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Chapter O

Preface

This lab manual has been developed to accompany the text Calculus: A
Modeling Approach for the Life Sciences, which the authors created to give
a modern and biologically relevant view of Calculus. This lab manual is de-
signed to provided biologically interesting examples and teach students how
to use several software packages. In particular, the primary computer tools
are the spreadsheet software Excel, which has excellent graphing capabili-
ties and several valuable data analysis tools, and the mathematical symbolic
software Maple, which has excellent algebraic and Calculus related abilities
that the students need to learn about.

The course was originally developed at San Diego State University when
the Mathematics and Computer Sciences departments were together. The
Calculus for the biology majors was being taught from a Business Calculus
text, and the students were not appreciating the importance of mathematics
to modern biology. Furthermore, the biology faculty at San Diego State
University were frustrated by the lack of mathematical skills emerging from
students who had taken the two semester sequence. Professor Mahaffy began
by changing texts and introducing the students to computer projects that
expanded on the material in class with the able assistance of Professor Roger
Whitney from the Computer Science Department. The class began with
surplus computers leftover from Professor Whitney’s NSF equipment grant
that were seriously underpowered (Mac Pluses). Still the initial projects
proved to create interest by the students that had not been seen before in
this class. Thus, SDSU’s College of Sciences helped us develop a better lab
with improved equipment, which got other faculty in Mathematics interested
in using the computer labs to aid in the instruction of their classes. The
result is that we now have excellent support for our computer lab, and an
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excellent environment for student learning.

The available texts for this course continued to be weak and dated,
so Professor Mahaffy developed a website with extensive lecture notes and
continued to improve the computer labs to go along with the material on the
web. Recently, the lecture material was developed into preliminary editions
by Prentice Special publications. However, the course was developed as an
integrated course that taught both skills in Calculus and techniques of the
computer, which students found particularly useful in their upper division
biology courses. This three unit course has evolved to where the students
have two hours of lecture each week on the material in the text and two hours
of computer lab (a one unit activity). The result has been that students have
developed a much better appreciation of the role of mathematics in biology
and have learned valuable computer skills that help them solve quantitative
problems in biology. They no longer feel that this course is useless to them
as when they were learning from the Business Calculus text.

This lab manual will parallel the material in the text Calculus: A Mod-
eling Approach for the Life Sciences, but material in this lab manual would
be valuable to any instructor who wants to teach mathematical modeling
to biology students and should provide valuable examples for other faculty
teaching mathematical modeling. The text Calculus: A Modeling Approach
for the Life Sciences is based on a dynamical systems approach to learning
Calculus, but it also stresses the importance of using real data with the help
of computers to appreciate the relevance.

Joseph M. Mahaffy
Alexandra Chavez-Ross
August 2006



Chapter 1

Introduction

The biological sciences are becoming more quantitative as research is ex-
panding. Mathematics is playing a significant role in understanding the
complex relationships that are being discovered in biology. The advent
of computers has made many of the complex problems tractable and has
greatly facilitated the analysis of large sets of data. Modern students of
biology need to know more about mathematical models and computers to
better understand what are the abilities and limitations of the theoretical
models for biology.

We have developed an integrated course of Calculus for the life sciences
that emphasizes mathematical models from biology and uses computers to
better understand the concepts taught in the course. This Computer Lab-
oratory Manual has been developed to accompany the text Calculus: A
Modeling Approach for the Life Sciences by the authors of this manuall[l].
However, the material for the computer labs developed here can be used
as supplemental material for a variety of courses in mathematical modeling
for biology. This manual is designed to provide numerous biological prob-
lems (along with a few purely mathematical problems from Calculus) that
should help the student learn more about both computer techniques and
mathematical models.

1.1 Background for the Computer Laboratory

Most of the problems are designed to illustrate some biological idea using
real biological data. The computer lab problems were originally designed for
students to work in small groups (usually two), but can be adapted to other
schemes. Based on consultation with faculty in Biology, we developed the
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2 CHAPTER 1. INTRODUCTION

computer labs to have mathematical, biological, and writing components.
Thus, these labs have been written with the idea that a biological problem
that extends from the lecture material in the text would be analyzed using
the spreadsheet software, Excel, or the symbolic mathematical software,
Maple. Then the students have been required to write a formal lab report,
using complete sentences with the software Word, which nicely imports the
graphic material from either software package (and are parts of almost every
exercise) and can create good tables that summarize information acquired
from the analysis. Many of the exercises ask the students to think a little
deeper about the biological implications of the study, then write a cogent
paragraph about their results.

1.2 Graphing in Excel - A Sample Problem

Below is an example of a quadratic function. Details are provided to guide
you through key steps for creating good Excel graphs for your lab report,
showing many of the features that are required in the graphs. In the process,
we will demonstrate a couple of valuable techniques in Word to make the
lab write-up look better.

Example 1: Consider the quadratic equation given by the function
f(x) =2+ 2z — 22

Find the x and y-intercepts and the vertex of the parabola. Graph f(z) for
—3 < x < 3. Label the function and the vertex on the graph.

Creating a Graph with Excel

Excel is a spreadsheet software package, so it is not ideally set up to cre-
ate graphs (which will be contrasted later when we show graphing methods
in Maple). However, it is excellent for adding labels and other design fea-
tures, which makes it a valuable tool for creating good presentations of data
and functions. To create a good graph in Excel, the user needs to create a
data base of the x and y values that will be graphed. The rule of thumb for
a good graph in Excel is to have 40-60 points on the graph. (Below we will
provide information to create a general Graphing Template that always uses
50 points and can be used for most graphing situations, where one is asked
to graph a function in Excel.)
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In the example above, the user is asked to graph f(z) for —3 <z < 3, so
we begin in Excel by creating a table of numbers from x = —3 to z = 3. Since
the difference between the = values is 6, then if we choose an increment size
of 0.1, there will be 60 points for our function evaluations. For this example,
the list of x values are placed in the first column of the Excel spreadsheet.
We use the first cell, A1, as a location for the label x. In the cell below,
A2 we put the x value of the left endpoint of the interval. In the next
cell below, A3, we type = A2 + 0.1, which adds 0.1 to -3, giving -2.9.
Note that you can type =, then click on A2, then continue typing 4+ 0.1
to get the same result. From A3, we fill down until we reach x = 3 at
A62. To fill down, you can highlight the elements in the spreadsheet that
you want to fill down. You highlight using the cursor (thick white cross)
and by holding onto the left button of the mouse from cell A2, pull the
cursor down along column A, highlighting until the cell A62. Follow this
by either typing Ctrl-D or going to the Edit item on the menu, finding fill,
and selecting down. Alternatively (and simpler), you highlight the cell that
you want to fill down from. You move the cursor to the lower right corner
until it changes to a simple 4. At this point, you move the mouse down to
the cell that you want to fill to (A62).

To make your formulae easier to understand, we want to take advantage
of the variable naming feature of Excel. Begin by highlighting all the cells
from A1l to A62, which is done by holding the left button of the mouse,
while you move through all the desired cells. Next we click on the Insert
label in the toolbar at the top of the spreadsheet. Choose the option Name
followed by the option Create, and accept the default setting of Create
names in Top Row. This gives all the cells in the first column the label of
x, which will make reading the formula for our function easier to understand.

The next step in the process is to create the y values for our graph from
the function f(z). We use the first cell in the second column, B1, as a
location for the label y. In the cell below, B2, we put the y value in by
evaluating our function f(z). This is done by typing = 2 + 2*x - x” 2 in
that cell. Note that we need to tell Excel to multiply the 2 and the = value
using the symbol *, and Excel uses x~ 2 to represent z2. Next you fill down
Column B from B2 to B62, following the same fill down procedure as noted
above for Column A.

Now we want to graph Columns A and B. First you highlight the data
to be graphed (you can do this very quickly by just clicking on the letter
A of Column A and holding the Ctrl button click on the letter B of Col-
umn B). Then you click on the icon for Chart Wizard on the toolbar (if
the icon is not shown, look for it in the Insert menu on the toolbar.) Select
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the XY (Scatter) chart type of graph, then select the chart sub-type in
the lower right corner (straight lines). (For this text, we exclusively use the
XY (Scatter) chart type, and we almost always select either the default
(for data) of points only or the lower right corner (for lines/functions) and
ignore all other sub-types. Proceed with Next twice to get to the page
(Step 3) where you begin by entering a Title and Label the axes. For this
example, the title given is Quadratic Function with simple x and y labels
for the axes. Now select Gridlines and check Major for the z-axis, then
select Legend and unselect Show legend, as there is only the one graph.
At this point, you can select Finish. The result appears as follows.

A B c 8] E i G H | J =
1 % ¥ =
|2 a1
| 3 -2.9 -12.21
| 4 =28 -11.44
=N 27 -10.69
B 26 -8 .95 This siee of this window s too small, so the window must be enlarzed
1 7 | 28] 8 -
| B | -2.4 856 Quadratic Function
| 9 | -2.3 -7.89 :
_10— 22 _7_24 The graph region should be mnmé:n;ed as large as possible
111 2.1 661 e
12 2 5| : .
BER EIC] Y e g 5
| 14 1.8 -4.84 15
|15 1.7 -4.29 1 | |
| 16 -1.6 -3.76 The x-axis must match the omain, -3 <x <3,
St a5 325 % Remove excess area wherelthe graph (s,
| 16 -1.4 -2.78 n
19 -1.3 -2.29
20 | -1.2 -1.84
21 -1.1 -1.41
44 [p [ M Sheet1 & Sheet? f Shests / [4]

Figure 1.1: Initial Excel plot for graphing a quadratic.

This is clearly a poor looking graph. There are three comments that
have been entered showing where we need to improve the graph. First the
window is increased by moving the mouse to black squares and using the left
button of the mouse to increase the viewing frame (about 8 columns and 19
rows is a fairly good size). To adjust the z-axis to the correct domain, you
double click (or use the right button of the mouse) when you point to the
x-axis and see the label Value (X) axis. In the window that pops up, you
select Scale and change the Minimum to -3, the Maximum to 3, and the
Major unit to 1. Finally, we need to make the actual area of the graph
(grey region) larger. The fonts for the titles and axis labels are oversized, so
we change the fonts on all of these. To change these we simply point with the
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mouse, then either double click or use the right button of the mouse. The
title works well with a font of 12 or 14, usually bold, while the axis labels and
axis numbers are best using either regular or italic fonts with size of 10 or 12.

i ¥
3 13 X X
23 1221 Cluadratic Function
28 1144 4
27 -10E9 .
25 995 -
25 925 g
2.4 -B.56
23 78| B ? =
22 724 4
21 66T =,
2 6 =
1.9 .41
-1.8 -4.84 =
1.7 479 g
1.5 376 i
1.5 325 -4
1.4 276 44
1.3 229
i -1.584 x
1.1 1.41

Before finishing the graph by adding the required labels, we need to
complete the algebra to obtain the intercepts and the vertex. The y-intercept
is very easily found by simply evaluating f(0) = 2, so the y-intercept is
(0,2). The x-intercepts are found by solving f(xz) = 0, which is equivalent
to solving

z® -2z —2=0.

This is solved using the quadratic equation (or completing the square if you
prefer this technique.) You may refer to the Function Review and Quadrat-
ics chapter of the textbook for some examples in how to solve quadratic
equations [1]. Later we will show how the symbolic mathematics software
Maple easily does this computation for you. The quadratic formula gives

r=1+3.

The z-coordinate of the vertex is halfway between the z-intercepts, so the
x-coordinate of the vertex is 1. Since f(1) = 3, it follows that the vertex
occurs at (1,3). (Section 3 of Chapter 4 of the text discusses some of the
techniques for finding the vertex of a parabola.)

We now return to the graph in Excel to add the labels and make other
changes to improve the look of our graph. First, to make the graph easier to



6 CHAPTER 1. INTRODUCTION

see, we double click (it will say Plot Area) on the background and change
its color (usually to a lighter one, though you might want one of the patterns
or even import a relevant picture into the background). Next we make the
function easier to see by double clicking on the function or click the right
button of the mouse so you will get the Format Data Series menu. On
the Patterns option choose the next thicker type from the Weight win-
dow, and we choose usually a dark color. Because the default graph leaves
little room to label the vertex, we change the scale on the y-axis by double
clicking on the y-axis and changing the scale in this case from y = —15 to
y = 5 in increments of 5.

Adding Labels to the Graph

First, make sure that the graph is activated by seeing the black squares
at the corners and in the middle of all edges. (If this is not the case, then
clicking on the white area of the graph activates the graph.) We begin
by adding the label for the vertex of this parabola. Click in the white area
labeled f, that appears just above the column labels. (Not all Excel versions
have the f, label, but instead you should have the = sign on the left hand
side of the window). In this region, we type Vertex: (1, 3), then Enter the
result. The label will appear in the middle of the graph. For the label shown
on the graph in Figure 1.3, the font was changed to Times New Roman (the
most common used in Math) and increased its size to 14 points. The box
had to be resized to fit this font and larger size by dragging one of the
corners with the mouse. Use the mouse to position the box near the vertex,
then highlight the text you typed and right click on the the box and select
Format Text Box. The next menu item you choose is Color and Lines
from which you go to the the Color entry and select the same color as you
selected for the graph background. This allows your label to block out the
gridlines and be more visible.

For labeling the graph, you need to type in the equation in the white
area labeled f, (or on top of the column labels). For this function, we
typed y = 2 4+ 2x - x2. As in the label discussed above, the font was
changed to 14 point Times New Roman and the background was made to
match the graph background. To finish the equation, we highlighted each
of the variables (individually) and made them italic by clicking on the I
on the menu bar. Finally, to get the x?, we highlighted the final 2 in the
equation, then went to the main menu bar under Format, then accepted
Selected Object and on the submenu checked the box for Superscript
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under the category Effects. Alternately, we highlight the final 2 in the text
box, right click on it and select Format Text Box again, then check on
the Superscript white square. In Figure 1.3 you may see the final result
of the graph created, which is how it should appear in your report.

It is important to note that you should be saving your work at regular
intervals so that you don’t need to start your work from scratch. It also pro-
tects you from possible system problems so that you don’t lose everything
you've worked hard to obtain. Now we are ready to create the actual Lab
Report for Example 1.

Creating the Lab Report with Word

One objective of the Computer Laboratory is to teach students to learn
about technical writing. Thus, the answers to the lab questions should be
typed in a Word document in clear, concise, and complete sentences. Above
we have done all the calculations needed to answer the questions and have
created a good graph to include in our document. We just need to add that
once you have copied and pasted your final version of the graph created in
Excel into your Word document, you should change the size of the graph
to be about 3 inches in height height and 4 inches in width (the actual
graph, not the window). This means DO NOT to use the default size in
Excel. The graph should be clear and readable in your report document to
demonstrate the results being exhibited in the problem.

There remains one additional task to learn to be able to create a good
document. The z-intercepts are 1 + /3, which is not a standard form on
the typical computer keyboard.

Adding Equations to a Document

In Word (assuming you don’t have an abbreviated installation), there ex-
ists a special program to create mathematical equations. When you are in
Word and are where you want to enter a mathematical expression, you click
on Insert on the top menu, followed by Object, and then choose Microsoft
Equation 3.0 (or alternatively it might say Mathtype or Equation Ed-
itor). A second window will open up with symbols which you can insert.
To obtain the right z-intercept, for example, you type (1+ followed by the
square root icon and a 3, then the right arrow key to indicate that the
next part is no longer inside the square root. Follow this with ,0) and press
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Escape. The result will be (1+ +/3,0).

Below is an example of how this question might appear in a Word docu-
ment, using the equation capabilities of Word and copying and pasting the
Excel graph into the document.

Example 1: Consider the quadratic equation given by the function
f(z) =2+ 2z — 2%
Find the z and y-intercepts and the vertex of the parabola. Graph f(z) for

—3 < x < 3. Label the function and the vertex on the graph.

