1. a. The 3 populations are $p_{1}=700, p_{2}=860$, and $p_{3}=988$.
b. The equilibrium is $p_{e}=1500$. The equilibrium is stable.
2. a. The breathing fraction is $q=0.120536$, and the functional reserve capacity is $V_{r}=2188.9 \mathrm{ml}$.
b. The concentration of Helium in the next two breaths are $c_{2}=39.85$ and $c_{3}=35.67$. The equilibrium concentration is $c_{e}=\gamma=5.2 \mathrm{ppm}$ of He , which is a stable equilibrium.
3. a. For the Malthusian growth model with dispersion, $P_{n+1}=(1+r) P_{n}-\mu, r=0.5$ and $\mu=120$. The populations in the next two weeks ar $P_{3}=1117.5$ and $P_{4}=1556.25$.
b. The equilibrium is $P_{e}=240$, and it is unstable.
c. The graph of the updating function and identity map, $P_{n+1}=P_{n}$, are shown below. The only point of intersection occurs at the equilibrium found above.

4. a. From the breathing model, $c_{n+1}=(1-q) c_{n}+q \gamma$ and the data $c_{0}=400, c_{1}=352$, and $c_{2}=310$, we find the constants q and γ by substitution and the simultaneous solution of two equations and two unknowns. We have

$$
352=400(1-q)+q \gamma \quad \text { and } \quad 310=352(1-q)+q \gamma .
$$

Subtracting the second equation from the first gives $42=48(1-q)$ or $1-q=\frac{42}{48}=\frac{7}{8}$. Thus, $q=\frac{1}{8}$. This value is substituted into the first equation above to give $352=400 \frac{7}{8}+\frac{1}{8} \gamma$, which gives $\gamma=16$.

Thus, the model becomes $c_{n+1}=\frac{7}{8} c_{n}+2$, and the next 2 breaths satisfy

$$
\begin{aligned}
c_{3} & =\frac{7}{8}(310)+2=273.25 \\
c_{4} & =\frac{7}{8}(273.25)+2=241.1
\end{aligned}
$$

b. At the equilibria, $c_{e}=\frac{7}{8} c_{e}+2$, so $\frac{1}{8} c_{e}=2$ or $c_{e}=16$, which is the value of γ as expected. This equilibrium is stable.
c. The graph of the updating function and identity map, $c_{n+1}=c_{n}$, are shown below. The only point of intersection occurs at the equilibrium, γ found above.

5. a. The next two years satisfy

$$
F_{1}=0.86(100)+280=366 \quad \text { and } \quad F_{2}=0.86(366)+280=594.8 .
$$

At equilibrium, $F_{e}=0.86 F_{e}+280$ or $F_{e}=2000$. This is a stable equilibrium. (The slope $a=0.86<1$.)
b. The F-intercept is 100 , and there is a horizontal asymptote at $F=2000$. Below is the graph of this function.

c. Since $F(6)=1227.5176$ and $F(5)=1102.50355$, then the slope of the secant line is given by

$$
\frac{F(6)-F(5)}{6-5}=125.01
$$

Since $F(5.1)=1115.8655$ and $F(5)=1102.50355$, then the slope of the secant line is given by

$$
\frac{F(5.1)-F(5)}{5.1-5}=133.62
$$

6. a. The average velocity over the for $t \in[0,2]$ is $16 \mathrm{ft} / \mathrm{sec}$. The average velocity over the for $t \in[1,1.2]$ is $12.8 \mathrm{ft} / \mathrm{sec}$. The average velocity over the for $t \in[1,1.01]$ is $15.84 \mathrm{ft} / \mathrm{sec}$.
b. The ball hits the ground at 5 sec with an approximate velocity of $v_{\text {ave }}=\frac{h(5)-h(4.999)}{0.001}=$ $-111.984 \mathrm{ft} / \mathrm{sec}$. The graph is below.

7. a. Asymptotically, the leopard shark can reach 2.1 m . The length of the leopard shark at birth is 0.2 m , at 1 yr is 0.62 m , at 5 yr is 1.56 m , and at 10 yr is 1.94 m . The maximum length is 2.1 m . The shark reaches 90% of its maximum length at $t=8.81 \mathrm{yr}$. The graph is below.
b. The average growth rate for $t \in[1,5]$ is $g_{\text {ave }}=0.2338 \mathrm{~m} / \mathrm{yr}$. The average growth rate for $t \in[5,10]$ is $g_{\text {ave }}=0.07768 \mathrm{~m} / \mathrm{yr}$. The average growth rate for $t \in[5,6]$ is $g_{\text {ave }}=0.1204 \mathrm{~m} / \mathrm{yr}$. The average growth rate for $t \in[5,5.01]$ is $g_{\text {ave }}=0.1359 \mathrm{~m} / \mathrm{yr}$. This last approximation is the best approximation to the derivative (which has the value of $L^{\prime}(5)=0.1361 \mathrm{~m} / \mathrm{yr}$).

