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Introduction

Introduction

o Introduction

e Linear Differential Equation

e Nonlinear Differential Equation
@ Existence and Uniqueness
@ Picard Iteration
@ Uniqueness
@ Examples
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Linear Differential Equation

Linear Differential Equation

Introduction

o Linear Differential Equation - Unique solution easily
found
@ Nonlinear Differential Equation - Solutions difficult or
impossible
e When does a solution exist?
e If there is a solution, then is it unique?
e Proving there is a unique solution does not mean the
solution can be found
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Theorem

If the functions p and g are continuous on an open interval
I:a<t<f containing a point t = tg, then there exists a unique
function y = ¢(t) that satisfies the differential equation

y' +pt)y =9g(t)
for each t in I with the initial condition

y(to) = Yo,

where Yo is an arbitrary prescribed initial value.
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Linear Differential Equation

Linear Differential Equation

The Linear Differential Equation has a unique solution to

y' 4+ p(t)y = g(t), with  y(to) = %o

@ Assume p and g are continuous on an open interval I : o <t < 3
@ It follows that p and g are integrable

@ Obtain integrating factor
plt) = eFia O

@ General solution (previously found)

o= ([ s)a(s)ds +C)

@ With initial condition, C' = yg, so unique solution

y(t) = M(lt) </t: p(s)g(s)ds + yo> sDST
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Nonlinear Differential Equation
Examples

Existence and Uniqueness

A change of coordinates allows us to consider

y' = f(t,y),  with  y(0)=0

If f and Of /Dy are continuous in a rectangle R : [t| < a,|y| < b, then
there is some interval |t| < h < |a| in which there exists a unique
solution y = ¢(t) of the initial value problem (1).

Motivation: Suppose that there is a function y = ¢(t) that satisfies
(1). Integrating, ¢(t) must satisfy
t
o) = [ Fs.0(s))ds, @)
to
which is an integral equation.

A solution to (1) is equivalent (2). SDSO
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Nonlinear Differential Equation

Nonlinear Differential Equation

The general 15 Order Differential Equation with an initial
condition is given by

y' = f(ty), with

y(to) = Yo

@ Need special conditions on f(t,y) to find a solution

e Can use separable technique if f(t,y) = M(t)N(y)
e Many specialized methods, like Exact or Bernoulli’s
equation

@ What conditions are needed on f(¢,y) for existence of a unique
solution?

@ With no general solution we need an indirect approach

@ Technique uses convergence of a sequence of functions with
methods from advanced calculus
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Existence and Uniqueness

Nonlinear Differential Equation

Picard Iteration

Show a solution to the integral equation using the Method of
Successive Approximations or Picard’s Iteration Method

Start with an initial function, ¢g = 0 (satisfying initial condition)

61(t) = /0 £ (s, do(s)) ds

Successively obtain

bolt) = / £ (5, 61(s)) ds

buia(t) = / £ (5, 6n(s)) ds
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Nonlinear Differential Equation
Examples

Nonlinear Differential Equation

Picard Iteration Picard Iteration - Example

Consider the initial value problem (IVP)

y'=2t(1+y), with  y(0)=0,
The Picard’s Iteration generates a sequence, so to prove the

theorem we must demonstrate and apply the Method of Successive Approximations

Let ¢g =0, th
© Do all members of the sequence exist? et P ) then

t
© Does the sequence converge? o1 (t) = / 25(1 + o (s))ds = t2
© What are the properties of the limit function? 0
Does it satisfy the integral equation Next
t ¢ 4
. o T t
@ Is this the only solution? (Uniqueness) (1) = / 25(1 + ¢1(s))ds :/ 2s(1 + 32)d5 — 2y .
0 0
Next

1 4 6
¢3(t)=/0 28(1+¢2(8))d8:t2+t LA
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Existence and Uniqueness
Picard Iteration

Nonlinear Differential Equation Nonlinear Differential Equation

Picard Iteration - Example Picard Iteration - Example

The integrations above suggest

tt ¢S t2" Apply the Ratio test
on(t) =t>+ = TR
‘ t2k+2 k.l t2 0
By math induction, assume true for n = k koo | (k + 1)! 2k T k+1

which shows this series converges for all ¢

brin(t) = /023(1+¢k(s))ds

Since this is a Taylor’s series, it can be integrated and differentiated

t 52k in its interval of convergence.
= /23(1+s—|— + = )ds o . . .
0 k! Thus, it is a solution of the integral equation
, th 6 $2k+2
] 2! Y] 3 Tt T (k+1)! Note that this is the Taylor’s series for ¢(t) = !’ — 1, which can be
shown to satisfy the IVP

which is what we needed to show
The limit exists if the series converges or lim,, o ¢, (t) exists Sosd S05d
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Nonlinear Differential Equation