Solution: The z-intercepts occur at (1 —+/3,0) and (1 + v/3,0). The y-
intercept is at (0, 2), while the vertex is located at (1, 3). Below is the graph

of f(x).

Quadratric Function

y

2 :
Vertex: (1. 3)
K \
= =
3 p /1 ( ) 3
=, 7 =5

2
/ y =2+2x=x
40
/ =T
x

Figure 1.3: Graph of f(z) = 2 + 2z — 2.

The above answer is an example of a complete solution to this example.
Be sure to Save your file at this point!
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1.3 Creating a Generic Graphing Template

Any calculus course requires the creation of many graphs. In fact, Calculus
itself will give you new techniques to sketch the graph of a function. Refer
to the Applications of the Derivative-Graphing chapter of the text book to
learn how [1]. This computer lab manual has many problems that require
graphing, so below we present an algorithm for creating a graphing tem-
plate for a “nice” function, which requires that the user only has to input
the domain and the function, then it is ready to graph in Excel. You are not
supposed to follow all the procedure described in Section 1.2 every time you
need to make the graph of a function. Moreover, by a “nice” function, we
mean a smooth graph for which you will need enough points to be plotted.
However, the student will still need to do many of the procedures outlined
above to make the graph look good.

Consider a function f(x) that we want to graph on the interval = € [a, b].
Below is a detailed procedure to create a graphing template that can be used
for any graph by only changing the inputs for a, b, and f(z). It can also
be used for graphing multiple functions in Excel. For our starting example,
we will choose a = 0, b =5, and f(z) = 2> — 2z, but this is only for set up
purposes.

1. Open an Excel file and give it a generic name, like grphtmp.xls.
2. Put the labels z in A1, f(z) in B1, a in G1, and b in G2.
3. Insert the values 0 in H1 and 5 in H2.

4. Highlight the endpoint cells and their values G1, H1, G2, and H2,
then go to the menu bar and select Insert, followed by Name, followed
by Create, and accept the default Create Names in Left Column.
This will allow you to change your endpoints by simply changing the
cells H1 and H2.

5. Go to the cell A2 and type = a or alternately, type = and click on
cell H1. You should see the value 0 appear in A2.

6. Go to the cell A3 and type = A2 + (b - a)/50. Again you can
simply click on the locations for A2, b, and a. The result will be 0.1
appearing in A3.

7. Fill down Column A until you reach A52, which have the value b = 5.
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8. Highlight Column A (A1 through A52), then select Insert, followed
by Name, followed by Create, and accept the default Create Names
in Top Row. This creates your independent variable x and makes 51
evenly spaced points along the domain.

9. In B2, type your function, which for this example you would enter =
x” 2 - 2%,

10. Fill down Column B until you reach B52, which gives you the cor-
responding f(z) values.

11. To create a graph, simply highlight Columns A and B, then click on
the Chart Wizard icon in the menu bar (the symbol that looks like
a yellow, blue, and red bar chart). From there, you follow the usual
directions noted in the Example above of selecting the X'Y-Scatter
Plot, etc.

Having created this graphing template and saved it, then when you want
to create a new graph, you simply make a new copy of this file (renaming
it). You open the new file and simply change the entries in H1 and H2 to
match your new domain endpoints, and change the entry in B2 to match
your new function. You have to Fill Down in Column B to complete
the table, then the new function can be easily graphed. If you have more
functions to put on the same graph, then you can enter them in Column C,
Column D, etc. To graph multiple functions, you simply highlight all of
the relevant columns, then follow the same procedure as above with Chart
Wizard to produce the desired graph.

1.4 Graphing a Function and Data Points

In the mathematical modeling of biological problems, biological data is col-
lected, then a mathematical model is often proposed to describe that data.
Often one searches for the least squares best fit to the data, then sees if
the model describes the data well. Graphically, one wants to display the
data and the model, then observe how well they match. Courses in statis-
tics can make provide more quantitative information on the goodness of
fit for a mathematical model. In this part of the lab manual, we want to
describe how to display both data and a function using Excel. More than
just sketching the graphs of functions, we could say this is one of the most
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relevant features that Excel can provide. Other software, like Maple, helps
plot graphs of functions in a more straight forward way.

Below we show data that compares the doublings/hr, denoted p, to the
rate of mRNA synthesis/cell, denoted r,, (see Section 1 of the Function
Review and Quadratics chapter of the text book for a proper biological in-
troduction of this example [1]). It can be shown that a good mathematical

w06 1.0]1.5]20] 25
rmo| 431911 13 | 19 | 23

Table 1.1: Data indicating growth of a bacterial cell in terms of pu
(in doublings/hr) and the rate of mRNA synthesis, 7, x 10° (in nu-
cleotides/min/cell) [2].

model for these data is given by the function
Tm = 9.144.

This model shows a linear relationship of the doublings/hr with the rate of
mRNA synthesis. Note that when there is no growth (u = 0), then there is
no synthesis of mRNA as one would expect.

We begin this graphing exercise by simply plotting the data in the table.
In Column A, we list the values of u, and Column B contains the data
for r,,. We highlight these two columns and use the XY Scatter Plot in
Chart Wizard to graph these data. In this case, we use the default graph
type, which produces data points. You may increase the size of the data
points so they stand, out by right clicking on either of the points selecting
Format Data Series and on the Marker column increase the default
size to 7 points. After going through the menu, adding vertical gridlines,
removing the legend, and giving the graph a title and labeling the axes, we
see the following graph in Excel.

Next we want to add the theoretical model to the graph. Since it is
a straight line, we only need to use two points. However, in Excel, it is
usually best to use at least three points when entering a line to avoid having
Excel confuse which number pairs with which. (Excel often defaults to
using the rows as x and y values, which reverses our use of columns, the
more standard way to enter data and produces the wrong graph.) For this
problem, we will use Column D for the theoretical values of u, taking
the values 4 = 0,1,2,3. The corresponding values of r,, are computed in
Column E (r,, = 0,9.14,18.28,27.42). To add these values to the graph,
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Figure 1.4: Data for mRNA synthesis as a function of the doublings/hr.

we activate the graph by clicking in the white border region of the graph.
Then we go to the top menu and click on Chart and select the entry Add
Data. When the box pops up, you simply take the mouse and highlight
the desired data in Columns D and E. Another box will pop up that says
Paste Special. In this box, it will already have New Series and Values
of Y in Columns checked, but you will have to check in addition the box
that says Categories (X Values) in First Column. The result is the
following graph in Excel.

At this point the mathematical model consists of data points. This
model must be converted to a line. The easiest way to change this into a
line is to double click (or right click) on one of the data points on the line.
A box entitled Format Data Series pops up. In this box you select a color
and weight for the line of the model and check None under the category
of marker. This changes the data points into a line as desired. We com-
plete our work to make the graph look good by adjusting the Scale of the
p-axis. We change the background color, adjust the font size and style and
transform the labels to p (using the symbol font), 7, (using the subscript
option under font from the Format menu), and 10° (using the superscript
option), and make the data points round and larger (by double clicking on
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mRNA Synthesis
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Figure 1.5: Graph of data and straight line for model (as points).

the data points and following the menu). The result is the graph in Excel
given in Figure 1.6.

1.5 Computer Laboratory Exercises

Numerous examples and exercises in this lab manual use connections to the
web. At some point it is hoped there will be a CD to accompany this lab
manual, but for now the reader can consult the website of J. M. Mahaftfy.
When possible, the specific web address will be given. To simplify listing of
these web addresses, we note that the beginning of the web address begins
with the following:

www-rohan.sdsu.edu/” jmahaffy/courses

which will be given as ... in the text below. Most of these exercises were
produced for a course run from the web. Next to the problem, the reader
will find a letter and a number, such as C3. The reader can find the original
problem by visiting the website:
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Figure 1.6: Final graph showing the model for mRNA synthesis as a function
of the doublings/hr and data points from experiments.

.../s00a/math121/labs/labc/q3vl.htm

where the labc is from the letter C, denoting Lab C, and the q3v1 is from
the number 3, denoting Question 3 Version 1. (There generally three ver-
sions of each problem.)

1. (A1) This question introduces the use of Excel and Word for producing
good laboratory documents. This exercise can be started from scratch or
one can download a starting graph at

.../s00a/math121/labs/laba/qlvl.htm

Consider the two lines given by the formulae

y=2zx—1 and y:—g—i-Z.
Graph these two lines in Excel. Generate a title for the graph, label the x
and y-axes appropriately, adjust the scale so that the domain (z) and range
(y) both go from -4 to 4, and expand the graph to a square. Use Excel’s
labels to identify each line with its equation. Also, label the coordinates of
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the point of intersection on the graph. Copy this graph into a Word labora-
tory document. Write a short paragraph detailing how to find the point of
intersection. Are these lines perpendicular? (More information is available
in Section 3 of the Linear Models [1] for procedures to find the point of
intersection and for definitions of parallel and perpendicular lines.) Explain
your answer.

2. (A1) Consider the quadratic equation

Use Microsoft Equation or Equation Editor to write this quadratic equation
with full-sized fractions (as seen above). Also, write this equation in full
factored form, then find the roots of this equation.

3. (A2) a. Consider the following functions, f(z) and g(z):
flx)=2zx—1 and g(x) =4 — 2z — 2°.

Use Excel to create a single graph of both functions for x € [—6,4]. Label
the graph clearly with the domain adjusted to the given interval.

b. Find the x and y-intercepts for both functions. Give the slope of the
line and the vertex of the parabola. Find all points of intersection between
the curves. Write this information in a clear paragraph. If the answer uses
the quadratic formula and has a square root, then give both the decimal
answer to four significant figures and the answer including the square root.
(Use Microsoft Equation or Equation Editor to write the answer that in-
cludes a square root.)

4. (A3) The text associated with this lab manual gives details supporting the
idea that crickets chirping could be used as a type of thermometer, albeit
a crude one. That text presented the classic folk “cricket thermometer,”
formalized by Dolbear, which satisfied the linear relationship:

N
T=—+40
4+ ’

where T' and N were the temperature and the number of chirps/minute,
respectively. The Bessey brothers later made careful measurements and
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did a linear least squares best fit to their data and obtained the linear
relationship
T =0.21N+404.

a. Recordings of four crickets chirping at different temperatures are avail-
able at the web address

.../s00a/math121/1labs/laba/q3vl.htm

In this question, you time the number of chirps/minute of the four crickets.
Make a table listing the number of chirps/minute for each of the crickets
along with the predicted temperatures from each of the models above.

b. Create a graph of each of the models (one graph with both models),
showing clearly the data points that you gathered in Part a.

c. Give the units of the coefficients (slope and intercept) in each of the
equations above.

d. Suppose that the error in counting chirps/min is less than 10 chirps/min.
Find the range of temperatures for each of the crickets from your data for
each of the models, taking into account this source of error. (Thus, if you
found N = 92 for one cricket, then give the possible temperatures for N
ranging between 82 and 102 with each of the models.) Use Word to create
a table that gives the range of temperatures that each model gives for each
cricket. Write a brief paragraph discussing the accuracies of the models
from your lab experience, what are the major sources of error (list at least
two), and how much agreement the different models have in predicting the
temperature.

5. The thyroid gland in children is susceptible to carcinogenic action from
ionizing radiation. The pooled data of many studies suggests that the risk
of thyroid cancer is roughly linear with respect to the amount of radiation
exposure before the age of 15. This is a typical dose-response that is assumed
in many environmental studies of various toxins. More recently, a number
of different studies show that our bodies respond to toxins in quite different
and very nonlinear ways, but radiation exposure is often best described by
this linear dose-response profile.

a. A pooled study [3] of children exposed to radiation from atomic bomb
survivors, children treated for tinea capitis, children with irradiated tonsils,
and infants with their thymus irradiated were compared against a control
population. (Learn more about analysis of these studies in Statistics.) The
resulting analysis showed that there was a linear dose-response of the excess
relative risk (ERR) to the amount of radiation received (in Gy). (Note: A
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Gy is a gray unit with 1 Gy = 1 Joule/kg. Typically, a whole body radiation
dose of 10-20 Gy is fatal, which about the same energy as in % g of sugar.)

The best fitting line to the data is given by
ERR=1+417.7d,

where ERR is the excess relative risk (factor of more cancers over the con-
trols) and d is the dose of radiation. Make an Excel graph of this line over
the domain d € [0, 5]. Be sure to label your graph, including the axes. Place
the equation of the line on the graph.

b. Below is an estimated table of the pooled data. Plot these data points
and add them to the graph created in Part a.

d 0104107 ] 13 | 1.7]35 |42
ERR | 21(45|51]11.0|80| 31 | 29

Table 1.2: Data on the excess relative risk for children exposed to radiation
based on the dose of radiation that they received as a child.

1.6 References:
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and other parameters of the cell by growth rate”, Escherichia coli
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Microbiology, Washington, D. C. (1987).
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Pottern, A. B. Schneider, M. A. Tucker, and J. D. Boice Jr, (1995),
“Thyroid cancer after exposure to external radiation: A pooled anal-
ysis of seven studies”, Radiation Research, 141, 259-277.
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Chapter 2

Linear Models and Least
Squares Best Fit

One of the most common models applied to biological data is the linear
model. Due to the complexity of most biological problems, this type of
model is rarely valid over a wide range of the variables. However, it does
provide a useful type of model to begin our studies. One advantage of a linear
relationship for a set of data is the easy algorithm to find the best possible
straight line through the data, known as linear regression or the linear least
squares best fit to the data. (Refer to the Least Squares Analysis chapter
of the text book for more information [2].)

Assume that the linear model for a set of data points (z;,y;) is given by
the equation

y=ax+b,

where the parameters a and b are chosen to “best fit” the data. The least
squares best fit minimizes the square of the error in the distance between
the y; values of the data points and the y value of the line, which depends
on the selection of the slope, a, and the intercept, b. The absolute error
between each of the data points and the line is

e = |yi — y(@i)| = lyi — (azi + )|, i=1,..n.

The least squares best fit is found by finding the minimum value of the
function

n
J(a,b) =et+e2 4+ ... +e2 :Zei.
i=1

Details for how to find the best values of a and b uses Calculus of two vari-
ables and can be found in most statistics books. The details of this analysis

19
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are omitted, since it does require a little more knowledge of Calculus. How-
ever, the results are summarized below. Define the mean of the x values of
the data points as

T = = —
n n-

r1+x9+...+x, 1Zn:
€Ty.
=1

The value for the slope of the line that best fits the data is given by

Z?:l(xi — Z)yi
doicy (v — @)%

With the slope computed, the intercept is found from the formula

a =

1 o I
b:nzgyi—a:c:y—ax.
1=

There are many computer programs that automatically compute a and b
from data sets. In this chapter, we show how to use Excel’s Trendline
feature.

2.1 Excel’s Trendline for Linear Models

The algorithm listed above is very tedious to compute by hand, but lends
itself very well for a computer. This algorithm for finding the best slope
and intercept for a linear model is embedded in Excel’s graphing program
under the name of Trendline. Below we demonstrate how to use this routine
through an example of juvenile height.

Example: Juvenile Height

It can be readily seen that the growth of children follows a fairly linear
model for a range of ages. Below is a table of data on the average height of
children in the U. S. (This example is also studied in Section 5 of Chapter
2 of the textbook [2].)

The height h, is graphed as a function of age a. Note that the graph
below is created in the usual manner of creating a table of data in Excel,
then using Chart Wizard with its X'Y-Scatter option to create the graph
with the data displayed as points. It is easy to see that the data almost lie
on a line, which suggests a linear model. After the usual cosmetic changes
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‘ Age 113

5 7

9

11

13 |

| Height (cm) | 75 [ 92

108 | 121

130

142

155 |

Table 2.1: Average juvenile height as a function of age [1].
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Figure 2.1: Graph of the juvenile height data.

to make the graph look good, we have the graph of Figure 2.1.

