solved for A\; and Ay

Each J; is inserted into (A — AI)v = 0, and the corresponding
eigenvectors, v; are found
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Real and Different Eigenvalues

Case Studies and Bifurcation

Consider x = Ax and assume that the eigenvalue problem
(A — MI)v = 0 has real and different eigenvalues, A\; and A,

The two solutions are

x,(t) = eMlvy and xa(t) = €% vq,
so the Wronskian is
At Aot
_ | e U12€ _ | Y11 Y12 (A1+A2)t
Wha(t) ()t = | 0L UL | =] e e

Since e 220t i5 nonzero, the Wronskian is nonzero if and only if
det |vq, va| = 0.

Recall if the Wronskian is nonzero, then x;(¢) and x3(t) form a
fundamental set of solutions to the system of DEs
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Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues

Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Linear Algebra Result

Let A have real or complex eigenvalues, A1 and g, such that \y # Ao,
and let the corresponding eigenvectors be

v1:<vn> and ng(v12>.
V21 V22
If V is the matriz formed from vi and vo with

v v
VvV — 11 12 :
V21 V22

det |V| = Z; Z;i £0.

then

V.

>0SJ
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Real and Different Eigenvalues

Case Studies and Bifurcation

Real and Different Eigenvalues

The two previous slides show that if A has real and different
eigenvalues, \; and \,, then the system

x = Ax

has a fundamental set of solutions

Aot

x,(t) = eMlvy and Xa(t) = e™?'vq,

where vy and vy are the corresponding eigenvectors for A\; and Ao,
respectively

It follows that the general solution can be written

X(t) = cle)‘ltvl + CgeAthQ.
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Real and Different Eigenvalues
Co i values
vigenvalues
Case Studies and Bifurcation 3i ation Example and Stability Diagram

Real and Different Eigenvalues 2

Example 1: Consider the example:

()= D)(2)

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

—05—-X 2
det‘ 0 _1_)\‘_(A+0.5)(/\+1)_0,
which is the characteristic equation with solutions A\; = —0.5 and

Ay =—1
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Real and leferent Elgenvalues

Case Studies and Bifurcation

Real and Different Eigenvalues

Example 1 (cont): For Ay = —0.5 we have:

(" L8 )(8)=(6 55 )(8)=(5)

This results in the eigenvector £V = ( (1] )

Similarly, for A = —1 we have:

(0 L)) = (T o)(e)-(3)

This results in the eigenvector £(2) = ( :11 )
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Case Studies and Bifurcation

Real and Different Eigenvalues

Compl
Repea

' Eigenvalu
Bifur

Real and Different Eigenvalues

x Eigenvalues

on Example and Stability Diagram

Example 1 (cont): The results above give the general solution

xl(t)
$2(t) 0

which is a solution exponentially
decaying toward the origin.

:Cl

This is a sink or stable node.

Solutions move rapidly

in the direction £?) = ( :11 ),
while decaying more slowly in the
direction €M) = ( (1) )
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Real and Different Eigenvalues
Co i values
vigenvalues
Case Studies and Bifurcation 3i ation Example and Stability Diagram

Real and Different Eigenvalues

Example 2: Consider the example:

(2)-(2)(2)

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

-A 1

det 34—

':A2—4)\+3=(/\—1)(/\—3):0,

which is the characteristic equation with solutions A\; = 1 and
)\2 = 3
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Real and Different Eigenvalues
i : es

Case Studies and Bifurcation 3if io E: e and Stability Diagram

6

Example 2 (cont): For A\; =1 we have:

(5 )(8)-(50)(8)-(
-3 4-X\ &) \ -3 3 &)
This results in the eigenvector £V = ( } )

Similarly, for Ao = 3 we have:

(%) (8)=(50)(8)

This results in the eigenvector £(2) = ( ; )

Il
7 N
o o
~__
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Case Studies and Bifurcation

7

Example 2 (cont): The results above give the general solution

(2 )=a (1) e

which is a solution exponentially
growing away from the origin.

This is a source or
unstable node.