8. a. The serval can catch any bird flying at heights from 16 to 25 ft or up to 9 ft above the serval.
b. The average velocity of the serval for $t \in\left[0, \frac{1}{4}\right]$ is $v_{\text {ave }}=20 \mathrm{ft} / \mathrm{sec}$. The average velocity of the serval for $t \in\left[\frac{1}{2}, 1\right]$ is $v_{\text {ave }}=0 \mathrm{ft} / \mathrm{sec}$. The average velocity of the serval for $t \in\left[1, \frac{5}{4}\right]$ is $v_{\text {ave }}=-12 \mathrm{ft} / \mathrm{sec}$.
c. The velocity satisfies:

$$
v(t)=h^{\prime}(t)=24-32 t
$$

Thus, $v(1)=-8 \mathrm{ft} / \mathrm{sec}$.
d. The serval hits the ground at $t=2$. The velocity when it hits the ground is $v(2)=-40 \mathrm{ft} / \mathrm{sec}$. A graph of the height of the serval is below.

9. a. The vertical velocity is $v_{0}=420 \sqrt{2} \simeq 593.97 \mathrm{~cm} / \mathrm{sec}$. The impala is in the air for $t=\frac{6 \sqrt{2}}{7} \simeq$ 1.21218 sec .
b. The average velocity for the impala between $t=0$ and $t=0.5$ is $v_{\text {ave }}=420 \sqrt{2}-245 \simeq$ $348.97 \mathrm{~cm} / \mathrm{sec}$.
10. a. The slope of the secant line is

$$
m(h)=\frac{f(2+h)-f(2)}{h}=\frac{\frac{2+h-2}{2(2+h)+2}-0}{h}=\frac{1}{6+2 h .}
$$

b. The slope of the tangent line

$$
\lim _{h \rightarrow 0} \frac{1}{6+2 h}=\frac{1}{6} .
$$

The equation of the tangent line is

$$
y-0=\frac{1}{6}(x-2) \quad \text { or } \quad y=\frac{1}{6} x-\frac{1}{3} .
$$

c. The x-intercept is $x=2$, and the y-intercept is $y=-1$. There is a vertical asymptote at $x=-1$ and a horizontal asymptote at $y=\frac{1}{2}$. Below is the graph of the function and the tangent line.
11. a. Write $f(x)$ as powers of x as much as possible (remove denominators), so

$$
f(x)=6 x^{3}+2 x^{-2}-e^{2 x}\left(x^{2}-9\right) .
$$

Apply power rules, product rule, and the rules for exponential yielding

$$
\begin{aligned}
f^{\prime}(x) & =6\left(3 x^{2}\right)+2\left(-2 x^{-3}\right)-\left(e^{2 x}(2 x)+2 e^{2 x}\left(x^{2}-9\right)\right) \\
& =18 x^{2}-\frac{4}{x^{3}}-2 e^{2 x}\left(x^{2}+x-9\right)
\end{aligned}
$$

Problem 10
b. Use the properties of logarithms to write

$$
g(x)=2 e^{-3 x}+2 \ln (x)-5 .
$$

Use the rules of differentiation of exponentials and logarithms to give

$$
\begin{aligned}
g^{\prime}(x) & =2(-3) e^{-3 x}+\frac{2}{x} \\
& =\frac{2}{x}-6 e^{-3 x}
\end{aligned}
$$

c. Leave $h(x)$ in the form,

$$
h(x)=2 x^{6} \ln (x)-e^{\sin (2 x)}+\frac{1}{2} e^{-4 x} .
$$

Apply power rules, product rule, chain rule, and the rules for exponentials and logarithms yielding

$$
\begin{aligned}
h^{\prime}(x) & =2\left(\left(6 x^{5}\right) \ln (x)+x^{6}\left(\frac{1}{x}\right)\right)-e^{\sin (2 x)}(2 \cos (2 x))+\frac{-4}{2} e^{-4 x} \\
& =12 x^{5} \ln (x)+2 x^{5}-2 \cos (2 x) e^{\sin (2 x)}-2 e^{-4 x}
\end{aligned}
$$

d. Given:

$$
b(x)=\ln (\cos (3 x))-e^{x^{2}+4 x} .
$$

Apply power rule, chain rule, and the rules for exponentials and logarithms yielding

$$
b^{\prime}(x)=-\frac{3 \sin (3 x)}{\cos (3 x)}-e^{x^{2}+4 x}(2 x+4) .
$$

e. Write

$$
q(x)=\frac{2+e^{2 x}}{x^{2}-3}-\left(x^{2}-\sin ^{3}\left(x^{2}\right)\right)^{4} .
$$