21

We want to use Excel’s Trendline feature to find the best linear model
through the data graphed above. There are two good ways to invoke Excel’s
Trendline. The easiest way is to right click on one of the data points, then
select the option Add Trendline. Alternately, one can click (single) on
one of the data points, then once the data points appear highlighted, return
to the Chart on the Main Menu and select Add Trendline. With the
menu that appears under Trendline, there are several options. Since the
mathematical model in this case is a linear model, we stay with the default,
Linear. Next select the Options folder in this window and check the box
to Display the equation on chart. The result that appears in the middle
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of the graph is the equation
y = 6.4643x + 72.321.

We move this equation to a more visible part of the graph and make any
other touch-ups to make the graph look good. For example, we changed
the variables y to h (height) and z to a (age) to match the variables in our
model, then moved the equation closer to the line. We also changed the
font size and style (Times New Roman), then formatted the Text Box to
have a Pattern that matches the background selected for the graph. The re-
sulting graph is shown in Figure 2.2 and is ready for inclusion in a lab report.

Juvenile Height

180

160 =
/(
140 ]

120 ]
100 2]

80 /‘/ h=64643a +7
60

()
")
12
521

I (Height in cm)

40

20

0 2 4 6 8 10 12 14
a (Age inyr)

Figure 2.2: Juvenile height data with the best fitting straight line.

2.2 Computer Laboratory Exercises

To simplify listing of web addresses, the beginning of a web address below
begins with the following:

www-rohan.sdsu.edu/~ jmahaffy/courses
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which will be given as ... in the text below.

1. (B2) This problem examines some physiological data from the laboratory
of Professor Carol Beuchat from San Diego State University. Animals have
evolved different mechanisms for excreting waste nitrogen. The principle
means of excreting nitrogen are uric acid , urea, and ammonia. Unfor-
tunately, the latter two are toxic so require larger volumes of water for
excretion. Uric acid uses less water, but it requires more energy (ATP) to
produce. Thus, animals must weigh their needs of water versus energy when
selecting a means of excretion.

a. Here we only examine the amount of urea excreted. First, a standard is
run to determine the absorbance at 570 nm as a function of the concentration
of urea. (This is a standard technique using spectrophotometry.) The data
are listed below:

Urea conc. (mg/dl) | Absorbance

3 0.138

15 0.676

40 1.315

60 1.76

80 2.453
100 3.053
120 3.939
150 4.66
200 6.093

Use the EXCEL’s trendline feature on a scatterplot to find the best
straight line through the data, where

A=mU+b,

is the straight line describing absorbance (A) as a function of the concen-
tration of urea (U) with EXCEL determining the slope (m) and intercept
(b). Write the equation for the best linear model, and show the graph with
both the data and this linear model.

b. Find the expected absorbance for a sample containing 53 mg/dl of
urea and a sample containing 176 mg/dl of urea.

c. In practice, one will use the spectrograph to measure the absorbance,
and use the relationship between the two to calculate the urea levels. In
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order to do this you must now solve for U as a function of A. That is find
a function f(A) such that

U= f(A).

This inverse function is also a straight line, so give its slope and intercept.

d. In Professor Beuchat’s laboratory they found that the urine from a
hummingbird kept at 10°C had an absorbance of 0.142. When the humming-
bird was kept at 20°C, the absorbance for a urine sample was 0.201, while at
40°C the absorbance was 0.29. Find the corresponding values of concentra-
tion of urea for each temperature from the results in Part c¢. (Don’t forget
to include the correct units on your answer.) Can you explain your results
with regard to either energy or water conservation by these hummingbirds?

e. We would like to see if the analysis of urine samples tells us about
other species. The table below lists different animals and the corresponding
absorbances measured.

Animal Absorbance
Chicken 3.124
Duck (Fresh Water) 0.468
Duck (Salt Water) 0.782
Frog 0.267
Turtle 1.115
Tortoise 6.877

Find the corresponding values for the concentration of urea in each of
these animals. A hummingbird gets its energy from nectar, which is high
in water content. What animal has the most similar excretion pattern to
a hummingbird? Do you see a pattern between the different animals here,
and can you offer some explanations?

2. (B3) A few years ago some Exercise Physiologists at UCLA published a
paper in Nature wherein they predicted that by the year 2004, the women’s
world record in the marathon would be faster than the men’s record [3].
The mechanism for the improvement in performance is thought to be the
improvement of training methods and the expansion of the talent pool. But
the data was examined only to describe the trend, not to explain it. This
problem examines the winning Olympic times for the 100 m races for both
Men and Women. As the years have gone by, the times have improved for
both Men and Women. Below we present a table with the data for the
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winning times (in seconds)

Men’s 100 | time | Women’s 100 | time

Burke 12
Jarvis 11
Hahn 11
Hahn 11.2
Walker 10.8
Craig 10.8

Paddock 10.8
Abrahams | 10.6
Williams 10.8 Robinson 12.2
Tolan 10.3 Walasiewicz 11.9
Owens 10.3 Stephens 11.5
Dillard 10.3 | Blankers-Koen | 11.9

Remigino | 10.4 Jackson 11.5
Morrow 10.5 Cuthbert 11.5
Har 10.2 Rudolph 11
Hayes 10 Tyus 114
Hines 9.95 Tyus 11
Borsov 10.14 Stecher 11.07
Crawford | 10.06 Richter 11.08
Wells 10.25 | Kondratyeva | 11.06
Lewis 9.99 Ashford 10.97
Lewis 9.92 Joyner 10.54
Christie 9.96 Devers 10.82
Bailey 9.84 Devers 10.94
Greene 9.87 Jones 10.75

a. Use EXCEL’s trendline feature to find the best straight lines (one for
Men and one for Women) through the data, where

T=mY +b

is the straight line for the best time (T") as a function of the Olympic year
(Y) with EXCEL determining the slope (m) and intercept (b). Write the
equations for the best linear models and show (on a single graph) the graphs
of the data and linear model for both Men and Women. Be sure to label
which lines correspond to the data for the Men and Women.
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b. Use the model to determine the predicted year when the best time is
10.0 sec for Men and 11.0 sec for Women, then compare your prediction to
the actual data.

¢. Use the model to predict the time for the 2000 and 2004 Olympics
for both Men and Women in this event. Give the percent error between the
actual and predicted value in 2000.

d. According to the model, which Olympics will first see Women outrun-
ning the Men? Give a short discussion on the validity of this prediction and
why you think it is true or false. What fundamental premise do you consider
to be critical? Can you formulate another model that might be more valid?

3. (B1) A hyperlink at
.../s00a/math121/1labs/labb/qlvl.htm

is provided for finding an applet for the least squares best fit to a quadratic
equation given by

h=az? + bz +c.

Since there are only three data points, the best quadratic always fits the
data exactly.

a. Enter the data set number 1 in the upper right corner of the applet to
get your first data set. Adjust the parameters for the coefficients a, b, and
¢ until you find a sum of squares value of 0.0. (Hint: The coefficients are
integer valued.) Write the equation for this quadratic, then determine the
values of the x and h-intercepts and the coordinates of the vertex.

b. Repeat the process in Part a. for the data set number 2 in the upper
right corner of the applet.

c. Write a brief discussion on what you observe as you increase ¢. Simi-
larly, write a brief description of what happens to the graph of the quadratic
as you change b and a. Be sure to describe what happens as a changes sign.
You may find that the changes caused by varying b are different when a
is less than zero. In your discussion, you should clearly write about each
case of the parameters, a, b, and ¢, as they vary, noting differences when
the parabola changes from pointing up to pointing down. For each case, de-
scribe what happens to the vertex (direction of shifts), the distance across
the parabola, and/or the direction of opening of the parabola.
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Chapter 3

Functions and an
Introduction to Maple

This chapter introduces the powerful symbolic algebra program Maple. Maple
handles algebraic manipulations very easily and accurately, produces graphs
easily, and performs many other mathematical calculations. In this lab man-
ual, we only introduce a very small sample of Maple commands, but using
the Maple tutorials and its help page, you can easily extend your working
knowledge with this program. The reader should be aware that Mathemat-
ica is an equivalent software package that is used on other campuses. (It is
entered slightly differently, so this manual will not provide the novice with
information to use that software, but it handles the same problems shown
below with Maple.)

We begin by showing how a typical Maple window should appear after
invoking the program. The window shown in this figure shows Maple solving
the quadratic equation and graphing a special case.

3.1 Maple - A Sample Problem

This example is designed to introduce the reader to basic Maple commands.
Two functions are used to show how to enter functions, graph these func-
tions, and find points of intersection.

Example 1: This example is meant to introduce Maple. Consider the

29
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Maple 6 s _IEII_iI
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[ This window shows entering a general quadratic finction in Maple and solving it symbolically.

g = x —> a*x"2 + b*x + ¢

g:=x—)ax2+bx+c

l—b+«/b2—4ac ]—b—«/b2—4ac
2 a b a

e solve (g(x) , x};

> ar=—1: b:=-1: o:=12
qix)
L —x2—x+l2
[» plot{g(x),x=-5..5);
10
51
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[[Time: 015 [Bstes: 2.31M [ Avalable: B18M

Figure 3.1: Maple program window with the solution of the quadratic equa-
tion.

following two equations:
fle)=x+2 and g(x) =2? — 22 — 2.

We want to find the z and y-intercepts of both functions, determine where
these functions intersect, then sketch a graph of the functions.

Solution The first Maple command shows how functions are entered in
Maple. (There are several ways to enter functions in Maple, but we are using
the form that creates functions f(x) as most frequently used in standard
textbooks.) To enter the functions in Maple, we type

>f =x > x + 2;
> g =x > X2 - 2%x - 2;

The output of this command by Maple will produce functions in a math font
that looks like the functions you see in textbooks.

f=re—ax+2
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and
g=z—z>—2x -2

The part given by
f :=x >

is used to define the function f(x) in Maple. The semicolon (;) is crucial for
ending all Maple commands. The semicolon completes each Maple command
that produces an output, while a colon (:) ends a Maple command, but
doesn’t result in any output being observed. To execute a Maple command,
you need to hit the Enter key. You can execute the command from any
point in the command, not necessarily at the end of the command. (If you
desire going to the next line in Maple not executing the command, then you
must use Shift and Enter.)

Now it is easy to have Maple evaluate the function. For example, the
function f evaluated at x = 5 is found by typing

> £(5);

which yields 7. It follows that finding the y-intercepts of these functions is
easily done by the following Maple command:

> £(0); g(0);

It follows that the y-intercepts are 2 and —2 for f and g, respectively.

To find the z-intercepts of these functions, there are two Maple com-
mands. The solve command solves the equations algebraically (exactly),
while the fsolve command solves the equations numerically. Since f and g
are linear and quadratic functions respectively, it is always possible to find
an analytical solution. The z-intercept for f(x) is x = —2 and can be found
in Maple by typing

> solve(f(x)=0, x);

The z-intercept for g(z) can be found using the quadratic formula or in
Maple, we type

> solve(g(x)=0, x);
Maple returns the exact solution

143, 1-3

Alternately, we could use the Maple command fsolve, which gives the float-
ing point or decimal solution to the equation. Thus, typing
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> fsolve(g(x)=0, x);

gives the answers x = —0.7320508076 and = = 2.732050808. The z next to
the equation indicates to Maple that you want to solve the equation for x
and not for any other possible variable.

It is usually a good idea to have a graph of the functions with which you
are working. The purpose of the graph is often just to visualize the functions
in the problem. Graphing in Maple is very simple (though the output is not
as elegant as it is in Excel). To graph the two functions f(z) and g(z), you

simply type
> plot({f(x),g(x)},x = -5..5);

This plot command has numerous options, and we will show several of these
later in the lab manual. Above this plot command simply tells Maple to
plot the two functions f(x) and g(z) over the interval = € [—5, 5].

e

Figure 3.2: Graph of f(x) and g(z).

To find the points of intersection we need to set f(x) = g(x) and solve for
x. Again we can do this using either solve or fsolve. (I would recommend
against using solve if you have any polynomial of degree higher than 2.)
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> solve(f(x)=g(x),x); fsolve(f(x)=g(x),x);

Notice that you can put multiple Maple commands on one line, and Maple
does the operations in the order you place them.

If we want both the z and y values of the points of intersection, then
we need the following (assuming 2 points of intersection, it varies slightly if
there is only one point):

> xs := fsolve(f (x)=g(x),x); f(xs[1]); f(xs[2]);

The xs stores the values of x created by the fsolve command. Since there
are two values xs[1] gives the first x created by fsolve and xs[2] gives the
second one. Writing f(xs[1]); gives the y value as it is the function evalu-
ated at that x value. Note that if there was only one value, then it is xs
and you get the y value by typing f(xs);. The Maple command above gives
the points of intersection as (—1,1) and (4,6).

3.1.1 Maple - Algebraic Assistance

Maple is a powerful symbolic algebra package. This makes it a powerful tool
to help with algebraic simplifications that are tedious. Here we introduce a
few commands that are helpful with algebraic manipulations. Most of these
commands are fairly obvious what they do by their names.

We begin with the commands expand, factor, and simplify. In several
of the least squares problems, we need to find the vertex of the parabola
to find the best fit of a straight line through the origin, but multiplying
many terms becomes tedious. The expand operation can easily produce a
polynomial as is shown below.

> expand ((x-2.3) "2+(x-4.5) "2+(x-6.2) "2+(x-8.1)"2) ;
Maple gives the answer

422 — 42.22 + 129.59,

which has a vertex at x = 5.275. We recall that the vertex of a quadratic
function occurs at

b
— o
We can obtain that vertex with the following Maple command (assuming it
directly follows the expand command above):

xr =
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> —coeff(%,x,1)/(2xcoeff (%,x,2));

Maple uses the % symbol to represent the previous result obtained by Maple
(such as the answer to the expand command). Be very careful using the
% symbol in Maple as it represents the last response from Maple that was
entered and not necessarily the expression in the line above the %, since you
can use the cursor to go to other parts of the worksheet. The coeff(%,x,1)
command written above tells Maple to use the coefficient of the previous
expression found (%) that corresponds to x!. Similarly, coeff(%,x,2) tells
Maple to use the coefficient of 22 of the previous expression found.

The factor command can easily factor polynomial expressions if possible.
Consider the example:

> factor(x~4-x"3-7*x"2+x+6) ;
Maple gives the answer
(x —1)(x+2)(x+ 1)(z — 3).

Often there are expressions that are not easily simplified by hand, so
Maple provides a valuable tool for simplifying these expressions. Consider
the following example, which will occur when we study the derivative. We
would like to simplify the expression

(r+h—5)3—(x—5)3
h )
which is not something that one would like to perform by hand. Maple
readily does this operation as follows:

> simplify(((x+h-5)"3-(x-5)"3)/h);
Maple gives the answer

322 4 3zh — 30z + h? — 15h + 75.

3.2 Functions with Asymptotes

A rational function is a polynomial divided by another polynomial. This
form of a function may have horizontal or vertical asymptotes . The verti-
cal asymptotes often occur where the function is undefined. The horizontal
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asymptotes are found by looking at very large values of the function. All of
these properties are easily done in Maple. Creating graphs with asymptotes,
especially if you want to display the asymptote, creates special challenges in
Excel. In this section, we show how to graph a function with asymptotes in
both Maple and Excel and show how Maple can help find these asymptotes.

Example 2: Consider the following functions:

x

flz)=z+1 and g(x) = L

Graph these functions. Find all vertical and horizontal asymptotes, then
determine the points of intersection.