=/ \

Solutions first move away from
the origin in the direction

sw=(1).

then asymptotically parallel the
direction £(?) = ( :1,) ) for larger t

e T

R E2 N N

R

——————— | —
——————— e~ —
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Real and Different Eigenvalues
Co i values
vigenvalues
Case Studies and Bifurcation 3i ation Example and Stability Diagram

Real and Different Eigenvalues 8

Example 3: Consider the example:

J’j‘l _ 1 3 T

S.CQ - 1 -1 T
Find the general solution to this problem and create a phase portrait.
From above we need to find the eigenvalues and eigenvectors, so solve

1-A 3

det 1 1

‘:/\2—4:()\—2)(/\4—2):0,

which is the characteristic equation with solutions A\; = 2 and
Ao = =2
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Real and Different Eigenvalues

es
ep d Eigenvs
Case Studies and Bifurcation ify

ion Example and Stability Diagram

9
Example 3 (cont): For A\; = 2 we have:
1—X 3 &\ [ -1 3 &Y (0
1 —1-X & ) 1 -3 & ) Lo
This results in the eigenvector £V = ( ? )

Similarly, for A = —2 we have:

() (8)- () -()

This results in the eigenvector £(2) = ( 7} )
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Case Studies and Bifurcation

vigenvalues
Example

Real and Different Eigenvalues

and Stability Diagram

10

Example 3 (cont): The results above give the general solution

(0

This is a saddle node.

Solutions move toward the origin
in the direction ¢ = ( _} )

and move away from origin in the
direction €M) = ( “;’ ) for larger t

3 1
):cl( 1 )egt—i—cz( 1 )e_2t.

Saddle Node

=

R
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\\\\\\\\ N ———
AR D D O e S C e
\

NN N e —
NSNS - - =

L\A
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Real and Different Eigenvalues
Co i values
vigenvalues
Case Studies and Bifurcation 3i on Example and Stability Diagram

Real and Different Eigenvalues 11

Example 4: Consider the example:

S.Cl _ —2 4 T
i.Eg - 1 -2 )
Find the general solution to this problem and create a phase portrait.

If we seek equilibria, then

(0)=(7 =) ()

However, any solution of the form x;, = 2x5. is a critical point,
giving a line of equilibria

Our method from before still applies, so seek x(t) = ve*', which gives
the eigenvalue problem below

—2-=A 4

det 1 9\

= A2+ 4 =2\ +4) =0,

has the characteristic equation with eigenvalues A = 0, —4
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Real and Different Eigenvalues
i : es

sigenva
Case Studies and Bifurcation 3if ion Example and Stability Diagram

Example 4 (cont): For A\; = 0 we have:

(0 Lho)(e) =07 ) (8)-0)

This results in the eigenvector £V = ( ? )

Similarly, for A = —4 we have:

(Lt )(e)=(2)(8)-(0)

This results in the eigenvector £(2) = ( 7? )
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Real and Different Eigenvalues
Co i values
vigenvalues
Case Studies and Bifurcation 3i on Example and Stability Diagram

Real and Different Eigenvalues

Example 4 (cont): The eigenvalue problem gives two solutions
to the DE

The Wronskian satisfies

2674t

Wx1,x2](t) = det | -t — _4e~t £,

so these do form a fundamental set of solutions

Thus the general solution is given by
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Real and Different Eigenvalues
Complex Eigenvalues
Eigenvalu
Case Studies and Bifurcation B!flll on Example and Stability Diagram

Real and Different Eigenvalues 14

Example 4 (cont): The phase portrait for

zi(t) \ _ 1 2 + ¢ 2 o4t
l‘g(t) 1 -1 ’
Zero Eigenvalue — stable
. . NN NN NN NN ~N
This is a degenerate case \\\\ \\i{\\\\ X
3 — NN I T T T N e N N N
all form equi]ibria. R R N R N
NS NN Q\\\\\\\\ <
. . NN Y N
All solutions exponentially B

approach one of the equilibria \\\‘\\\\\\\\\

along lines parallel to the line FINNTISS
zl = —2:E2

AN NN NN
WS SN
NN e
. SN SN S S S NN NN N
Note: There is an unstable CaASE, oINS AN NN NSNS NN

S N N SO O N RSN

] o A NS \\\\\\\\ NN
eigenvalues satisfy XD RIS

ISU

A =0and Ay >0
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Real and Different E
Complex Eigenvalues
>d Eigenvalues
Case Studies and Bifurcation 3ifur on Example and Stability Diagram

Complex Eigenvalues

Consider a system of two linear homogeneous differential
equations:
X = Ax,

where A is a real-valued matrix.