Apply power rule, quotient rule, chain rule, and the rules for exponentials and trig functions yielding

$$
q^{\prime}(x)=\frac{\left(x^{2}-3\right)\left(2 e^{2 x}\right)-\left(2+e^{2 x}\right)(2 x)}{\left(x^{2}-3\right)^{2}}-4\left(x^{2}-\sin ^{3}\left(x^{2}\right)\right)^{3}\left(2 x-6 x \sin ^{2}\left(x^{2}\right) \cos \left(x^{2}\right)\right) .
$$

f. Write $k(t)$ in the following form:

$$
k(t)=\frac{1}{4} t^{2}-4\left(\cos \left(t^{2}+2\right)\right)^{-1}+4 t^{-\frac{1}{2}} .
$$

Apply power rules, the chain rule, and trig function rule yielding

$$
\begin{aligned}
k^{\prime}(t) & =\frac{1}{2} t+4\left(\cos \left(t^{2}+2\right)\right)^{-2}\left(-\sin \left(t^{2}+2\right)\right) 2 t-2 t^{-\frac{3}{2}} \\
& =\frac{1}{2} t-\frac{8 t \sin \left(t^{2}+2\right)}{\left(\cos \left(t^{2}+2\right)\right)^{2}}-2 t^{-\frac{3}{2}}
\end{aligned}
$$

g. Write $r(x)$ as follows:

$$
r(x)=e^{2 x}\left(x^{3}-5 x+7\right)^{4}-e^{-x} \cos (2 x) .
$$

Apply the product and chain rules with rules for exponentials and cosine to obtain

$$
\begin{aligned}
r^{\prime}(x)= & \left(e^{2 x} 4\left(x^{3}-5 x+7\right)^{3}\left(3 x^{2}-5\right)+2 e^{2 x}\left(x^{3}-5 x+7\right)^{4}\right) \\
& +e^{-x}(2 \sin (2 x)+\cos (2 x)) .
\end{aligned}
$$

h. Write as

$$
w(x)=\frac{x^{4}+e^{-2 x}}{x^{3}+\cos (4 x)}+7 x\left(x^{2}+2 x+5\right)^{-\frac{1}{2}} .
$$

Apply the quotient, product, and chain rules:

$$
\begin{aligned}
w^{\prime}(x)= & \frac{\left(x^{3}+\cos (4 x)\right)\left(4 x^{3}-2 e^{-2 x}\right)-\left(x^{4}+e^{-2 x}\right)\left(3 x^{2}-4 \sin (4 x)\right)}{\left(x^{3}+\cos (4 x)\right)^{2}} \\
& -\frac{7 x}{2}\left(x^{2}+2 x+5\right)^{-\frac{3}{2}}(2 x+2)+7\left(x^{2}+2 x+5\right)^{-\frac{1}{2}} .
\end{aligned}
$$

12. a. $y=27 x-x^{3}$

Domain is all x.
y-intercept: $y(0)=0$, so $(0,0)$.
x-intercepts: $27 x-x^{3}=x\left(27-x^{2}\right)=0$, so $x=0$ and $x= \pm \sqrt{27}= \pm 3 \sqrt{3}$.
No asymptotes
Derivative $y^{\prime}(x)=27-3 x^{2}$
Extrema are where $y^{\prime}(x)=-3\left(x^{2}-9\right)=0$, so $x= \pm 3$. With $y(-3)=27(-3)-(-3)^{3}=-54$ and $y(3)=54$. Thus, $(3,54)$ is a maximum, and $(-3,-54)$ is a minimum.
Second derivative $y^{\prime \prime}(x)=-3(2) x=-6 x$.
Point of inflection $\left(y^{\prime \prime}=0\right)$: At $x=0$ or $(0,0)$.

b. $y=18 x^{2}-x^{4}$

Domain is all x.
y-intercept: $y(0)=0$, so $(0,0)$.
x-intercept: $x^{2}\left(18-x^{2}\right)=-x^{2}(x+3 \sqrt{2})(x-3 \sqrt{2})=0$, so $x=0$ and $x= \pm 3 \sqrt{2}$.
No asymptotes
Derivative $y^{\prime}(x)=36 x-4 x^{3}=4 x\left(9-x^{2}\right)$
Critical points satisfy $y^{\prime}(x)=-4 x\left(x^{2}-9\right)=0$, so $x=0, \pm 3$. With $y(0)=0,(0,0)$ is a minimum.
When $x= \pm 3, y(\pm 3)=81$, so there are local maxima at $(-3,81)$ and $(3,81)$.
Second derivative $y^{\prime \prime}(x)=36-12 x^{2}=12\left(3-x^{2}\right)$.
Point of inflection $\left(y^{\prime \prime}=0\right)$: At $x= \pm \sqrt{3}$, giving $(\pm \sqrt{3}, 45)$.
c. $y=4 x e^{-0.02 x}$