Solution: We begin with a command to graph these functions in Maple.
Since g(z) has vertical asymptotes, we want to limit the range of the graph.
The plot command in Maple allows the graphing of f(z) and g(z) as follows:

> plot ({f(x),g(x)}, x=-5..5, y=-10..10, discont=true);

As before, the domain is defined with x € [-5,5]. Two other options are
included: the range limited to y € [—10, 10] and letting Maple know that we
suspect vertical asymptotes, discont=true.

Maple can be used to find the vertical asymptotes by finding when the
denominator is zero. This is accomplished by either typing

> fsolve(x~2-4=0,%);
or alternately,

> dn := denom(g(x));
> fsolve(dn=0,x);

where dn is a dummy variable for the denominator of g(z). (In Maple,
the characters (:=) represent “defined to be” and are used to assign an
expression or value to the right of those characters to a user defined variable
to the left of the characters. For example, x := 5 assigns the value of 5 to
x.) The vertical asymptotes occur at z = —2 and 2 for g(z).

To find the horizontal asymptote you can use Maple’s limit command.

> limit(g(x) ,x=infinity);
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Figure 3.3: Graph of f(x) and g(z).

which if finite gives the horizontal asymptote to the right (y = 0), while
> limit(g(x) ,x=-infinity);

gives the horizontal asymptote to the left (y = 0). Thus, the function g(z)
has a horizontal asymptote at y = 0.

To find where f(z) and g(x) intersect, you use the fsolve command. We
modify this slightly from Example 1 because this command would only find
one of the 3 solutions. To find all solutions you need to limit where Maple
looks for the solutions. The second expression in the fsolve command below
gives the range where this Maple routine searches for the x value of the
intersection, and this range is found from the graph.

> x1 := fsolve(f(x)=g(x),x=-5..-2); f£(x1);
> x2 := fsolve(f(x)=g(x),x=-2..2); £(x2);
> x3 := fsolve(f(x)=g(x),x=2..5); £(x3);

The resulting points of intersection are (—2.3914, —1.3914), (—0.7729,0.2271),
and (2.1642,3.1642).

In the next example, we use the rational function above to show how to
graph a function in Excel showing all the asymptotes.
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Example 3: Consider the function:

Use Excel to create a graph of this function, showing all vertical and hori-
zontal asymptotes.

Solution: We will take advantage of the information learned in the previ-
ous example about the vertical and horizontal asymptotes to create the
Excel graph of this function. The vertical asymptotes at * = +2 di-
vide our domain into three distinct pieces. This means the domain is:
(—o0,—2)U(—2,2) J(2,00). To create a graph in Excel, we must separately
evaluate the function in these three domains, then combine the graph into a
single graph. Furthermore, because of the vertical asymptotes, we need to
evaluate the function in shorter intervals near the asymptotes to make the
graph look better.
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Figure 3.4: Excel spreadsheet showing the divisions of the domain for graph-
ing g(z), including lines for the asymptotes.
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We choose to plot the graph on the interval [—5, 5]. Figure (3.4) shows
the numbers that are entered to produce a graph of g(z) in this example.
Columns A and B contain the x and y values for the function with x €
[—5, —2]. It starts at x = —2.05, since we only plan to plot y values between
—10 and 10. Small steps between x values of only —0.01 are used for the
first 5 entries, then the stepsize is increased to —0.05 for the next 8 entries,
and finally, the stepsize is increased to —0.1 for the remaining x values
until x = —5. This allows for a total of about 40 points that we evaluate
the function on this interval. (You generally want to take 40-60 function
evaluations to obtain a good curve. Also note that when plotting in Excel,
you should use the straight line between points option for most function
evaluations. The curved line option gives good curves, but students often
take too few points with this option and the Excel polynomial curve fitting
can give the wrong curve!) After entering these values, Chart Wizard is
invoked to produce the curve for x € [—5, —2].

The next step is to add the other portions of the curve. Figure (3.4)
shows the middle portion of the graph listed in Columns C and D and the
right portion of the graph listed in Columns E and F. Again the stepsize
is variable with very small steps near the asymptotes and larger steps where
the curve is flatter. Once again about 40-60 function evaluations were used.
These sections are added to the graph sequentially by first clicking on the
chart produced when graphing Columns A and B, which results in the
corners of the Chart to have small black squares indicating the Chart is
active. Next you click on the Chart label at the top of the Excel spreadsheet
and select the option Add Data... A window appears titled Add Data
with the cursor blinking in a window saying Range. You can type in the
range of your data or more easily (and more accurately), you simply highlight
the data that you are interested in adding to the graph. For example, to add
the data for the middle part of this graph, we highlight C3 through D61.
Next we click OK, and a new box appears with the title Paste Special.
The default of Add series as New Series and Values (Y) in Columns
should be left alone, but it is very important to check the box Categories
(X Values) in First Column. When you click OK in this box, then you
should see the new portion of the graph added to the previous portion of
the graph. After repeating this process on Columns E and F to get the
right portion of g(x), we have our graph of the function. However, at this
point, the function will not look very good as is standard in Excel.

The next part of this problem is to add the asymptotes, which we see in
Figure (3.4) in Columns G to L. We put three points lying on each of the
asymptotes, then entered these lines much as we did for the other pieces of
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the curves described in the previous paragraph. For example, in Column G
we simple put x = —2, then in Column H used the y values at —10, 0,
and 10 to produce a graph of the vertical asymptote at x = —2. Similarly,
the vertical asymptote at « = 2 and the horizontal asymptote at y = 0 are
entered. (Note that Excel has not found these for you!) At this point the
graph will appear as seen in Figure (3.5). This is clearly not a very good
looking graph.
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Figure 3.5: Initial Excel graph of g(x) before adding labels and other details.

The final portion of this problem is the cleaning up and making the graph
look good, including labeling. We begin by going to the Menu line at the
top of the page, and under Chart we select the Chart Optionscategory.
We add a title to the graph and label the x and y axes. We add Gridlines
and delete the Legend. After enlargening the graph, we adjust the domain
(x) to =5 < x < 5 and the range (y) to —10 < y < 10. Recall this is done
by right clicking on the appropriate axis and selecting Format Axis, then
selecting Scale. (You can also modify your font at this stage.) By double
clicking on each portion of the graph, we make each section of the graph
have the same color and line thickness. We selected a dark blue medium
width solid line for g(x) and a medium width dashed red line for the asymp-
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totes. The resulting final is shown in Figure (3.6).
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Figure 3.6: Excel graph of g(x) clearly showing the asymptotes.

3.3 Computer Laboratory Exercises
1. (C1) a. Consider the following quadratic function,
f(z) = 2% —4a — 3.

Find the x and y-intercepts and the vertex for f(z). Give both the exact
solution and decimal solution (with 4 significant figures) for the a-intercept.
Use Excel to graph this function, choosing a domain that includes the  and
y-intercepts and the vertex for f(x).

b. Now consider these functions, f(z) and g(z). Find the x and y-
intercepts for both functions. Give the slope of the line. Find all points of
intersection between the curves:

fley=2—z and g(z) = 23 — 222 — 3z + 3.
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For all the intercepts and points of intersection give the decimal value to 4
significant figures. Use Excel to graph these functions. Choose a domain
such that the graph clearly shows all the points you identified above.

2. (D1) a. Consider the following linear and rational functions,

2z

flx)=4—x and g(x):m.

Find the z and y-intercepts both for f(z) and g(z). For g(x), find any
vertical or horizontal asymptotes.
b. Use Maple to graph these functions for z € [—6,6] with the range
restricted so that —10 < y < 10. Copy this graph into your Word document.
¢. Use the graph and Maple to help you find all points of intersection,
giving both the z and y values (give the decimal value to 4 significant fig-
ures).

3. (C3) In 1913, Carlson [1] studied the growth of a culture of yeast, Saccha-
romyces cerevisiae . Over time this culture levels off, but its initial growth
is exponential or Malthusian . A Malthusian growth model is given by

Pyi1 =Py +1P,.

(This model will appear later in this Lab Manual for more detailed study.)
Even though a population grows continuously we take discrete measurements
every time n for n an integer number such that n = 0,1,2,... Simply put,
the population at the next time (n + 1) is equal to the population at the
current time (n) plus some growth term, which is simply proportional (r)
to the current population. Thus, we have a growth function

g(P) =rP.

Below is a table from Carlson’s data showing the population and the rate
of growth at that particular population

a. Plot these data. Use Excel’s Trendline on the data points to find the
best straight line passing through the origin. (Note you will need to use the
option in Trendline of setting the y-intercept = 0.) What is the slope of the
line that best fits through the data?

b. The accompanying text for this Lab Manual has a section (Function
Review and Quadratics [2]) that examines a linear model for mRNA synthe-
sis. For the linear model (passing through the origin) given above, we can
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Population (P) | g(P) (# per hour)
18,300 10,700
47,200 23,900
119,100 55,500
174,600 82,700

readily find the sum of squares function . Consider a data point (P;, g(P;)).
The error between this data point and our model is given by

ei = |g(P) —rB.

Thus, e; = |10, 700 — 18,300r|. Similarly, you can find eg, ez, and es. The
sum of squares function is given by

J(r) :e%—i-e%—l—e%—i-e?l.

Find the expression for the quadratic function of the slope of the model, r
(in simplest form). Sketch a graph of this quadratic for r € [0.3,0.7].

c. Find the r-coordinate of the vertex and compare this to the slope
Trendline gives you in Part a.

4. Characterizing the properties of enzymes is a very important endeavor in
the biological sciences. Many enzymes follow Michaelis-Menten kinetics and
have the following form for their reaction rates:

where [S] is the concentration of the substrate that the enzyme is catalyzing,
R([S]) is the rate of production of the product, V4, is the maximum rate
of the reaction (and depend on the enzyme concentration used, and K, is
the Michaelis-Menten constant, which characterizes a particular enzyme.
Below are data from Schmider, et. al. [3] for cytochrome P450 mediated

demethylation of amitriptyline (AMI) to nortriptyline (N) by human liver
microsomes.
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[AMI] (uM) | N formation
nmol/min/mg
) 0.20
10 0.45
15 0.60
25 0.80
50 1.35
100 2.17
200 2.68
260 2.89
330 3.05
500 3.12

From this table, we let [S] = [AMI] and R([S]) = N formation. We want to
find the best values of V,,,,, and K, to characterize the enzyme cytochrome
P450.

a. One of the easiest methods for finding the constants V., and K, is
using the Lineweaver-Burk plot as discussed in [2]. To do this, you take the
data and create a new table with the values z = 1/[S] and y = 1/R([S5]).
Create this new table in Excel, then plot the data y vs x. Use Trendline to
find the best fit to this straight line. The y-intercept has the value 1/Vqx
and the slope has the value K,,/Vinae. Use this information to find Ve
and K,,.

b. With this information, plot the original data with the Michaelis-
Menten reaction formula for [S] € [0,500]. Find the prediction from the
Michaelis-Menten reaction formula for the production of nortriptyline (N)
when [AMI] is [S] = 15,50,100,200, and 500. Calculate the percent er-
ror between the model and the actual data. Find all intercepts and any
asymptotes for this function for [S] > 0.

c. When a nonlinear least squares fit is applied to the data above, a
better model is given
3.738[5]
R([S]) = ———=.
(15D 80.63 + [9]

With this information, plot the original data with this Michaelis-Menten
reaction formula for [S] € [0,500]. Find the prediction from this Michaelis-
Menten reaction formula for the production of nortriptyline (N) when [AMI]
is [S] = 15,50, 100,200, and 500. Calculate the percent error between the
model and the actual data. Find all intercepts and any asymptotes for this
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function for [S] > 0. Which model would you say is better and why?

5. This problem is probably best done using Maple. Consider the quadratic
function
fx)=2*-32 -5

and the rational function

(2) 20x

x) = .

I = Tats

(You will probably want to graph these functions on the interval « € [—10, 10]
with the range restricted to y € [—50,50].)

a. Find the x and y-intercepts for both of these functions. Find the
vertex of the quadratic function, f(x). Give both z and y values. List any
asymptotes (vertical and horizontal) for the rational function, g(z).

b. Find all points of intersection between the graphs of f(z) and g(x).
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Chapter 4

Special Functions

Most problems in Biology are nonlinear. It follows that a number of dif-
ferent functions are needed to interpret biological data. This section shows
how to enter a number of different functions into Excel and Maple to use
for modeling biological problems.

4.1 Square Roots, Logarithms, and Exponentials

In solving the quadratic equation, we obtain square roots . To enter the
square root function in Excel, one types sqrt. For example, if you en-
ter =sqrt(2) in any Excel cell, then the resulting number that appears is
1.414213562. Excel is not case sensitive, so one can enter sqrt, SQRT, or
Sqrt and the correct response will be given. Maple is case sensitive, so one
must enter sqrt for the square root function in Maple. Maple treats this
function slightly differently, so entering sqrt(2); in Maple gives the response
V2. However, entering sqrt(2.); in Maple gives the response 1.414213562.
(Maple handles integers and decimals slightly differently.) One can readily
convert the integer values to decimal values in Maple with the evalf com-
mand, which is demonstrated below in the paragraph on the exponential
function.

Maple and Excel differ on their handling of the logarithm function.
Most computer languages use the natural logarithm, so typing log(z) is the
same as typing In(xz). However, Excel is a business oriented program, so
taking a logarithm in Excel defaults to the logarithm base 10, i.e., log(z) =

45
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log;o(x) in Excel. To get logarithm base 10 in Maple one types loglO0.
The natural logarithm in Excel is obtained by typing In. Be careful when
graphing functions with the logarithm to avoid letting the domain allow the
value zero, as the logarithm function has a vertical asymptote at x = 0
and is undefined for x < 0. The fill down function in Excel works with all
special functions, including the logarithm function, so graphing is handled
for logarithms much in the same way as we showed in the previous chapters
of this lab manual.

For the logarithm in Excel, if we type =log(2) in a cell, the result is
0.30103, while typing =In(2) yields 0.693147. For Maple, typing log(2);
yields the response In(2), while typing log(2.); or In(2.); gives the answer
0.693147181. Typing log10(2.); gives the answer .3010299957 in Maple.

Finally, we need to introduce the exponential function. In almost all
computer languages, including Excel and Maple, the exponential function,
e”, is entered as exp(x). (Note that there is NO carat between the ‘p’ and
the ‘(x).” This is the most common error made by students in any lab using
the exponential function.) Thus, in Excel we type = exp(5) and the result
is 148.4132. Again, we could type exp, EXP, or Exp in Excel and have the
same result. In Maple, we type exp(5.); and the result is 148.4131591.
Typing exp(5); in Maple produces e®. We can still get the decimal value by
using the Maple command evalf. Thus, by entering evalf(%) immediately
following Maple’s response of e°, then we obtain 148.4131591.

4.2 Allometric Models and the Power Law

Biological problems often have a nonlinear relationship between different
measured quantities, such as the weight of an animal and the amount of
food that it consumes. Allometric models find a power law relationship
between the measurements, which can be useful in predicting other related
quantities, such as food consumption of a different animal than the one
measured with the data. Below we describe how to use Excel to find an
allometric model for the best Olympic times in the rowing event based on
the number of oarsmen.

Example 1: A power law expression relating the number of oarsmen (n)
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to the winning time in the Olympics (T') is given by
T = kn®,

where k£ and a are constants to be determined. Refer to Chapter 6 of the
text for more examples and information on Allometric models [1]. Below is
a table of the Olympic rowing event and the best times for the event. Create

Event # of Oarsmen | Winning Time Country/Year
n T (sec)

Single Scull 1 404.85 Switzerland /1996
Double Scull 2 371.49 Great Britain/2004
Cox-less Pair 2 380.09 Great Britain/1996
Cox-less Four 4 350.44 Great Britain/2004

Eight 8 319.85 United States/2004

a graph of these data and find the best power law model. Also, create a
log-log plot of the data and the model.

Solution: If the natural logarithm is taken on both sides, then the allo-
metric (power law) model has a straight line fitting the logarithms of data,
giving

In(7") = In(k) + aln(n).