With a solution of the form x(¢) = ve, there are eigenvalues, \,
with corresponding eigenvectors, v satisfying

det|A — M| =0 and (A—A)v=0

The characteristic equation for the eigenvalues is a quadratic
equation.

Assume the eigenvalues are complex, then A = u £ iv, since A is
real-valued
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Real and Different Eigenvalues

1 Eigenvalues
Case Studies and Bifurcation 3i ation Example and Stability Diagram

Complex Eigenvalues 2

Assume the DE, x = Ax, has eigenvalues \; = p + iv and
)\2 = )\1 =M — w

Assume vy is an eigenvector corresponding to A1, so
(A=X\I)vi =0
Taking conjugates (with A, I, and 0, real)
(A—=XMIDvy = (A= XI)v; =0
This gives two complex solutions to the system of DEs

x1(t) = ettty and Xo(t) = ety

We use Euler’s formula to separate the solutions into real and
imaginary parts 4
et = cos(vt) + isin(vt) SDST
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Real and Different Eigenvalues

Case Studies and Bifurcation B!flll(‘ ation Ex’unplv \n(l Stability Diagram

Complex Eigenvalues 3

Assume the eigenvector, vi = a + ib, where a and b are real-valued,
then

x1(t) = (a+ib)e*(cos(vt) +isin(vt))
= e (acos(vt) — bsin(vt)) + et (asin(vt) + bcos(vt))
Denote the real and imaginary parts of x;(¢) = u(¢t) + iw(¢)

u(t) = e"(acos(vt)—bsin(vt)) and w(t) = e’ (asin(vt)+bcos(vt))

A similar calculation gives
x3(t) = u(t) — iw(t),
so x1(t) and x5(t) are complex conjugates.

The desire is to show that u(t) and w(t) are real-valued solutions
forming a fundamental set for x = Ax
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Real and Different Eigenvalues

1 Eigenvalues
Case Studies and Bifurcation 3i ation Example and Stability Diagram

Complex Eigenvalues 4

Since x1(t) = u(t) + iw(¢) is a solution to the DE %x; = Axy, we have

0 = X1—AX1:(11+ZW)—A(U+’LW)
= (a—Au)+i(w—Aw)
This vector is zero if and only if the real and imaginary parts are zero,

o)
u—Au=0 and w—Aw =0

or u(t) and w(t) are real-valued solutions of x = Ax

It remains to show u(t) and w(¢) form a fundamental set of
solutions, which is done with the Wronskian
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Real and Different Eigenvalues

Case Studies and Bifurcation B!flll(‘ ation Ex’unplv \n(l Stability Diagram

Complex Eigenvalues 5

The two solutions are
u(t) = e*(acos(vt)—bsin(vt)) and w(t) = e (asin(vt)+bcos(vt)),

so let a = ( Z; ) and b = ( Z; ), then the Wronskian satisfies

Wia,w](t) = el (ay cos(vt) — by sin(yi)) et (ay sin(vt) + by cos(vt))

e (ag cos(vt) — by sin(vt))  ett(ag sin(vt) + by cos(vt))

= (albg — a2b1)62’n

Assume v # 0 and the eigenvectors are vi = a + ib and v, = a — ib,

a + ibl ayp — ibl
as + Zbg ags — ’Lb2

= —2i(a1b2 — agbl) 75 0

by our Theorem from Linear Algebra

Thus, the Wronskian shows u(t) and w(t) form a fundamental set
of solutions to our problem
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Real and Different Eigenvalues

1 Eigenvalues
Case Studies and Bifurcation 3i ation Example and Stability Diagram

Complex Eigenvalues 6

Example 5: Consider the example:

.’iﬁ'l . 3 -2 T1
.fg o 4 -1 T
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det =X 22 +5=0,

4 -1-A

33—\ -2 ’

which is the characteristic equation with solutions A = 1 4 2i
(complex eigenvalues)
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Real and Different Eigenvalues

Case Studies and Bifurcation

Complex Eigenvalues
Example 5 (cont): For \; =1+ 2i we have:
3—A -2 6\ [2-2 -2 g\ (0
41— & ) 4 —2-92 & )~ Lo
This results in the eigenvector £(1) = ( 1 il )