Domain is all x.
y-intercept: $y(0)=0$, so $(0,0)$, which is also, the only x-intercept.
Horizontal asymptote: As $x \rightarrow \infty, y \rightarrow 0$, so $y=0$ is a horizontal asymptote (looking to the right).
Derivative: By the product rule, $y^{\prime}(x)=4 x(-0.02) e^{-0.02 x}+4 e^{-0.02 x}=4 e^{-0.02 x}(1-0.02 x)$
Critical points satisfy $y^{\prime}(x)=0$, so $1-0.02 x=0$ or $x=50$. With $y(50)=200 e^{-1} \simeq 73.576$, ($50,73.576$) is a maximum.
Second derivative $y^{\prime \prime}(x)=4 e^{-0.02 x}(-0.02)+4(-0.02) e^{-0.02 x}(1-0.02 x)=-0.16(1-0.01 x) e^{-0.02 x}$. Point of inflection $\left(y^{\prime \prime}=0\right)$: At $x=100, y(100)=400 e^{-2} \simeq 54.134$. Thus, $(100,54.134)$.

Problem 12c

Problem 12d
d. $y=(x+3) \ln (x+3)$

Domain is $x>-3$. The y-intercept is $3 \ln (3) \simeq 3.2958$.
x-intercept: Where $(x+3) \ln (x+3)=0$, which occurs when $\ln (x+3)=0$ or $x=-2$.
There are no asymptotes. (It can be shown that as $x \rightarrow-3, y \rightarrow 0$.)

Derivative: By the product rule, $y^{\prime}(x)=\frac{x+3}{x+3}+\ln (x+3)=1+\ln (x+3)$.
Critical points satisfy $y^{\prime}(x)=0$, so $\ln (x+3)=-1$ or $x+3=e^{-1} \simeq 0.3679$, so $x \simeq-2.6321$. When $x=e^{-1}-3, y=-e^{-1}$ and is a minimum.
Second derivative $y^{\prime \prime}(x)=\frac{1}{x+3}>0$ for $x>-3$. There is no point of inflection, and the function is concave up.
e. $y=(x-4) e^{2 x}$

Domain is all x.
y-intercept: $y(0)=-4$, so $(0,-4)$.
x-intercept: Since the exponential function is not zero, $y=0$ when $x=4$.
Horizontal asymptote: As $x \rightarrow-\infty, y \rightarrow 0$, so $y=0$ is a horizontal asymptote (looking to the left).
Derivative: By the product rule, $y^{\prime}(x)=2(x-4) e^{2 x}+e^{2 x}=(2 x-7) e^{2 x}$.
Critical points satisfy $y^{\prime}(x)=0$, so $2 x-7=0$ or $x=3.5$. With $y(3.5)=-0.5 e^{7} \simeq-548.3$, $(3.5,-548.3)$ is a minimum.
Second derivative $y^{\prime \prime}(x)=2(2 x-7) e^{2 x}+2 e^{2 x}=4(x-3) e^{2 x}$.
Point of inflection $\left(y^{\prime \prime}=0\right)$: At $x=3, y(3)=-e^{6} \simeq-403.4$. Thus, $(3,-402.4)$.

f. $y=\frac{10(x-2)}{(1+0.5 x)^{3}}$

Domain is all $x \neq-2$.
y-intercept: $y(0)=-20$, so $(0,-20)$.
x-intercept: Numerator equal to zero, so $x=2$ or $(2,0)$
Vertical asymptote: $x=-2$.
Horizontal asymptote: The power of the denominator exceeds the power of the numerator, so $y=0$ is a horizontal asymptote
Derivative: By the quotient rule, $y^{\prime}(x)=10 \frac{(1+0.5 x)^{3}-(x-2) 3(1+0.5 x)^{2}(0.5)}{(1+0.5 x)^{6}}=\frac{10(4-x)}{(1+0.5 x)^{4}}$.
Critical points satisfy $y^{\prime}(x)=0$, so $4-x=0$ or $x=4$. With $y(4)=\frac{20}{27} \simeq 0.7407,(4,0.7407)$ is a relative maximum.
Second derivative $y^{\prime \prime}(x)=10 \frac{-(1+0.5 x)^{4}-(4-x) 4(1+0.5 x)^{3}(0.5)}{(1+0.5 x)^{8}}=\frac{15(x-6)}{(1+0.5 x)^{5}}$.
Since $y^{\prime \prime}(x)=0$ and $x=6$, there is a point of inflection at $\left(6, \frac{5}{8}\right)$.
g. $y=x+\frac{4}{x}=x+4 x^{-1}$

Domain is all $x \neq 0$.
Since there is a vertical asymptote at $x=0$, there is no y-intercept.
We solve $y=\frac{x^{2}+4}{x}=0$ or $x^{2}+4=0$, so no x-intercepts.

Derivative $y^{\prime}(x)=1-4 x^{-2}=\frac{x^{2}-4}{x^{2}}$
Critical points satisfy $y^{\prime}(x)=0$, so $x^{2}-4=0$ or $x= \pm 2$. With $y(-2)=-4,(-2,-4)$ is a local maximum. With $y(2)=4,(2,4)$ is a local minimum.
Second derivative $y^{\prime \prime}(x)=8 x^{-3}$, which is never zero, so no points of inflection.