Finding the values of k and a is simply a matter of finding the slope a of
this straight line and the intercept In(k), which is easily done.

Excel finds power law models very easily. Highlight the data and create
a graph. Next we select Excel’s Trendline, and one of the options is the
Power , which gives the best Power Law fit to the data. After selecting this
option, we check the additional option, Display equation on chart. After
some modifications to make the graph look better (font and color changes
and modifying the default = and y variables of Excel to the variables in our
problem), we produce the graph in Figure 4.1.

Excel can easily create semi-log or log-log plots. In our example above,
we can create the log-log plot by simply activating the graph as usual. Next
we right click on the axis that we want to change and select Format axis.
A new window appears, and we select the scale folder in which we check the
Logarithmic scale option . This changes the scale of the chosen axis. If
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Figure 4.1: Allometric model for the winning times of Olympic rowing
events.

we only change the y-axis, then we produce a semi-log plot. If the data
falls on a straight line, then an exponential model is the best fit to the data.
If we change both the x and y-axes, then we produce a log-log plot and a
power law or allometric model is most appropriate. In Figure (4.2) we show
the model of the Olympic rowing events on a log-log plot.

4.3 Computer Laboratory Exercises

1. (C2) a. Iodic Acic (HIO3)—indexlodic Acid is a weak acid with an equi-
librium constant K, = 0.2. Recall from Chemistry that for a weak acid,
HA, the dissociation constant K, satisfies the relation

[HT][A7]

Ka= [HA]

which implies that for a solution of HA with a normality (formality) of =
that,
g+
.
x — [H]
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Figure 4.2: Allometric model for the winning times of Olympic rowing events
on a log-log scale.

(See Chapter 4 in [1] for other examples in how to obtain K,.) This ex-
pression can be converted into a quadratic equation in [H ] and solved with
only the positive solution making sense. Find an expression for [HT] as a
function of the normality, x, of the weak acid solution. This means that you
need to solve the quadratic equation in [H '] using the quadratic formula,
leaving x as a variable in this formula. Write the expression for [HT] in
your lab report. (You should use Equation Editor in Word to write this
expression.)

b. Plot a graph of the [H*] as a function of the normality z for z €
[0.001,2]. Be sure to label your axes. What is the [H "] for a 0.5N solution
of Iodic acid?

c. The pH of a solution is given by pH = —log;o([H"]). Plot a graph of
the pH as a function of the normality = for € [0.001,2]. Be sure to label
your axes. What is the normality of the solution that has a pH of 17 (Hint:
This question is most easily solved using Maple’s fsolve routine.)

2. (E1) In this problem we explore the exponential, logarithmic, and power
functions.
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a. Consider the functions:
flx)=¢e" and g(x) = 2.

Find all points of intersection (z and y values). (There are three of them.)
Create two graphs in Excel or Maple of f(x) and g(z) for x € [—2,2] and
x € [-10,10]. (These graphs will help narrow the range where the points
of intersection are occurring to use Maple’s fsolve as we have done before.)
Determine the intervals where f(z) < g(z) and f(z) > g(z). Which function
dominates for large values of z?

b. Now consider the functions:

f(z) =In(x) and g(x) =x7.

Create two graphs in Excel or Maple of f(z) and g(x) for z € [0,5] and
x € [0,10'°]. Find all points of intersection. (There are two of them.) De-
termine the intervals where f(z) < g(x) and f(z) > g(z). Which function
dominates (is larger than) for large values of x?

~=

3. (D2) This problem relates to Kepler’s Third Law. In this problem you will
use the power law to determine the period of revolution about or distance
from the sun for all planets given information about some of the planets.
Let d be the mean distance (x10% km) from the sun and p be the period
of revolution in days about the sun. You are given the following data [3]
concerning four of the planets:

Planet | Distance d | Period p
Mercury 57.9 87.96
Earth 149.6 365.25
Mars 227.9 687.0
Jupiter 778.3 4337

a. The power law expression relating the period of revolution (p) to the
distance from the sun (d) is given by

p= kdaa

where k& and a are constants to be determined. Use the power law under
Excel’s Trendline to best fit the data above. Plot the data and the best
power law fit, then have Excel write the formula on your graph. How well
does the graph match the data?
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b. The information given above shows that an allometric (power law)
model has a straight line fitting the logarithms of data, giving

In(p) = In(k) + aln(d),

for the formula above. In the table above, take the logarithm of the Distance
(In(d)) and the logarithm of the Period (In(p)). Use Excel’s scatter plot and
linear fit under Trendline to see how this fits the data. Plot a graph of the
logarithm of the data and the best straight line fit to these data. Show
the formula for this straight line on your graph. Compare the coefficients
obtained in this manner to the ones found in Part a. How well does the
graph match the data?
c. Use the power law found in Part a to complete the table below:

Planet | Distance d | Period p
Venus 108.2

Saturn 10,760
Uranus 2871
Neptune 4497

Pluto 90,780

d. The Jet Propulsion Laboratory has an excellent website for astronomi-
cal data. Go to their website at http://pds.jpl.nasa.gov/planets/welcome.htm
to obtain actual data on the distance and period on the planets listed in
Part c, then find the percent error between your calculations in the table
above and the actual values. (Note that 1 AU = 149.6 x 105 km.)

4. (D3) A collection of dogs were measured and weighed producing the fol-
lowing table of data [2]:

Length (cm) Body Weight | Surface Area
from nose to anus (gm) (cm?)
51 3390 2320
100 25930 9106
62 5350 3284
76 10150 5070
74 5450 3815
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a. The first model examines Weight (w) as a function of the Length (u).
Use Excel’s Trendline with the power law to find the best fit to the data for

a model of the form:
k

w=au".
In your lab report write the best fit coefficients, a and k, found by Excel.
Show a plot of this best fit curve with the data. What are the appropriate
units for the coefficient a? From a biological perspective, briefly explain why
the coefficient k£ has the value it does when fitting the data.
b. Repeat the process in Part a. for the surface area data graphing the
surface area (s) as a function of length (u). In this case the model satisfies
the allometric model:

s:auk,

where the coefficients a and k differ from Part a. What are the appropriate
units for this coefficient a? Do not forget to include a biological explanation
along with your graph of the curve and the data.

5. (E2) Currently there is a debate on the importance of preserving large
tracts of land to maintain biodiversity. Many of the arguments for setting
aside large tracts are based on studies of biodiversity on islands. In this
problem you apply the power rule to determine the number of species of
herpetofauna (amphibians and reptiles) as a function of island area for the
given Caribbean islands. You are given the following data [2]:

Island Area (mi?) | Species
Redunda 1 3
Montserrat 33 10
Jamaica 4,411 38
Cuba 46,736 97

a. Let IV be the number of species and A be the area of the island, then
the power law expression relating the number of species to the area of the
island is given by

N = kA%

Use the power law under Excel’s Trendline to best fit the data above. Plot
the data and the best power law fit, then have Excel write the formula on
your graph. How well does the graph match the data?
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b. As in the previous problem, we want to fit a straight line to the
logarithms of the data. From the allometric model above, we obtain the
formula:

In(N) =In(k) + aln(A).

In the table above, take the logarithm of the Number of Species (In(NV))
and the logarithm of the Island Area (In(A)). Use Excel’s scatter plot and
linear fit under Trendline to see how this fits the data. Plot a graph of the
logarithm of the data and the best straight line fit to these data. Show
the formula for this straight line on your graph. Compare the coefficients
obtained in this manner to the ones found in Part a. How well does the
graph match the data?

c. From your calculations above give estimates to fill in the table below.

Island Area (mi?) | Species
Saba 5
Puerto Rico 40
Saint Croix 80
Hispaniola 88

d. How important is maintaining a large tract of land to the maintenance
of biodiversity based on this model? What does the model predict is required
in increased preserved area to double the number of species supported by
the environment? (Give a numerical value for the factor multiplying the
area of land to achieve this doubling of species.) Write a short paragraph
explaining your results as best you can.

6. (E3) The data below came from the Allegheny National Forest in Pennsyl-
vania [4]. The issue was whether either the diameter or the height of a tree
accurately predict the volume of wood in the tree. Using the data below,
you are to see if there exists a meaningful relation between these variables.
Thus, you want to find the volume as a function of either diameter or height.
The volume is measured in board feet, the diameter is in inches, and the
height is in feet.

a. The reference for this model suggests a simple linear model, so use
Excel’s Trendline to find the best line through the data. Graph the data
and model for volume as a function of diameter, then repeat the process
for volume as a function of height. Give the formula for the best straight
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Diameter | Height | Volume
8.6 65 10.3
10.7 81 18.8
11.0 75 18.2
11.4 76 21.4
12.0 75 19.1
13.3 86 27.4
14.5 74 36.3
16.0 72 38.3
17.3 81 55.4
18.0 80 51.5
20.6 87 77.0

line through each of the data sets. Which graph seems to have the better
predictive ability? Why is this what you would expect based on the biology
of trees? What happens with both models as the diameter or height gets
close to zero?

b. In this part of the problem only use the relationship between volume
and the one variable that you showed in Part a. was the better predictor.
Use the power law under Excel’s Trendline to best fit the one set of data
that best predicts the volume. Plot the data and the best power law fit,
then have Excel write the formula on your graph. Can you provide any
explanation for the power that you have obtained?

c. Have Excel plot a log-log plot of the data and the Trendline that
you found in Part b. (This is done by editing the graph and selecting log-
arithmic scales for both the x and y axes, which is easily done by double
clicking on the axes.) Do the data roughly fall on a straight line in this plot?
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Chapter 5

Discrete Dynamical Models

Many population models are based on discrete dynamical systems . These
models use the census of populations at distinct times with some functional
dynamics determined by the particular biological system. An Excel spread-
sheet with its pull down feature updates cells based on what occurred in the
cell above, which is basically what discrete dynamical models do.

5.1 Discrete Malthusian Growth Models

There are a number of different discrete population models. A discrete
model uses discrete time steps with the new population at time n 4 1 based
on some function of the population and possibly the time at n. Thus, if
a population at time n is given by P,, then the population at time n + 1
satisfies the equation

Poy1 = f(n, Py)

for some function, f (also referred to as the update function). The example
below illustrates how several discrete population models can be simulated
using Excel.

Example 1: Suppose that the census of a population gives the following
information, where n is the time in weeks:

[ Timen 0] 2[5 [8]12]15[20]
| Population P, [20 [ 22 [24 [26 [ 293234 ]

57
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We compare these population data to a Malthusian growth model given
by
P11 =1.05P,,

to a nonautonomous discrete Malthusian growth model given by
P11 = (1.05—0.002n) P,

and a logistic growth model given by

P,
P,i1=P,+005P,(1——].
+1 + ( 50)

The Malthusian growth model assumes a 5% growth each week, while the
nonautonomous discrete Malthusian growth model assumes that initially
there is a 5% growth per week, but this growth rate is declining by 0.2%
each week. The logistic growth model also assumes an initial growth rate of
5% growth per week, but crowding factors from the population decrease its
growth rate by 0.001P, per week (for more information refer to Chapter 7
of the text book [2]).

Solution: We want to create an Excel spreadsheet that shows the simula-
tions for each of these models, then overlays the data for comparison. The
reader may obtain a copy of this Excel worksheet at

www-rohan.sdsu.edu/” jmahaffy/courses/labs/discrete.xls

As noted above, the fill down spreadsheet function of Excel works extremely
well for this type of modeling.

We begin the spreadsheet by entering our labels for the relevant columns
for the simulation. The time n is placed in Column A with the initial time
set at n = 0 placed in A3 as shown in Figure (5.1). In A4, we enter =A3+1
to have Excel update this cell to one time unit higher than the cell above it.
We use the fill down function as discussed earlier in this manual to fill in the
times from n = 0 to n = 20 in Column A. Column B shows the simulation
of the discrete Malthusian growth model. We enter the initial population
Py in the cell B3, that is type 20 in B3. In B4 we enter the formula for
the Malthusian growth model. This is simulated by typing =1.05*B3 in
B4, then simply fill down from there to match the times in Column A. The
resulting values give the populations at each corresponding time.
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Column C shows a simulation of the nonautonomous discrete Malthu-
sian growth model, which has a component of time that it must get from
Column A. From the formula for this model, the new population is updated
from knowledge about the previous population and the previous time. Again
we enter the initial population Py in the cell C3, that is type 20 in C3. It
follows that the entry for C4 is given by =(1.05-0.002*A3)*D3, where
A3 gives the previous time and D3 is the previous population. The model
is simulated by filling down from there to again match the corresponding
times.

Column D shows a simulation of the Logistic growth model, which is
an autonomous model, meaning that the new population only depends on
the earlier population and is independent of the time. The model given
above begins with the same growth rate as the Malthusian model, but it
has a carrying capacity of 50, so as time progresses, this population lev-
els off at P = 50. Again we enter the initial population 20 in D3. From
the formula for this model, it follows that the entry for D4 is given by
=D3+40.05*D3*(1-D3/50), where D3 is the previous population. The
model is simulated by filling down from there to again match the corre-
sponding times.

The next step is to highlight the first 4 columns and use Chart Wizard
to create a graph. These are models, so we want to use the line option in
XY (Scatter) plot. The appropriate labels are added and options to make
the graph look better. Next edit the graph to change the scales of the axes
and define the legend labels. Legend labels are readily changed by selecting
Source data under Chart on the menu. By selecting the Series option,
one can easily create appropriate labels for the graph.

The data are added by again clicking on the graph window, then going
to the Chart on the menu bar and selecting Add data . Next we are care-
ful to select New Series and Categories X values. Finally, since these
last values were data, we clicked on these points (either right click or double
click) and edited the style to change from line to data points. Figure (5.1)
shows the spreadsheet with the simulated models in the first few columns,
the data, and the graph that was produced.

5.2 Excel Solver

After creating a mathematical model, it is important to fit the model to
experimental data. An earlier section showed how to compute the least
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Figure 5.1: Excel spreadsheet for simulating several population models.

squares best fit of a model to experimental data. The best fit is found by
finding the minimum least squares fit to the data. Excel has an Add-In
feature called Solver, which provides a means to fitting models to experi-
mental data. Below we provide an example of data for a growing culture of
bacteria, which can be modeled by the logistic growth equation.

Example 2: The bacterium Staphylococcus aureus is a fairly common
pathogen that can cause food poisoning. In Table 6.2 are data for one
experiment from the laboratory of Professor Anca Segall in the Department
of Biology at San Diego State University (experiments by Carl Gunderson).
Standard growth cultures of this bacterium satisfy the logistic growth pat-
tern given by the equation:

P,
Poi1 =P, +1P, <1 - A;) =P, + f(P),
where f(P,) is the growth in each time interval. Here a normal strain is
grown using control conditions and the optical density at a wavelength of
650 nm (ODgso) is measured to determine an estimate of the number of
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bacteria in the culture.

t (hours) | ODgso | f(p)
0 0.035 | 0.004
0.5 0.039 | 0.03
1 0.069 | 0.041
1.5 0.11 0.06
2 0.17 | 0.059
2.5 0.229 | 0.032
3 0.261 | 0.027
3.5 0.288 | 0.021
4 0.309 | 0.018
4.5 0.327 | 0.02
5 0.347

a. Use the data above to find the best quadratic growth function f(p)
from Excel’s polynomial fit function.

b. Simulate the logistic growth model with the growth function found
above and using the initial data at ¢ = 0 as a starting point. Compare this
simulation to the time series data above.

c. Once again simulate the logistic growth model with parameters r, M,
and Py. Use Excel’s Solver to find the least squares best fit to the data for
Staphylococcus aureus given in Table (6.2).