We have Ay = A\; and €3 = ¢

Thus,
x1(t) = ( 1 iz ) e'(cos(2t) +isin(2t)) =
. e’ cos(2t) , et sin(2t)
u(t) +iw(t) = ( et(cos(Qt)SJr sin(2t)) > t ( el (sin(2t) — cos(2t)) )

SDSO
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Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues
Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Complex Eigenvalues 8

Example 5 (cont): From above the general solution is

() \ . e’ cos(2t) e e’ sin(2t)

zo(t) )~ TP\ et(cos(2t) + sin(2t)) 2\ ef(sin(2t) — cos(2t)) )
- . PP PP B
This is an unstable spiral. ///////jjf//\t§}1;;;
////////////\1;/1\ ;/;/;
i i VPP PP rr 7
Aﬂﬂm@mmsmmlmmyﬁmn Py Ny
the origin. PP ryd SN NNy
vos L AN 1) )
. . LS L AN TS T
Solutions with complex L2 LSS LA T YT 77
. : : LY Y S S W 1 2 A
eigenvalues with negative 7 777775 TS S T 77
real parts spiral toward the ;?fé?fff{:f/f/fzzfjj
;o : : 1NN A
origin, creating a stable spiral VYA ML IAE AL ALY
L UL N WNN—~AF T s S
A N et A A A A
WV \N\N~—=AF sy s s S S
/]| NN ST
V11 NN~
SDSJO
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Real and Different Eigenvalues

1 Eigenvalues
Case Studies and Bifurcation 3i ation Example and Stability Diagram

Imaginary Figenvalues 9

Example 6: Consider the example:

.’).2'1 . 2 =5 T1
i?z o 1 -2 o
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

2—A -5

det 1 9\

’:)\2—1—1:0,

which is the characteristic equation with solutions A = +i (purely
imaginary eigenvalues)
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Real and Different Eigenvalues

Case Studies and Bifurcation B!flll(‘ ation Ex’unplv \n(l Stability Diagram

Imaginary Figenvalues

Example 6 (cont): For A\ =i we have:
2—X\ -5 &\ 22— -5 &Y (0
1 —2-X) & )T 1 —2—1 & )\ 0
. . . 1 _ ( 2+7
This results in the eigenvector &'V = 1 .

We have Ay = \; and £ = (1)
Thus,

1

a(t) +iw(t) = (2“’8(025@5’1“(” )+< 28111(3@;08@)

xi(t) = (2” )(cos(t)+isin(t)) -

SDSO
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Real and Different Ei
Complex Eigenvalues
<F: 1 Eigenvalues

n Example and ¢

envalues

Bifurcati bility Diagram

11

Case Studies and Bifurcation

Imaginary Figenvalues

Example 6 (cont): From above the general solution is

2 cos(t) — sin(t)

. 2sin(t) 4 cos(t)
! cos(t)

sin(¢)

X1 (t)

(1) te

Center

.. M —
ThlS 1S a Centel‘. e e e e e e —
e e —
e e —
e e —

All solutions form ellipses
around the origin.

A
e e\
| — ///\/ Z e
PP = >

P i
Moo = — e

e g
g g S e
== == = = = = =~
—_——
e Il
R e B
R e g
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Real and Different Eigenvalues
Complex Eigenvalue
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Repeated Eigenvalues

Example 7: Consider the example:

(2)-(2) (=)

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det =(\-2)?2=0,

0 2—-A

2 -\ o’

which has the characteristic equation with solutions A = 2 with an
algebraic multiplicity of 2
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Example 7 (cont): For \; = Ay = 2 we have:

2 — )\1 0 51 _ 0 0 £1 _ 0
0 2—X\ &) \0 0 & )\ 0
Thus, A = 2 has a geometric multiplicity of 2, so the eigenspace

for A = 2 has dimension 2.

It follows that we can select the standard basis vectors as our
eigenvectors, which gives the general solution

(i;g)_cl(é)&”rcg( (1) )e%
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Example 7 (cont): This DE produces an unstable proper node
or star node with all solutions following straight paths away from
the origin

Unstable Proper Node
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Example 8: Consider the example:

0y ( -1 1 x1
.fg o 0 -1 o
Find the general solution to this problem and create a phase portrait.

This is an upper triangular matrix, so its eigenvalues are the
diagonal elements.