Problem 12g

Problem 12h
h. $y=\frac{4 x^{2}}{x+3}$

Domain all $x \neq-3$
x and y-intercept: $(0,0)$.
Vertical asymptote: $x=-3$
Derivative: By the quotient rule, $y^{\prime}(x)=\frac{4\left(2 x(x+3)-x^{2}\right)}{(x+3)^{2}}=\frac{4 x(x+6)}{(x+3)^{2}}$.
Critical points satisfy $y^{\prime}(x)=0$, so $x=0$ and $x=-6$. When $x=0, y=0$ and is a minimum. When $x=-6, y=-48$ and is a maximum.
Second derivative $y^{\prime \prime}(x)=\frac{4\left(\left(x^{2}+6 x+9\right)(2 x+6)-\left(x^{2}+6 x\right)(2 x+6)\right)}{(x+3)^{4}}=\frac{36(2 x+6)}{(x+3)^{4}}$. There is no point of inflection, as $y^{\prime \prime}(x)=0$ at $x=-3$, the vertical asymptote.
13. a. The temperature is given by $T(t)=0.002 t^{3}-0.09 t^{2}+1.2 t+32$, which upon differentiation becomes

$$
\frac{d T}{d t}=0.006 t^{2}-0.18 t+1.2
$$

At noon, $T^{\prime}(12)=0.006(144)-0.18(12)=-0.096{ }^{\circ} \mathrm{C} / \mathrm{hr}$.
b. To find extrema, solve $T^{\prime}(t)=0.006\left(t^{2}-30 t+2000\right)=0.006(t-10)(t-20)=0$. It follows $t=10$ and $t=20$, so $T(10)=2-9+12+32=37$ and $T(20)=16-36+24+32=36$. The maximum temperature of the subject occurs at 10 AM with a temperature of $37{ }^{\circ} \mathrm{C}$, while the minimum temperature of the subject occurs at $8 \mathrm{PM}(t=20)$ with a temperature of $36^{\circ} \mathrm{C}$.
14. By the product rule, the derivative is $P^{\prime}(r)=0.04 e^{-0.2 r}-0.008 r e^{-0.2 r}$. The maximum probability occurs when the derivative is zero, $0.04 e^{-0.2 r}-0.008 r e^{-0.2 r}=0.04 e^{-0.2 r}(1-0.2 r)$ or $0.2 r=1$. Thus, the maximum probability of a seed landing occurs at $r=5 \mathrm{~m}$ with a probability of $P(5)=0.0736$. The graph of the probability density function has an intercept at $(0,0)$ $(P(0)=0)$, a horizontal asymptote of $P=0$ (since for large r, P becomes arbitrarily small), and a local maximum of $(5,0.0736)$.
15. a. The equilibrium satisfies $N_{e}\left(0.8-0.04 \ln \left(N_{e}\right)\right)=0$. Since $N=0$ is not in the domain. Thus, the equilibrium satisfies $0.04 \ln \left(N_{e}\right)=0.8$ or $\ln \left(N_{e}\right)=20$. It follows that the equilibrium is $N_{e}=4.852 \times 10^{8}$.

Seed Probability
b. By the product rule, the derivative is $G^{\prime}(N)=-N(0.04 / N)+(0.8-0.04 \ln (N))=0.76-$ $0.04 \ln (N)$. The maximum growth rate satisfies $0.76-0.04 \ln (N)=0$ or $\ln (N)=19$. Thus, the maximum rate of growth occurs at $N_{\max }=e^{19}=1.785 \times 10^{8}$ with a maximum growth rate of $G\left(N_{\max }\right)=7.139 \times 10^{6}$.
c. Evaluating $G\left(2 \times 10^{8}\right)=7.089 \times 10^{6}$, so the tumor is growing with this population of cells. Evaluating $G^{\prime}\left(2 \times 10^{8}\right)=-0.004553$, so the rate of growth of the tumor is decreasing with this population of cells.
16. a. The concentration of glucose is given by $g(t)=80+150 e^{-0.8 t} \sin (t)$, so for it to reach $80 \mathrm{mg} / 100 \mathrm{ml}$ of blood after $t>0$, we need $80=80+150 e^{-0.8 t} \sin (t)$ or $0=\sin (t)$ or $t=n \pi, \quad n=$ $0,1, \ldots$ The next time is $t_{1}=\pi \approx 3.14 \mathrm{hr}$.
b. The rate of change of glucose per hour is

$$
\frac{d g}{d t}=150\left((-0.8) e^{-0.8 t} \sin (t)+e^{-0.8 t} \cos (t)\right)=150 e^{-0.8 t}(\cos (t)-0.8 \sin (t)) .
$$