Solution: a. The growth function, f(p), is given in the last column in
Table (6.2). From the logistic growth equation above, we see that this
growth function has the form

flp) =rp (1 - %) =rp— %ﬁ

which is a quadratic in p. We begin by copying the table into an Excel
spreadsheet with Column A being the time, ¢, Column B being the popu-
lation measured in ODgsg, and Column C being the growth per half hour.
Note that there is one less entry in Column C as it is the difference between
successive cells in Column B.

To find the best quadratic function f(p), thus find the best values of r
and M, we plot Columns B and C. Note that the quadratic function f(p)
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does not have a constant term, which means that f(p) must pass through
the origin. The next step is to use Trendline in Excel, which can be added by
either right clicking on a data point or going to the menu under Chart and
selecting Add Trendline. When the Trendline menu appears, we begin
by choosing the Type of curve to be a Polynomial of Order 2. Next
we select the Options tab, then check the categories Set intercept = 0
and Display equation on chart. After clicking on the OK, the quadratic
function appears on the graph. We find that Excel finds the best fitting
function to be
f(p) = —1.8439p> + 0.6238p.

It follows that the value for r is 0.6238 and M = r/1.8439 = 0.3383. The
graph of the growth data and the best fitting quadratic through the origin
and these data is shown in Figure (5.2).

Growth of S. aurens
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Figure 5.2: Fitting a quadratic growth function to the S. aureus growth
experiment for Example 2.

b. With the information from Part a., we have the discrete logistic growth
model given by the equation:

P,
Poit = P, +0.6238P, (1 — .
i 06238 ( 0.3383>
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This is readily simulated in Column D in the following manner. After
labeling the column in the first cell, we enter the initial value Py = 0.035 in
cell D2. Next we enter

= D2 4 0.6238*D2%*(1-D2/0.3383)

in the cell D3. We fill this down in the usual manner until reaching cell
D14, which extends the model to t = 6 (so also extended the time in
Column A).

The next step is graphing the data and the model. This is easily done
by using the mouse to highlight Columns A, B, and D. (You highlight
Columns A and B, then hold the Ctrl key while highlighting Column D.)
We invoke Chart Wizard in Excel, selecting the XY Scatter as usual with
grids and no labels. The data points are left as data points (the default op-
tion), while the model is modified after the graph is created by right clicking
on the model points and removing the data point markers and choosing an
appropriate line type. After formatting the title and axis labels to have the
correct fonts (italics, subscripts, Times New Roman, etc.) and adjusting the
t domain, we obtain the graph seen in Figure (5.3).
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Figure 5.3: The simulation of the discrete logistic growth model for the S.
aureus growth experiment for Example 2.
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c. For the last part of this problem, we are going to introduce the Solver
feature in Excel. This provides a powerful tool for fitting models to exper-
imental data. Figure (5.4) shows the form of the spreadsheet that creates
the best fitting discrete logistic growth model for the data in Table (6.2).
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Figure 5.4: Excel spreadsheet for finding the least sum of squares best fit to
the data for Example 2 for S. aureus.

From Figure (5.4), it can be seen that we opened a second sheet, where
we copied the data from the first part of this problem. Columns A and
B contain the time series data from the experiment. The next step is to
enter our parameters r and M and the initial condition Py with the labels
in F1-F3 and the first guesses at the values in G1-G3. A reasonable first
guess is r = 0.62, M = 0.34, and Py = 0.035. After entering these cells, we
highlight F1-G3, then go to the top menu under Insert and select Name
and Create. Check the box Left column in the Create Names box and
select OK. This names our parameters for use in the model.

The next step in the modeling process is to enter the model in Col-
umn C. We enter the initial value in cell C2. This is most easily done by
clicking on the cell and typing = G3 (or typing “=" and then clicking on
G3. The result is that 0.035 should first appear in C2. Next we click on
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C3 and enter the model equation

= C2 + r_*C2*(1-C2/M).

You can enter the C2, r_, and M by simply clicking on the appropriate cells
when you encounter the variable in the equation. The model is simulated
by filling down from C3 to C14.

To find the best fitting model, we need to find the sum of square errors
between the model and the data, which we enter in Column D. In D2,
we enter = (B2 - C2)” 2. This is filled down to D12. In D13, we enter
the sum of the square errors = SUM(D2:D12). With the initial values
entered above, this sum of square errors has the value of 0.001352.

We need to find the smallest possible value of this sum of square errors
by varying r, M, and Fy. To accomplish this we need to use Excel’s Solver.
If this Solver has not been used yet, then you need to begin with the Excel
menu Tools and go to the Add Ins and check Solver. Now Solver should
appear in the Tools list. To find the smallest possible value of the sum of
square errors, we click on the cell D13, then select Solver from the Tools
menu. The Solver window should appear with the Set Target Cell reading
$D$13. On the next line, we select Min with a value of 0. The next step
is to enter in the window for By Changing Cells the values $G$1:$G$3.
(This is most easily accomplished by highlighting the cells G1-G3 after
clicking in the window for By Changing Cells.) The final step in the process
is to click on the button Solve in Solver. This should give the least sum of
square errors In this case, the least sum of square errors is 0.000908991,
and the best possible parameter values are » = 0.64174, M = 0.33369, and
Py = 0.031053. Figure (5.5) shows the best fitting discrete logistic model
for this example as a solid line and the simulation from Part b appears as
the dashed line.

In the next example we consider the population of the U. S. in the 20'h
century from census data and find three discrete models that simulate the
data. These models show a variety of computer techniques and show how
different models behave.

Example 3: Table (5.2) gives the U. S. census data in the 20" century
with the population given in millions.

a. Find the growth rate over each decade and compute the average growth
rate for the century, r. Graph the growth rates along with the average
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Figure 5.5: The least sum of square best fit to the S. aureus growth experi-
ment for Example 2.

growth rate, then use Excel’s Trendline to find the best linear fit to the
growth rate.

b. Let Py = 76.0 million be the initial population for all discrete model
simulations. Take the average growth rate, r, for the century and simulate
the discrete Malthusian growth model

Pn+1 = (1 +’I")Pn,

where P, represents the population for each decade in the 20t" century. Find
the percent error predicting the population in 2000, and use this model to
predict the population in 2050 and 2100.

c. Create a nonautonomous discrete Malthusian growth model of the

form
Pn+1 = (1 + k(tn)>Pn7

where k(t,) = at, + b and ¢, = 1900 + 10n. The constants a and b are
the best linear fit to the growth rate found in Part a. Simulate this model
for every decade in the 20" century. Find the percent error predicting the
population in 2000, and use this model to predict the population in 2050
and 2100.
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Year | Population
1900 76.0
1910 92.0
1920 105.7
1930 122.8
1940 131.7
1950 151.3
1960 179.3
1970 203.3
1980 226.5
1990 248.7
2000 281.4

d. Create a logistic growth model of the form

P,
Pn—l-l:Pn“‘rPn(l_Mn)v

where r and M are constants representing the growth rate and carrying
capacity for this model. Use Excel’s Solver to find the least squares best
fit of these parameters to the data in Table (5.2). Simulate this model for
every decade in the 20" century. Find the percent error predicting the
population in 2000, and use this model to predict the population in 2050
and 2100. What does this model predict about the long term behavior of
the population of the U. S.?

e. Graph all three models above. Discuss their fit to the data and pre-
dicts for the future.

Solution: a. We begin by opening an Excel spreadsheet and copying the
data in Columns A and B. The complete spreadsheet used for this problem
is shown in Figure(5.6).

To determine information about the growth of the population between
decades we re-enter the years 1900-1990 in Column I. In Column J we find
the growth rates between the decades. The growth rate, r,, is determined
by
Pn+1

P,

Ty = —1,
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Figure 5.6: The Excel spreadsheet used for Example 3, where all calculations
are show of this example.

so the growth rate in 1900 is found by taking the population in 1910 and
dividing by the population in 1900 and subtracting one. Thus, in J2 we
enter = B3/B2 - 1, then fill down this formula to 1990, the last growth
rate available with the data. In J12, we compute the average growth rate
for the century. The average in Excel is computed here by typing in J12 the
expression = AVERAGE(J2:J11) or alternately, while in J12, right click
on the SUM symbol in the menu bar and select Average and Excel will
automatically select the cells J2:J11. The resulting average growth rate is
r = 0.140505. For graphing purposes, we copy this value in Column K.
Next we highlight the cells I12:K11 and invoke Chart Wizard, selecting
as usual the XY (Scatter) option and taking the default style, since the
elements of Column J are data points. We change the data points from
Column K into a line and make the usual changes in the domain and other
style changes.

Next Excel’s Trendline is used to find the best linear fit to the growth
data. In order to get good results, it is very important that after you use
Trendline to find the best straight line through the growth data, you double
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click (or right click) on the equation (be careful here). When the Format
Data Labels menu pops up, you can choose Number, then you select
the way you want your numbers displayed. You should use the Scientific
notation option. Its this equation that will determine the behavior of your
nonautonomous model, so you need four significant figures for an accurate
model. The best linear growth function is given by

k(tn) = —0.00065795 t,, + 1.4202,

where t, = 1900 + 10n. The graph of the growth rate with the best linear
growth function is given in Figure (5.7).

Growth Rate
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Figure 5.7: The graph showing the growth rates from the data and the
best linear fit to the growth rates, which are used in the nonautonomous
Malthusian growth model.

b. From Part a, we have the discrete Malthusian growth model is

P,y = 1.1405 P,.

This is easily simulated by letting Py = 76.0 (which is in C2), then inserting
= 1.1405*C2 in C3 and filling down until 2100. The population in 2000
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is predicted to be 283.0 million, which is only a 0.57% error from the actual
census value. We compute the percent error by typing =100*ABS(B12-
C12)/B12. This model predicts that the populations in 2050 and 2100 are
546.1 and 1,053.8 million, respectively, which are undoubtedly too high.

c. From Part a, we have the discrete nonautonomous Malthusian growth
model is given by

P,i1 = (2.4202 — 0.00065795t,,) P,

where ¢, = 1900+ 10n. This is easily simulated by placing Py = 76.0 in D2,
then inserting = (2.4202 - 0.00065795*A2)*D2 in D3 and filling down
until 2100. The population in 2000 is predicted to be 282.3 million, which is
only a 0.41% error from the actual census value. This model predicts that
the populations in 2050 and 2100 are 437.0 and 579.8 million, respectively.

d. The discrete logistic growth model is given by

P,
Poyn=P,+rP, (1_]\;>7

where 7 and M are constants representing the growth rate and carrying
capacity for this model. We begin this model simulation by guessing values
of r = 0.21 and M = 400, which come from the highest growth rate seen
in the data from Part a and an arbitrary carrying capacity that is above
the census value in 2000. From Figure (5.6), we place the names of the
parameters in G2 and G3. The values are placed in H2 and H3. As
usual, we name these variables by going to the main menu under Insert
and Name, then selecting Create and taking the default setting.

Now the logistic growth model is easily simulated by placing Py = 76.0
in E2, then inserting = E 24 r_*E2*(1 - E2/M) in E3 and filling down
until 2100. The next step is to compute the sum of square errors, which is
done in Column F'. In cell F2, we compute the individual error by typing
= (B2 - E2)" 2, then filling down to F12. In F13, we sum the square
errors in F2:F12, then we apply Excel’s Solver as we did in the previous
example. Highlight F13, then invoke Solver by going to the main menu
under Tools. We select Min, and in the box for By changing cells we
select the cells H2:H3. After clicking on the button to Solve, we have the
least sum of square error for this model, which is 108.78. This changes the
parameters to r = 0.1863 and M = 607.66.
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The population in 2000 is predicted to be 279.8 million, which is a 0.58%
error from the actual census value. This model predicts that the populations
in 2050 and 2100 are 417.3 and 519.0 millions, respectively. These values are
lower than either of the previous two models. Since the carrying capacity
M = 607.7, this model predicts that the population of U. S. will level off at
607.7 million in the future.

e. A graph of all the models is presented in Figure (5.8). It is readily
apparent that all three models simulate the data quite well. It is not sur-
prising that the worst model is the simple Malthusian growth model, yet
it still follows the data quite closely. Its maximum error is 6.7% in 1960.
The discrete nonautonomous Malthusian and logistic growth models are ex-
tremely close to the data points for all of the 20*" century, which makes
it hard to determine which model might be better. From a mathematical
perspective, the logistic growth model is slightly better as its sum of square
errors compared to the census data is only 108.8, while the sum of square
errors for the nonautonomous Malthusian growth model is 133.9. Still these
values are close. From a biological perspective, each model has its merits and
faults to argue why it might be the better model. The logistic model is how
most simple organisms behave, which is to say that crowding factors from
the population limit growth independent of time. However, human popula-
tions have technology, which is a time varying factor. Improved medicine
and better education, especially of women, results in better family planning
and smaller families, which in turn slow the growth of the population. This
argues for the time varying growth seen in the nonautonomous Malthusian
growth model. These are questions that should be studied in more detail in
more advanced ecology or mathematical modeling classes.

5.3 Maple and Linear Discrete Models

Maple has the ability to solve simple discrete dynamical models. In this sec-
tion, a basic model for breathing an inert gas is solved using Maple, showing
the necessary commands.

Example 4: The average healthy adult male exchanges about 16% of his
lung capacity with each breath. The normal concentration of helium (He) in
the atmosphere is only about 5 ppm (parts per million). Suppose that an in-
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Figure 5.8: The graphs of the census data of the U. S. in the 20" century
with discrete Malthusian, nonautonomous Malthusian, and logistic growth
models simulated.

dividual starts breathing an enriched mixture that brings the concentration
of He in his lungs to 400 ppm, then he breathes normally regular atmospheric
air. Show a graph of the concentration of He in his lungs for the first 10
breaths and give the general solution for the concentration of He in his lungs.

Solution: The general breathing model for this individual is given by the
equation:
Cn+1 = 0.84¢, + 0.8.

Details for deriving this model can be found in the accompanying text by
Mahaffy and Chévez-Ross[2]. This model is easily simulated in Excel by
putting the breath number in Column A, then starting with ¢y = 400 in
the cell B2, we enter in B3 the formula = 0.84*B2 + 0.8 and pull down to
find the concentration of He in the first 10 breaths. A graph of the first 10
breaths is shown in Figure (5.9).

The breathing model can be solved exactly using Maple’s fsolve (recur-
rence relation solver). The Maple commands for solving this problem are
shown below.
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Figure 5.9: Graph showing the concentration of helium in an adult male
breathing normally after having breathed an enriched helium mixture.

> eqn := c(nt+l) = 0.84*c(n) + 0.8;
> rsolve({eqn, c(0) = 400}, c);

The output of the rsolve command is

395 21 "+5
25

5.4 Computer Laboratory Exercises

To simplify listing of web addresses below, we note that the beginning of
the web address begins with the following:

www-rohan.sdsu.edu/~ jmahaffy/courses
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which will be given as ... in the text below.

1. (F2) The population of Canada [3] was 24,070,000 in 1980, while in 1990
it was 26,620,000. The population in Kenya [3] was 16,681,000 in 1980, while
it was 24,229,000 in 1990.

a. Over a limited range of years, the population P,, of most countries can
be estimated using the Malthusian growth law, which is given by:

Poi1=(147r)P,,

where n is the number of years since 1980 with Py the population in 1980.
Find the general solution for this equation, writing an expression for the
population P, for each of these countries with the appropriate values of both
Py and r from the data given to you. What does the value of r represent?
(Don’t forget that the data are at 1980 and 1990, while n is in years.)

b. Find how long it takes for each of their populations to double.

c. Find when the population of Canada is equal to the population of
Kenya. Graph the populations of both countries between 1980 and 2030.

d. Assuming the populations continue to grow according to the Malthu-
sian growth law above, then determine the populations of these countries in
the years 2000, 2050, and 2100. Create a table showing these values.