Picard Iteration - Example

Example - Uniqueness

First 4 Picard Iterates

Picard Iterates
T

3 Example - Uniqueness - Suppose there are two solutions, ¢(t) and
" 1 (t) satisfying the integral equation

2.5

o(t) — (t) = / 25(6(s) — (s))ds

Take absolute values and restrict 0 < ¢ < A/2 (A arbitrary). then

1 o)~ vl = | [ 2st0(6) ~ wieNas| < [ 2slos) - violas
< Ao vt fr 0<r<ap
s ? SDSO SDSJ

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (13/23) Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (14/23)

Existence and Uniqueness
Picard Iteration
Uniqueness
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Picard Iteration

Nonlinear Differential Equation ey Nonlinear Differential Equation g)r(];c'ﬂl:lxzeqss
Example - Uniqueness Existence and Uniqueness Theorem
Let U(t) = [ [¢(s) — t(s)|ds, then U(0) = 0 and U(t) > 0 for ¢ > 0
L . . , We leave the details of the proof of the Existence and Uniqueness
U(t) is differentiable with U’ (t) = |o(t) — ¥ (¢)|

Theorem to the interested reader, but give a sketch of the key steps

We have the differential inequality Q Restrict the time interval || < h < a

U'(t)— AU(t) <0, 0<t<A/2 e Since f is continuous in the the rectangle R : |t| < a,|y| < b,
the function f is bounded on R, so there exists M such that

Multiplying by positive function e~4%, then integrating gives
pyme By premnE & [ty <M (Ly)eR

= (emMU®) < o, 0<t<Aj2, o Let h = min (a, )
AU < 0, 0<t< A/ e Can show by induction that each Picard iterate ¢, (t)

satisfies

[on(t)] < Mt t€0,h]
Hence, U(t) < 0 with A arbitrary.

It follows that U(t) = 0 or ¢(t) = 9 (t) for each ¢, so the functions are
the same, giving uniqueness SDSO SDSO

o This gives existence of the Picard iterates
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Existence and Uniqueness Theorem Existence and Uniqueness Theorem

Sketch of Proof of Existence and Uniqueness Theorem Sketch of Proof of Existence and Uniqueness Theorem

© Show the sequence converges

e A key point in the theorem is the continuity of df /0y
o Let

I | Il
s 8

‘ ! which is called a Lipschitz constant

a

| IR - e Create a Cauchy sequence and show
y=-b y=—b MLTL—lt’I’L
‘ |¢n(t) - ¢n—1(t)| < T te [Ovh]

Regions containing Picard iterates, ¢n(t) for all n e This establishes convergence of the Picard iterates
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Existence and Uniqueness Theorem Existence and Uniqueness Theorem

Sketch of Proof of Existence and Uniqueness Theorem ) .
Sketch of Proof of Existence and Uniqueness Theorem
© Show the convergent sequence converges to the solution of the

IVP © (cont) Show the convergent sequence converges to the solution of

e The iteration scheme is the IVP

t o Continuity of f(t,y) w.r.t. y allows
brir(t) = [ Fs.0,(0)ds

t
e Want to take the limit of both sides as n — oo o(t) = /0 (s, nlg{io $n(s))ds
e We have
t e This gives convergence to the solution
nlgr;o Oniar(t) = () = nlggo /0 F(s,6n(s))ds @ Proof Uniqueness by producing a contradiction assuming two
e Uniform convergence of the Picard iterates allows solutions
t
o(t) = / lim f(s,dn(s))ds This proves when solutions exist and are unique to an Initial
0 " sDST Value Problem i
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Examples Examples

Consider the differential equation
The general differential equation is

y' =12, with y(0) =1

yl = f(tv y)v with y(tO) =%Y%o (3)

Note that f(y) = 2 and 0f/0y = 2y, which are continuous in any
rectangle R

. . This i bl i
If f and Of /0y are continuous in a rectangle 18 15 a separable equation, so

R:|t—to] <a,|ly—yo| <b, then there is some interval 5
) : : : . y dy= [ dt=t+C or
|t —to| < h <|a| in which there exists a unique solution y = ¢(t) of

the initial value problem (3).

The solution to the IVP is
@ Why do we need the restriction |t — to| < h < |a|? 1

t)=—)
© What is the significance of the conditions f and df /0y being y(®) 1—+¢

. . Do
continuous in 2’ which clearly becomes undefined at ¢ = 1. The interval of existence

SDSO does not match the interval of continuity for f(t,y) SDSJO
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Consider the differential equation
y'=y*3,  with  y(0)=0

Note that f(y) = y?/3 is continuous in any rectangle centered at
(to,yo) = (0,0), while 0f /0y = %y‘l/g’, which is NOT continuous
in any rectangle R near (0,0)

This is a separable equation, so

/y_z/gdy:/dtzt—i—c or 3y =t+C

One solution to the IVP is
t3
t) = —
y(t) = 5
which satisfies the IVP.

However, it is easy to see that y(¢) = 0 is a solution, so solutions are =n=J
NOT unique
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