At $t=1, g^{\prime}(1)=150 e^{-0.8}(\cos (1)-0.8 \sin (1))=-8.9557 \mathrm{mg} / 100 \mathrm{ml}$ of blood/hour. To find the absolute maximum, we solve $g^{\prime}\left(t_{\max }\right)=0$, so

$$
\begin{aligned}
150 e^{-0.8 t_{\max }}\left(\cos \left(t_{\max }\right)-0.8 \sin \left(t_{\max }\right)\right) & =0, \\
\cos \left(t_{\max }\right) & =0.8 \sin \left(t_{\max }\right), \\
\tan \left(t_{\max }\right) & =1.25, \\
t_{\max } & =\arctan (1.25) \approx 0.8961 \mathrm{hr} .
\end{aligned}
$$

The absolute maximum is $g\left(t_{\max }\right)=137.19 \mathrm{mg} / 100 \mathrm{ml}$ of blood. The absolute minimum occurs at $t_{\text {min }}=t_{\text {max }}+\pi=4.0376$ with $g\left(t_{\min }\right)=75.367 \mathrm{mg} / 100 \mathrm{ml}$ of blood. The graph for the concentration of glucose in the blood is below.
c. The level of insulin satisfies the function $i(t)=10\left(e^{-0.4 t}-e^{-0.5 t}\right)$, so

$$
i^{\prime}(t)=10\left(-0.4 e^{-0.4 t}+0.5 e^{-0.5 t}\right)=5 e^{-0.5 t}-4 e^{-0.4 t}
$$

The concentration is maximum where $i^{\prime}(t)=0$, so $5 e^{-0.5 t}=4 e^{-0.4 t}$ or $\frac{5}{4}=e^{-0.4 t} e^{0.5 t}=e^{0.1 t}$. It follows that $t=10 \ln \left(\frac{5}{4}\right)=2.23 \mathrm{hr}$. The maximum concentration is $i(2.23)=10\left(e^{-0.4(2.23)}-\right.$ $\left.e^{-0.5(2.23)}\right)=0.819$. This graph starts at $(0,0)$ and asymptotically approaches zero for large time. A graph of the insulin concentration is below also.
d. The rate of change of insulin per hour was computed above $\left(i^{\prime}(t)\right)$. The rate of change at $t=1$ is $i^{\prime}(1)=5 e^{-0.5}-4 e^{-0.4}=0.351$ units/hour.

17. a. From the von Bertalanffy equation, it is easy to see that the graph passes through the origin, giving the t and L-intercepts to both be 0 . As $t \rightarrow \infty, L(t) \rightarrow 16$, so there is a horizontal asymptote of $L=16$. The graph of the length of the sculpin is below to the left.
b. The composite function satisfies:

$$
W(t)=0.07\left(16\left(1-e^{-0.4 t}\right)\right)^{3}=286.72\left(1-e^{-0.4 t}\right)^{3} .
$$

This function again passes through the origin, and it is easy to see that it has a horizontal asymptote at $W=286.72$.

c. We apply the chain rule to differentiate $W(t)$. The result is

$$
W^{\prime}(t)=3 \cdot 286.72\left(1-e^{-0.4 t}\right)^{2}(0.4) e^{-0.4 t}=344.064\left(1-e^{-0.4 t}\right)^{2} e^{-0.4 t} .
$$

The second derivative combines the product rule and the chain rule, giving:

$$
\begin{aligned}
W^{\prime \prime}(t) & =344.064\left(-0.4\left(1-e^{-0.4 t}\right)^{2} e^{-0.4 t}+2\left(1-e^{-0.4 t}\right) 0.4 e^{-0.4 t} e^{-0.4 t}\right) \\
& =137.6256\left(1-e^{-0.4 t}\right) e^{-0.4 t}\left(-\left(1-e^{-0.4 t}\right)+2 e^{-0.4 t}\right) \\
& =137.6256\left(1-e^{-0.4 t}\right) e^{-0.4 t}\left(3 e^{-0.4 t}-1\right) .
\end{aligned}
$$

The point of inflection is when the sculpin has its maximum weight gain, and this occurs when

$$
W^{\prime \prime}(t)=137.6256\left(1-e^{-0.4 t}\right) e^{-0.4 t}\left(3 e^{-0.4 t}-1\right)=0
$$

or

$$
\left(3 e^{-0.4 t}-1\right)=0 \quad \text { or } \quad e^{0.4 t}=3 \quad \text { or } \quad t=\frac{5 \ln (3)}{2} \simeq 2.7465 .
$$