2. (I3) The shape of a cell affects its surface area to volume ratio. This
can be significant in the cell’s ability to absorb nutrients or survive toxins.
You are given that the volume of a sphere and cylinder are %71‘7“3 and 7r2h,
respectively, where r is the radius and h is the height. The surface area for
a sphere and a cylinder are 47r? and (27rh + 27r2), respectively.

a. Complete the following table, which examines cellular geometry. Note

Organism Shape | Diam | Height | Volume | Surface | S.A.:Vol.
mm mm mm?3 mm? Ratio
Mycoplasm | Sphere 0.3 -
Coccus Sphere 1.5 -
E. coli Cylinder | 0.75 4.0
Yeast Cylinder | 5.0 8.0

Diatom Cylinder 20 60

that the diameter and not the radius is given.
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b. Suppose that the Coccus bacteria and E. coli satisfy the discrete
Malthusian growth equation

Pn+1=(1+4k)P,  Py=1000,

where Py is the initial population and the doubling time for the population
is 25 min. Find the value of k& and write the general solution, then deter-
mine how long it takes for the total surface area of each of these growing
populations to reach 1 m2. (Recall that 1 ym = 1075 m.)

c. Assume the same population dynamics as given above. Determine
how long it takes for each of the populations to grow to where their volumes
occupy 1 cm®. (Recall that 1 cm = 1072 m.)

d. Michael Crichton in the Andromeda Strain (1969) states that “A sin-
gle cell of the bacterium E. coli would, under ideal circumstances, divide
every twenty minutes... [IJt can be shown that in a single day, one cell of
E. coli could produce a super-colony equal in size and weight to the entire
planet Earth.” The diameter of the Earth is 12,756 km, so assuming it is
a perfect sphere, determine how long it takes for an ideally growing colony
of E. coli (doubling every 20 min with the volume you computed above) to
equal the volume of the Earth. (Don’t forget that 1 km = 1000 m. Also,
you have to find a new value of k and start with Py = 1.) How does your
answer compare to the statement of Michael Crichton?

3. (F4) Using data from the U. S. census bureau, the table below presents
the population (in millions) for France. This lab has you repeat for this
country the modeling effort that we performed in class for the U. S.

Year | Population
1950 41.83
1960 45.67
1970 50.79
1980 53.87
1990 56.74
2000 59.38

a. Find the growth rate for each decade with the data above by dividing
the population from one decade by the population of the previous decade
and subtracting 1 from this ratio. Associate each growth rate with the earlier
of the two census dates. Determine the average (mean) growth rate, r, from
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the data above. Associate t with the earlier of the dates in the growth ratio,
and use Excel’s Tendline to find the best straight line

k(t) = a+ bt

through the growth data. Graph the constant function r, k(¢), and the data

as a function of ¢ over the period of the census data. It is very important

that you click on the Trendline equation and reformat the coefficient b so

that it has more significant figures (obtain 4 significant figures for a and b).
b. The Discrete Malthusian growth model is given by

Pn+1:(1+’l")Pn.

where r is computed in Part a. and Py is the population in 1950. Write
the general solution to this model, where n is in decades. Use the model to
predict the population in 2020 and 2050.

c. The revised growth model is given by

Pn+1 = (1 + k(tn))Pn

where k(t,) is computed in Part a. and Py is again the population in 1950.
Simulate this nonautonomous discrete dynamical model from 1950 to 2050.
(Note that t, = 1950 + 10n.) Use the model to predict the population in
2020 and 2050.

d. Create a table listing the date, the population data, the predicted
values from the Malthusian growth model, the nonautonomous dynamical
model, and the percent error between the actual population and each of
the predicted populations from the models from 1950 to 2000. What is
the maximum error for each model over this time interval? Use Excel to
graph the data and the solutions to the each of the models above for the
period from 1950 to 2050. Briefly discuss how well these models predict the
population over this period. List some strengths and weaknesses of each
of the models and how you might obtain a better means of predicting the
population.

e. The growth rate of the nonautonomous dynamical model goes to zero
during this century for France. At this time, this model predicts that the
population will reach its maximum and start declining. Use the growth rate
k(t) to find when this model predicts a maximum population, then estimate
what that maximum population will be.

4. (F1) A Malthusian growth model for the U. S. population can be found
at the website
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.../s00a/math121/labs/labf/qlvl.htm

At that website there is an applet that allows the user to adjust the growth
rate, r, and the range of years to try to fit a discrete Malthusian growth
model. This problem examines a version of that applet in more detail. In
this problem you will be given a couple ranges of years to try to fit with
a Malthusian growth model, then you will find the least squares fit to the
census data by adjusting the parameter, r. Finally, you will use your model
to compare to other census data.
a. Take the applet found at the website

.../s00a/math121/labs/labf/qlvl.htm

and adjust the data range to go from 1800 to 1880. Next adjust the param-
eter, r, until you obtain the smallest value of the sum of squares error (the
least squares fit to the data). Write this value of r and the sum of squares
error in your lab report and give the discrete Malthusian growth model for
this set of data. Note that the initial value, Py, of the data agrees with the
population at 1800. Use Excel to graph the data and the solution to your
model for the range from 1800 to 1900.

b. Use your model to predict the population in 1860, 1890, and 1900.
Find the percent error between the actual census data and these predic-
tions. Write a short paragraph describing how well this model works on the
predictions for these dates, and briefly describe any discrepancies that you
observe on the graph between the model and the data and put these errors
in the context of what you know about U. S. history.

c. Repeat the process from Parts a. and b. but use the range 1840 to
1920 with the initial population, Py, of the data agrees with the population
at 1840. Use the model to predict the populations in 1870, 1930, and 1940.
Which range of data provides the better information for predicting next two
decades and why?

5. (G1) This problem examines discrete Malthusian and logistic growth mod-
els, which are appropriate for studying simple organisms over limited time
periods. The Malthusian growth model is given by the equation:

Bn+1 =B, +rB, = (1 + T)Bn7

where n is the time in minutes and r is the rate of growth. The Logistic
growth equation is given by

B
Bpy1 = Bn + 1By (1 - ]\;) )
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where M is the carrying capacity of the population.

a. Begin with a simulation of the Malthusian growth model starting with
1000 bacteria (or By = 1000). Assume that the growth rate r» = 0.024/min.
Write an expression for the number of bacteria at each min. Simulate this
dynamical system, then create a table with the number of individuals at
n =1, 3, and 5 hr (60, 180, and 300 min). How long does it take for this
population to double?

b. Next we examine a population of bacteria that satisfies the logistic
growth law. Start again with By = 1000 bacteria, but use a growth rate of
r = 0.029/min. Assume that M = 1,000,000. Simulate this model for 300
min, then create a table with the number of individuals after n = 1, 3, and
5 hr (60, 180, and 300 min). How long does it take for these bacteria to
double? (Note that in this case since you do not have a formula to find the
doubling time, you will have to use your output from the simulation.)

c. On a single graph plot the populations of both bacterial cultures
(Malthusian and logistic) for n from 0 to 300. (Be sure to use lines to
represent these simulations and not points, labeling which line represents
which model.) Use your data to determine the first time that the popula-
tion from Malthusian growth model exceeds the one growing according to
the Logistic growth model.

6. (G2) If ¢, represents the concentration of the inert gas argon (Ar) in
the lungs, then a mathematical model for breathing is given by the discrete
dynamical model

Cnr1 = (1= q)en + a7,

where ¢ is the fraction of the lung volume exchanged with each breath and
v = 0.0093 (fraction of Ar in dry air) is the concentration of Ar in the
atmosphere. Normal breathing usually exchanges a volume of air, known as
the tidal volume, V;. The space remaining in the lung after exhaling from a
normal breath is known as the functional residual volume, V.. The fraction
of air exchanged
Vi
VitV

a. Assume that a normal subject breathes an enriched mixture of air that
contains 10% Ar, so that ¢g = 0.1 (fraction of Ar in dry air). Suppose that
the tidal volume is measured at V; = 520 ml for this subject, while another
measurement gives the functional residual volume, V, = 2400 ml. Make a
table and create a graph showing the concentration of Ar in the first 10
breaths. Determine how many breaths are required until the concentration

q
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of Ar drops below 0.01. (Hint: You may want to fill down for 40-50 breaths
to be sure that the argon level drops below the desired value.)

b. A patient with emphysema is given the same mixture of Ar (so again
cop = 0.1 (fraction of Ar in dry air). The tidal volume for this patient
is measured at V; = 210 ml. The concentration of Ar in the first breath
in found to contain 0.0897 (fraction of Ar in dry air) for this patient or
c1 = 0.0897. Find the fraction of the lung volume exchanged ¢ and the
functional residual volume, V..

c¢. For the emphysema patient in Part b., use the value of ¢ that you found
to simulate the discrete lung model for 10 breaths. Make a table and create
a graph showing the concentration of Ar in the first 10 breaths. Determine
how many breaths are required until the concentration of Ar drops below
0.01.

d. What do these results tell you about differences between the breathing
of a normal subject and a patient with emphysema?

7. (G3) This problem extends the Malthusian growth law to include immi-
gration or emigration of the population.
a. Suppose a population of organisms satisfies the Malthusian growth
law with immigration
An+1 = rAn + Mg,

where n is the number of years, » = 1.15 is the annual growth rate (15%
per year), and m, = 200 is the yearly number of immigrants. Suppose the
initial population Ay = 100,000. Simulate this model for 10 generations,
n = 1,..10. List the populations at n = 1, 2, 5, and 10, and graph your
solution.

b. This equation would be difficult for you to solve exactly. However,
with the help of Msple’s fsolve command, we can solve this discrete dynam-
ical system. The solution satisfies:

me(r™ — 1)
4 4 n a .
" or r—1

Verify this solution agrees with your results in Part a. at n = 5 and 10. Use
this solution to determine how long it takes for the population to double.,
i.e., find n such that A, = 2A,.

c. Suppose another population of organisms satisfies the Malthusian
growth law with emigration

Bn+1 = qB,, — my,
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where n is the number of years, ¢ = 1.13 is the annual growth rate, and
my = 200 is the yearly number leaving the region. Suppose the initial
population By = 200,000. Again simulate this model for 10 generations,
n =1,..10. List the populations at n =1, 2, 5, and 10.

d. Take into account the sign change for emigration (or use Maple) and
find the solution to the Malthusian growth model with emigration. How
long does it take for this population to double?

e. Use the solutions from Parts b. and d. to graph the populations A
and B on a single graph for n = 0,..,50. Find how long it takes until
Population A is equal to Population B (i.e., find the value of n when the
populations are equal) and give the population at that time. (Hint: To find
when the populations are equal, use Maple’s fsolve routine. Enter your two
functions of n, A, and B,, then set them equal to each other and solve
(using fsolve) for n. You will probably need to tell Maple to search for the
solution for n = 0..500 in the fsolve command.)

8. (H1) Carlson (1913) [1] grew yeast in laboratory cultures and collected
data every hour for 18 hours. The list below gives the population (p) at
representative times (¢) and the change in population over the previous

hour, f(p).

t p | f(p)
1] 96 | 87
4| 472 | 239
7 | 174.6 | 82.7

10 | 441.0 | 72.3
13 | 594.8 | 34.6
16 | 651.1 | 4.8

The growth of this yeast population satisfies a quadratic discrete dynam-
ical system or logistic growth model.

a. In the first part of this laboratory exercise you will use the data above
to find the rate of growth of the yeast. In particular, you want to use Excel’s
Trendline polynomial fit of order two with the y-intercept set to zero through
the data (last 2 columns)

f(p) = azp® + arp.

(Note that you ignore the times listed in the table when you find f(p).)
Since this is a quadratic equation, you can find the p-intercepts and the
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vertex. Write these values in your report. Show a graph of the data and the
best quadratic f(p) passing through the data.

b. The growth function that you found in Part a. can be used to simulate
the growth of the yeast using a discrete logistic model. The dynamical
system for the yeast population is given by the following model:

where f(p,) is the best quadratic function found above. Use your initial
population (pg = 9.6) starting at ¢ = 1 and simulate the growth for 20 hours
(20 iterations). (Note you are NOT starting at ¢ = 0.) List the populations
at times t = 5, 10, 15, and 20. Plot both the data from your simulation and
the data given in the table above. (Note that this time you need to use only
the time data and the population data in the table.) Discuss how well your
simulation matches the data in the table.

c. Compute the error between the model and the data at times 7 and 16.
What does this model say happens to the population of yeast for large ¢?
Find all equilibria for this model and discuss the stability of these equilibria.

d. Use Excel’s Solver to find the least squares best fit to the discrete
logistic growth model by varying the parameters r», M, and the initial con-
dition Py. Give the best fitting values to these parameters and show a graph
of the best fitting model with the data.

9. (H2) The general discrete logistic growth model is given by the equation:

P,
Pn-i—l:f(Pn):Pn"‘TPn(l_]Wn)-

This problem explores some of the complications that can arise as the pa-
rameter r varies.

a. Let M = 5,000. The first step in studying this model is to find all
equilibria (where the population stays the same). Determine the equilibria
by solving

P. = f(P,) for P..

b. Let » = 1.89 with Py = 2,000. Simulate the discrete dynamical
system for 50 generations. Make a table listing the population for every
fifth generation (Fy, Ps, Pio, ..., Pso ). Graph the solution of the dynamical
system and write a brief description of what you observe in your solution.

c. Repeat the process in Part b. with » = 2.1 and r = 2.62. (You can
make a separate table for these simulations or simply add these to your table
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in Part b with appropriate labeling.) Don’t forget to write a description of
these solutions and how they compare to each other and your solution in
Part b. What behavior do you observe for the solution in relation to the
larger of the two equilibria? (Hint: Observe the values closer to when n = 50,
so if you see that the model oscillates between two values, then you would
say that for this parameter value the model has “Period 2” and list the
values it oscillates between.)

d. Find a parameter value that gives you an oscillation with period 3.
This always implies that the dynamical system has gone through chaos.
Show your simulation that gives the period 3 oscillation. (Hint: You may
want to use the applet at

.../s00a/math121/lectures/logistic_growth/logistic.html

search for the period 3 behavior.)

10. (H3) Since the new census numbers are out, we want to highlight the
modeling of the U. S. census. This question examines three models for
studying the population of the U. S. during the 20 century. Below is a
table of the U. S. census data for the 20*" century.

Year | Population | Year | Population | Year | Population
1900 | 75,994,575 | 1940 | 131,669,275 | 1980 | 226,545,805
1910 | 91,972,266 | 1950 | 151,325,7985 | 1990 | 248,709,873
1920 | 105,710,620 | 1960 | 179,323,175 | 2000 | 281,421,906
1930 | 122,775,046 | 1970 | 203,302,031

a. The average growth rate for the 20" century is 14.15%. Use the
discrete Malthusian growth model

Pn+1:(1+7")Pn

with Py = 75,994,575 and r = 0.1415 to simulate the population from 1900
to 2020. Make a table showing the actual population, the simulated values,
and the percent error between the model and the actual data for the years
1930, 1950, 2000. What is the maximum percent error (in absolute value)
for this model (over the range simulated) and when does it occur? Compute
the average percent error (in absolute value) between the actual data and
the model for the dates from 1910 to 2000.
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b. Throughout U. S. history, immigration has played an important role.
During the 20" century, it has been tightly regulated and maintained a rel-
atively constant value. Suppose that the immigration rate is u = 3,200, 000
people per decade. The discrete Malthusian growth model with immigration
is given by

Poi1=047r)P, + pu,

where Py = 75,994,575 and r» = 0.1150. Simulate this model from 1900 to
2020, and make a table showing the actual population, the simulated values,
and the percent error between the model and the actual data for the years
1930, 1950, 2000. What is the maximum percent error (in absolute value)
for this model (over the range simulated) and when does it occur? Compute
the average percent error (in absolute value) between the actual data and
the model for the dates from 1910 to 2000.

c. The two previous models grow without bound. One question is where
the U. S. population will level off, and there are many estimates on what
this might be. We studied the logistic growth model and found that it has
this property of leveling off at the carrying capacity of the population. A
study indicates that a good logistic growth model for the population of the
U. S. in the 20" century is given by

Poi1 = 1.21P, — 4.773 x 107 1°P2,

Again let Py = 75,994,575 and simulate this model from 1900 to 2020.
Make a table showing the actual population, the simulated values, and the
percent error between the model and the actual data for the years 1930,
1950, 2000. What is the maximum percent error (in absolute value) for this
model (over the range simulated) and when does it occur? Compute the
average percent error (in absolute value) between the actual data and the
model for the dates from 1910 to 2000. Compute the carrying capacity for
this model. Also, determine how long, according to this model, it will be
until the population reaches 90% of the carrying capacity.

d. Graph all three models and the census data on the interval 1900 to
2020. Looking at the three models above, determine which model you be-
lieve best predicts the population for the years 2010 and 2020. Which model
do you believe is the best and why? Describe two ways that you could im-
prove the best model to make a better prediction for either the 2010 census
or determining the carrying capacity for the U. S.
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Chapter 6

Derivatives

The last chapter examined discrete population models, where population
counts are measured at discrete times. As the time intervals of the popu-
lation census shrink, one obtains the instantaneous rate of change of popu-
lation. This is the derivative of the population function. This section uses
a number of computer techniques for studying the derivative and applying
it to practical problems. For more information on the topic refer to Chap-
ters 9-11 of the text book [5].