Thus, A = —1 with an algebraic multiplicity of 2
1) 1 a\_ (0 1 &g \_[(0
0 —1-2X & )7 \o0 o &)\ 0

O =

This system only has the 1 eigenvector v; = (
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Example 8 (cont): Since there is only one eigenvector, we obtain

the one solution
x1(t) =vie = ( é ) et

Thus, A = —1 has a geometric multiplicity of 1, so the
eigenspace for A = —1 has dimension 1.

If we examine the scalar equations, then

T1 = —x1 + X2 and Lo = —Xo
Thus, z2(t) = cae™?, so

&1+ 11 = coet with u(t) = e

This has the solution

z1(t) = cote " +cre? sDST

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (44/54) i



Real and Different Ei walues
Complex Eigenvalue
Repeated Eigenvalues
Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Repeated Eigenvalues §

Example 8 (cont): Combining the results above we see
_( =a() _ e tet )
0 - (20) - (“0)e
1 _ 1 0 _
- ao)ea(a) (1))
The second solution has the form
Xo(t) = vte ™t +we ™t
Upon differentiation
%o(t) = v(l —t)e " —we ' = Axy = A(vte " +we ™)
Since (A + I)v = 0, this reduces to solving for w

e o (1) 15(3)
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Example 8 (cont): This DE produces a stable improper node
with all solutions moving toward the origin

Stable Improper Node
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Repeated Eigenvalues - Two Dimensional Null Space
Suppose the 2 x 2 matrix A has a repeated eigenvalue .

If the eigenspace spanned by the eigenvectors has dimension 2, v; and
va, then the solution is simply

x(t) = crvieM + covae™

SDSO
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Repeated Eigenvalues - One Dimensional Null Space If the
2 x 2 matrix A has only one eigenvector v associated with A, then one
solution is

x1(t) = ver

We attempt a second solution of the form
Xo(t) = vteM 4+ wet,
which upon differentiation gives
%o(t) = vt + 1)eM + Awer = Axy = A(vteM + we)
Since (A — AI)v = 0, this reduces to solving for w
(A=XN)w=v
This gives the second linearly independent solution, x3(t), above,

where w solves this higher order null space problem, which will
include a particular solution and any multiple, kv
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Bifurcation Example: Consider the example:

T\ a 2 1
3'52 o -2 0 X9 ’
which contains a parameter « that affects the behavior of this system

We want to determine the different qualitative behaviors for
different values of «

The eigenvalues satisfy

det a—\ 2
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Bifurcation Example: For

(2)-(230)(%) 3)

=
The eigenvalues are \ = 2EVa*=16

Classifications as o varies are:
@ For a < —4, System (3) is a Stable Node
For av = —4, System (3) is a Stable Improper Node
For —4 < a < 0, System (3) is a Stable Spiral
For o = 0, System (3) is a Center
For 0 < a < 4, System (3) is a Unstable Spiral
For a = 4, System (3) is a Unstable Improper Node
For o > 4, System (3) is a Unstable Node
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Bifurcation Example: Phase Portraits (o < 0)

Observe a smooth transition as eigenvalues change from negative to
complex with negative real part

Stable Node Stable Inproper Node Stable spiral
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Bifurcation Example

Bifurcation Example: Phase Portraits (—4 < o < 4)

Observe the transitions as complex eigenvalues change from negative

real part to positive real part - This is a significant part of a Hopf
bifurcation
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Bifurcation Example: Phase Portraits (a > 0)

Observe a smooth transition as eigenvalues change from complex with
positive real part to positive real values

Unstablespiral Unstable Improper Node Unstable Node
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Stability Diagram

Consider the system ' wrace) it A
x =Jx 2,54 i
2,=0
saddle point i *
Re(d,;}>0
Let A; and Ay be A 5&?‘ (@) ot jocus
eigenvalues of Jx RS i
1,50 i
Results from Linear Algebra ' et ha=t T Ncemter
Re(t) =0 det(d)

give tr(J) = A\ + Ay,
det |J| = A1 - Ag, and
D = (ji1 — j22)? + 4j12)21

Re(4,,) <0
)I( stable focus

The figure shows the saddlg point ;

Stability Diagram for by = )

x = Jx with axes i i, <o =
: stable node

of tr(J) vs det |J|
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