The maximum weight gain is

$$
W^{\prime}(2.7465)=50.97 \mathrm{~g} / \mathrm{yr} .
$$

18. a. The derivative is given by

$$
f^{\prime}(t)=\frac{2 \cos (2 t) \cos (2 t)+2 \sin (2 t) \sin (2 t)}{\cos ^{2}(2 t)}=\frac{2}{\cos ^{2}(2 t)}
$$

since $\sin ^{2}(2 t)+\cos ^{2}(2 t)=1$. It follows that $f^{\prime}(0)=\frac{2}{\cos ^{2}(0)}=2$. Notice that since the denominator is squared, it follows that the derivative is always positive for all t that the derivative is defined.
b. $f(t)$ is zero when $\sin (2 t)=0$. The sine function is zero when its argument is an integer multiple of π. For $t \in[0,2 \pi], f(t)=0$ at $t=0, \pi / 2, \pi, 3 \pi / 2,2 \pi$. The cosine function is zero when its argument is $\pi / 2+n \pi$ for n an integer. Thus, the vertical asymptotes occur halfway between zeroes of f, so at $t=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$.
c. The graph of $f(t)$ for $t \in[0,2 \pi]$ is below to the left.

$f(t)=\tan (2 x)$

Damped Spring
19. a. The damped spring-mass system, $y(t)=2 e^{-0.2 t} \sin (4 t)$, has $y\left(t_{n}\right)=0$ when $4 t_{n}=n \pi, \quad n=$ $0,1, \ldots$ or $t_{n}=\frac{n \pi}{4}$.
b. The velocity satisfies:

$$
\begin{aligned}
v(t)=y^{\prime}(t) & =8 e^{-0.2 t} \cos (4 t)-0.4 e^{-0.2 t} \sin (4 t) \\
& =4 e^{-0.2 t}(2 \cos (4 t)-0.1 \sin (4 t))
\end{aligned}
$$

c. The absolute maximum occurs when $2 \cos (4 t)=0.1 \sin (4 t)$ or $\tan \left(4 t_{\max }\right)=20$. It follows that $t_{\max }=\frac{1}{4} \arctan (20) \approx 0.3802 \mathrm{sec}$. Thus, the maximum is

$$
y\left(t_{\max }\right)=2 e^{-0.2 t_{\max }} \sin \left(4 t_{\max }\right) \approx 1.8512
$$

The absolute minimum occurs at $t_{\min }=t_{\max }+\frac{\pi}{4} \approx 1.1656 \mathrm{sec}$. It follows that the minimum is

$$
y\left(t_{\min }\right)=2 e^{-0.2 t_{\min }} \sin \left(4 t_{\min }\right) \approx-1.5821 .
$$

The graph is above to the right.
20. a. The basilar fiber satisfies the equation $z(t)=20 e^{-0.5 t} \sin (10 t)$ and vibrates through zero when the argument of $\sin (10 t)$ equals $n \pi$ for n an integer. It follows that the zeroes occur when $t=\frac{n \pi}{10}, \quad n=0,1, \ldots$
b. The velocity is given by

$$
\begin{aligned}
v(t)=z^{\prime}(t) & =200 e^{-0.5 t} \cos (10 t)-10 e^{-0.5 t} \sin (10 t) \\
& =10 e^{-0.5 t}(20 \cos (10 t)-\sin (10 t))
\end{aligned}
$$

c. The absolute maximum occurs when $20 \cos (10 t)=\sin (10 t)$, so $\tan (10 t)=20$ or $t_{\max }=$ $0.1 \arctan (20) \approx 0.1521 \mathrm{msec}$. Thus, there is an absolute maximum at $t_{\max }$ with

$$
z\left(t_{\max }\right)=20 e^{-0.5 t_{\max }} \sin \left(10 t_{\max }\right) \approx 18.512 \mu \mathrm{~m} .
$$

This is followed by the absolute minimum at $t_{\min }=t_{\max }+\frac{\pi}{10} \approx 0.4662 \mathrm{msec}$. with

$$
z\left(t_{\min }\right)=20 e^{-0.5 t_{\min }} \sin \left(10 t_{\min }\right) \approx-15.821 \mu \mathrm{~m} .
$$

The graph of $z(t)$ for $t \in[0,1]$ is shown below.

Hair Cell fiber
21. The volume of the open box satisfies the Objective function

$$
V(x, y)=x^{2} y
$$

The Constraint condition on the surface area of this box is given by

$$
S A=x^{2}+4 x y=600
$$

This constraint condition yields $y=\frac{600-x^{2}}{4 x}$, which when substituted into the objective function produces a function of one variable:

$$
V(x)=x^{2}\left(\frac{600-x^{2}}{4 x}\right)=\frac{1}{4}\left(600 x-x^{3}\right) .
$$

Differentiating this quantity, we obtain

$$
\frac{d V}{d x}=\frac{1}{4}\left(600-3 x^{2}\right)
$$

which when set equal to zero gives $x=10 \sqrt{2} \mathrm{~cm}$. (Take only the positive root.) This value of x gives the optimal length of one side of the base, which when substituted into the formula above gives $y=5 \sqrt{2} \mathrm{~cm}$. It follows that the maximum volume for this box is $V(x)=1000 \sqrt{2} \mathrm{~cm}^{3}$.
22. Combining the number of drops with the energy function, we have

$$
E(h)=h N(h)=h\left(1+\frac{10}{h-1}\right)=h\left(\frac{h-1+10}{h-1}\right)=\frac{h^{2}+9 h}{h-1} .
$$

This is differentiated to give

$$
E^{\prime}(h)=\frac{(h-1)(2 h+9)-\left(h^{2}+9 h\right)}{(h-1)^{2}}=\frac{h^{2}-2 h-9}{(h-1)^{2}} .
$$

A minimum occurs when $h^{2}-2 h-9=0$, so

$$
h=1 \pm \sqrt{10}=-2.1623,4.1623 .
$$

It follows that the minimum energy occurs when $h=1+\sqrt{10}=4.1623 \mathrm{~m}$, which give the height that a crow should fly to minimize the energy needed to break open a walnut. At this height the average number of drops required by the crow will be:

$$
N(4.1623) \approx 4.1623
$$

23. The area of the brochure is $A=x y=125$, where x is the width of the page and y is the length of the page. The area of the printed page, which is to be maximized is given by

$$
P=(x-4)(y-5) .
$$

From the constraint on the page area, we have $y=125 / x$, which when substituted above gives

$$
P(x)=(x-4)\left(\frac{125}{x}-5\right)=125-\frac{500}{x}-5 x+20=145-500 x^{-1}-5 x .
$$

The maximum is found by differentiation, which gives

$$
P^{\prime}(x)=500 x^{-2}-5=\frac{5\left(100-x^{2}\right)}{x^{2}}
$$

This is zero when $x=10$. It follows that $y=12.5$. So the brochure has the dimensions 10×12.5 with the printed region having dimensions 6×7.5 or $45 \mathrm{in}^{2}$.
24. a. The time as a function of x is given by

$$
T(x)=\frac{50-x}{15}+\frac{\left(x^{2}+1600\right)^{1 / 2}}{9}
$$

b. We differentiate $T(x)$ to find the minimum time,

$$
T^{\prime}(x)=-\frac{1}{15}+\frac{1}{9}\left(\frac{1}{2}\left(x^{2}+1600\right)^{-1 / 2} 2 x\right)=-\frac{1}{15}+\frac{x}{9\left(x^{2}+1600\right)^{1 / 2}} .
$$

Setting this derivative equal to zero gives

$$
\begin{aligned}
\frac{x}{9\left(x^{2}+1600\right)^{1 / 2}} & =\frac{1}{15} \\
5 x & =3\left(x^{2}+1600\right)^{1 / 2} \\
25 x^{2} & =9\left(x^{2}+1600\right) \\
16 x^{2} & =14400 \\
x^{2} & =900
\end{aligned}
$$

This implies $x=30 \mathrm{~m}$ produces the minimum time. $T(30)=\frac{20}{15}+\frac{50}{9}=\frac{62}{9}=6.89 \mathrm{sec}$. We check the endpoints $T(0)=\frac{70}{9}=7.778 \mathrm{sec}$ and $T(50)=\frac{10 \sqrt{41}}{9}=7.11 \mathrm{sec}$, confirming the optimal escape strategy is for the rabbit to run 20 m along the road, then run straight toward the burrow.
25. a. At rest, $V(t)=-70=50 t(t-2)(t-3)-70$, so $50 t(t-2)(t-3)=0$. Thus, the membrane is at rest when $t=0,2$, and 3 .
b. To find the extrema, we first write $V(t)=50\left(t^{3}-5 t^{2}+6 t\right)-70$, then the derivative is $V^{\prime}(t)=50\left(3 t^{2}-10 t+6\right)$. By the quadratic formula, $t=\frac{5}{3} \pm \frac{\sqrt{7}}{3}=0.7847,2.5486$. Substituting these values into the membrane equation gives the peak of the action potential at $t=0.7847$ with a membrane potential of $V(0.7847)=35.63 \mathrm{mV}$, while the minimum potential (most hyperpolarized state) occurs at $t=2.5486$ with a membrane potential of $V(2.5486)=-101.56 \mathrm{mV}$. Below is a graph for this model of membrane potential.

26. The objective function is given by:

$$
S(x, y)=2 x^{2}+7 x y .
$$

The constraint condition is given by:

$$
V=x^{2} y=50,000 \mathrm{~cm}^{3}, \quad \text { so, } \quad y=\frac{50,000}{x^{2}} .
$$

Thus,

$$
S(x)=2 x^{2}+\frac{350,000}{x} .
$$

Differentiating we have,

$$
S^{\prime}(x)=4 x-\frac{350,000}{x^{2}}
$$

Solving $S^{\prime}(x)=0$, so $x^{3}=\frac{350,000}{4}=87,500$ or $x=44.395$. It follows $y=25.37$. Thus, the minimum amount of material needed is $S(44.395)=11,825.6 \mathrm{~cm}^{2}$.