The process of differentiation is very mechanical, which makes this op-
eration well-suited for symbolic algebra programs. In this chapter we intro-
duce a few Maple commands to show how Maple can very efficiently and
accurately compute the derivative.

6.1 Differentiation using Maple

The derivative of a function at a particular point is described geometrically
as the slope of the tangent line to the function at the given point. By creating
a sequence of secant lines with the points on the curve becoming closer to a
single point, one approximates the tangent line. The limit of the sequence
of secant lines produces the tangent line, and the slope of this tangent line is
the derivative at the given point. Formally, we find the slope of the tangent
line at a point (xq, f(x0)) by looking at the secant line through the points
(xo, f(zo)) and (zo + h, f(zo + h)), then letting h tend to zero. The slope
of this secant line is

—— f(fUOJrh)—f(l‘o).

h

85
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This can be algebraically very difficult or impossible. The definition of the
derivative is the limit of this expression as h — 0, so creating a sequence of
secant lines provides intuition to understanding the definition of the deriva-
tive of a function.

In the example below, we use the power of Maple’s symbolic algebra to
find the slope of the secant lines and simplify the process. We also demon-
strate the Maple diff command to find the derivative very easily.

Example 1: Consider the function

1

f(x):m-

a. Find the slope of the secant line through the points (-2, f(—2)) and
(=2+h, f(—2+h)) for h = 0.5, 0.1, and 0.01, then determine the equations
of the three secant lines (in slope-intercept form). Use Excel to graph f(z)
and the three secant lines for x € [—2.95,0]. Limit the range, so that y is in
the interval [—10, 20].

b. Find the general formula for the slope of the secant line through
x = —2 and * = —2 4 h in simplest form. Find the slope of the tangent
line by taking the limit as h — 0. Give the equation of the tangent line at
x = —2. What is the derivative of f(x) at x = —2. Use Maple graph f(z)
and the tangent line for x in the interval [—3,0].

Solution: Our calculations center about the point (-2, f(—2)) = (-2, 1).
We can readily use an Excel spreadsheet to compute the function values
and the slopes for each of the secant lines. In Column A, we insert the x-
values —2, —1.5, —1.9, and —1.99. In Column B, we calculate the function
values for each of the corresponding x-values giving f(—2) =1, f(—1.5) =
0.296296, f(—1.9) = 0.751315, and f(—1.99) = 0.970590. In Column C, we

compute the slopes

f(=15) = f(-=2)

0F = —1.40741,
f(=19) = f(-=2)

i1 —  —2.48685,
f(=1.99) - f(=2) _

oL = —2.940985.

Since the point slope form of the line satisfies y — yo = m(z — xg), it follows
that the y-intercept, b, is given by b = yg — mxo, which for this example is
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b=1+42m. It follows that the secant line for h = 0.5 is

y = —1.4074z — 1.8148,
and for h = 0.1 is
y = —2.48685x — 3.9737,

and for h = 0.1 is
y = —2.9410x — 4.8820.

In Figure (6.1) is a graph of f(z) and the three secant lines computed above.

Secant Lines

P~

X

Figure 6.1: Graph of the function f(x) and 3 secant lines.

b. We use Maple to find the general formula for the slope of the secant

line in simplest form. First, you enter the function in the standard way for
Maple:

>f : =x -> 1/(x+3)"3;
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To which Maple responds

1

f::xﬁm.

The slope of the secant line is found by the following:
> (£(-2+h) - £(-2))/h; simplify(%);

To which Maple responds
(1+h)2-1
—
and
3+3h+h?

(1+h)?
The simplify command lets Maple find the easiest form of the expression
that it chooses. (This may or may not be the best form to analyze.) You
may be able to see from this expression the slope of the tangent line by
letting h = 0.
Formally to find the slope of the tangent line, we let A tend to zero. This
is the derivative of f(x) at z = —2.

>m := limit (%, h = 0);

To which Maple gives the answer m := —3. The m := is simply used to
define the slope for future use. Maple has the limit command to take limits,
which is mathematically a very difficult process. The % in Maple means to
take the previous expression and place in the position with the %. (This
can be a dangerous command to use, as it works on whatever you just did,
not necessarily from the line above. If you do anything else, then use the
cursor to return to a line with the %, then you may get the wrong result.)
Next we define tangent line (the tline(x); following the function defini-
tion has Maple print out the equation of the tangent line), then plot both
the function and the tangent line. (You will need to adjust the x and y
values in the plot command to get the desired graph for your problem.)

> tline := x > m*x(x - (-2)) + £(-2); tline(x);
Maples responds with
tline := x — m(x + 2) + f(-2),

—3x — 5.
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Thus, the tangent line is
y=—3x—5.

To plot the tangent line and the function using Maple (restricting the range
of the y values), we enter the command

> plot ({f(x), tline(x)}, x = -3..1, y = -10..20);

The last part of this example shows you how easily you can get a deriva-
tive using Maple. This is the way that many mathematicians actually do
research when they need to accurately differentiate complicated expressions.
To differentiate the function f(z) given in this example, we type

> df := diff (£ (x),x);

Maple gives the derivative

1
df i = -3 ———.
! (z+ 3)*
We defined our expression for the derivative as df in our Maple command
above to allow easy evaluation. To find the value of the derivative at x = —2,
we type

> subs(x=-2, df);
and Maple gives us the answer —3.
A standard application of the derivative is finding a maximum or min-

imum of a function. The derivative is zero for smooth functions at any
maxima or minima.

Example 2: Consider the function

f(z)=032%—9122+3.72+42.2.
Find the minimum and maximum of this cubic polynomial.
Solution: The series of commands are to enter the function, differentiate
the function, find when the derivative is zero, then use these values back
in the original function. Often it is useful to make comments on a Maple

worksheet for future reference. The symbol # is used in Maple to make
comments. Anything following the # is ignored by Maple. Note also that
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you can produce a new line without Maple evaluating it by typing Shift +
Enter. Below are a series of commands that show how to find the mini-
mum and maximum of a cubic polynomial in Maple along with the Maple
responses. Recall that the z-intercepts can be found using fsolve(f(x) =
0, x);

> f = x => 0.3*%x73-9.1*%x"2+3.7*xx+42.2;
# This enters the function.

fi=x—032>—912>+3.7x+42.2

> df := diff(f(x),x);
#This differentiates the function and assigns it to df.

df := 0922 —18.2x + 3.7

> xm := fsolve(df=0,x);
#This finds the x values at the extrema and assigns them to xm.

xm = .2053826275,20.01683959

> £(xm[1]) ;£ (xm[2]);
#This finds the y values at the previous x values found above.

42.57865834 —1123.802528

From Maple, it easily follows that this cubic polynomial has a relative min-
imum at (20.017,—1123.8) and a relative maximum at (0.2054,42.58).

When the function is not a polynomial, it may be necessary to look at
the graph of the function and estimate where a maximum, minimum, or
point of inflection occurs to find the specific point. Below we work another
example that includes an exponential function and proceeds to the second
derivative to find points of inflection.

Example 3: Consider the function
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Find all relative extrema and points of inflection. Graph the function show-
ing these critical points and give any asymptotes.

Solution: This problem is solved exclusively in Maple, and the Maple com-
mands are given below. Comments and the Maple responses are shown to
help understand the solution.

> f = x => (x72-5)*exp(-0.1%x);
# This enters the function.

f=z— (z°—5)e "

> plot(f(x),x=-10..100,y=-10..100);
#This plots the f(x) over an appropriate domain and range.

1FD__

o0

Figure 6.2: Graph of the function f(x).

> df := diff(f(x),x);
#This differentiates the function and assigns it to df.

df :==2ze” 1" — 0.1 (2® —5) e 7



92 CHAPTER 6. DERIVATIVES

Note that sometimes the expression that Maple presents after differentiation
is very complicated. The expression can occasionally be simplified by using
the Maple commands simplify(%); or factor(%);. Also, we could graph
the derivative by typing

> plot(df, x=-10..100,y=-10..100);

Note that df represents the expression for the derivative, which is slightly
different that our functional representation of f(z) in the previous plot com-
mand.

The next step is to find the extrema of f(x), which is where the derivative
is zero.

> xmin := fsolve(df=0,x=-10..10); f(xmin);
#This finds the x and y values of the minimum.

xmin = —.2469507660 —5.062503178

This minimum was found by looking at the graph of f(z) and limiting where
Maple searches for the z value of the minimum. The z value of the minimum
is assigned to xmin, which is substituted into the function to obtain the y
value. It follows that a relative (and absolute) minimum for f(z) occurs at
(—0.24695, —5.0625).

> xmax := fsolve(df=0,x=10..50) ;f (xmax);
#This finds the x and y values of the maximum.

xmaz = 20.24695077 53.46575737

As with the minimum, we restricted our search of x for the relative maxi-
mum. Maple readily finds this relative maximum at (20.247,53.466).

Next we use Maple to find the second derivative, then use this to find
the two points of inflection, which are visible on the curve where it changes
concavity.

> sdf := diff(df,x);
#This computes the second derivative of f and assigns it to sdf.

sdf :=2e %1% —0.42e7%1% 1 0.01 (332 — 5) e 0l

> xpl := fsolve(sdf=0,x=0..20);f(xpl);
#This finds the x and y values of the first point of inflection.
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xpl 1= 5.682178937 15.45910694

> xp2 := fsolve(sdf=0,x=20..60);f (xp2);
#This finds the x and y values of the first point of inflection.

rp2 = 34.31782106 37.91295621

It follows that the points of inflection occur at (5.6822, 15.459) and (34.318,37.913).
Finally, we use the limit command to find the horizontal asymptote to the
right.

> limit (£f(x),x=infinity);

This gives answer zero indicating a horizontal asymptote to the right of
y=0.

6.2 Qualitative Analysis of Discrete Models

In the previous chapter, we examined a number of discrete dynamical mod-
els. Excel provided a valuable tool for simulating these models. We learned
about the Solver function in Excel that allowed us to fit parameters to the
model. In the previous section, the derivative was applied to aid graphing by
finding minima, maxima, and points of inflection. In this section we apply
many of the computer techniques from before, including Excel’s Trendline
and Solver, and apply the derivative with the help of Maple to study the
qualitative behavior of discrete dynamical systems.

Example 4: We want to return to Example 2 from the chapter on Discrete
Dynamical Models. Often a biological study does not have the growth data,
but simply population measurements at various times. Below we repeat the
data on the bacterium Staphylococcus aureus with the table written in a
slightly different form.

The general form for a discrete population model is given by
Ppy1= F(Pn)a

where F(P,) is called the updating function for this population model and
takes various forms. In this example, we examine two updating functions,
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t n P,
(hours) ODgs0
0 0 0.035
0.5 1 | 0.039
1 2 | 0.069
1.5 3 0.11
2 4 0.17
2.5 5 0.229
3 6 0.261
3.5 7 | 0.288
4 8 0.309
4.5 9 0.327
5 10 | 0.347

the logistic growth model and a Ricker’s growth model, and the population
is measured by the optical density at a wavelength of 650 nm (ODgs).
a. The discrete logistic growth model for the adult population P, can be
written
P.y1 = F(P,) =rP, — mP?,

where the constants r and m are determined from the data. Plot the data
P11 vs. P, and find the best fit of the logistic growth model given above
using Excel’s Trendline.

b. Find the equilibria for this model. Write the derivative of the updating
function. Discuss the behavior of the model near its equilibria.

¢. Another common population model is Ricker’s, which is given by

P,i1 = R(P,) = aP,e """,

where a and b are constants to be determined. This model has certain ad-
vantages over the discrete logistic growth model, especially for larger popu-
lations. (Ricker’s model is always positive, while the logistic growth model
can yield negative populations.) Use Excel’s solver to find the least squares
best fit of the Ricker’s updating function to the given data by varying a and
b. Once again plot P,y1 vs. P,, using this updating function and show how
it compares to the data and the quadratic logistic updating function.

d. Find the equilibria for Ricker’s model. Write the derivative of the
updating function, then discuss the behavior of these equilibria using this
derivative. Simulate the discrete dynamical system using the discrete logis-
tic growth model and Ricker’s model comparing them to the actual data.
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Discuss the similarities and differences that you observe between models and
how well they work for this experimental situation. Use the equilibrium and
stability analysis to predict what will happen to the population of S. aureus
for large times (assuming experimental conditions continue)?

Solution: a. This problem differs from Example 2 of the previous chapter
in that we are finding the updating function rather than a growth function
for the discrete logistic growth model. The Excel spreadsheet begins by
copying the table above into Columns A-C. In Column D, we insert
the values for P, 1, which are simply the values in Column C shifted up
one cell, thus the entry in C3 is placed in D2. Next the XY (Scatter)
option of Chart Wizard is used to graph the data points from Columns C
and D. Assuming the first row is used for labels, then Cells C2 to D11
are graphed. (The entry in C12 has no pairing, so can’t be graphed.)
After these data points are graphed, Excel’s Tendline with a second order
polynomial is inserted. We have to check the options Set intercept = 0
and Display equation on chart. In addition, we add the identity map to
this graph, which is simply the line P,,+1; = P,. This becomes important for
the stability analysis in Part b. Figure (6.3) shows the result of this graph.
The best discrete logistic growth model is found to be

Pui1 = 1.6238 P, — 1.8439 P2,

which as can be seen, agrees with the model found in Example 2 of the
Discrete Dynamical Models chapter.

b. The equilibria, P., for the general discrete population satisfy the equa-
tion P, = F(P.). Thus, we have

P, = 1.6238P, —1.8439 P2,
0 = 0.6238 P, — 1.8439 P? = 0.6238 P,(1 — 2.9559 P.).

It follows that the equilibria are P, = 0 and 0.3383. One can easily see
that these are the points of intersection of the updating function with the
identity map on the graph in Figure (6.3). The derivative of F'(P,), which
is easily computed by hand or using Maple,

> diff (1.6238*P-1.8439*%P"2, P);
which gives the result

F'(P,) = 1.6238 — 3.6878 P,.
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Updating Function
i 2
Poo=-18439P % +16238P

0.3

Py

202 //
01 /
0
0 0.1 0.2 03 0.4 0.5
P?E-

Figure 6.3: Graph of the logistic growth updating function and the data,
P7L+1 VS. PTL-

Thus, F'(0) = 1.6238, which is greater than one so the trivial equilibrium
(extinction equilibrium) at P, = 0 is unstable with solutions moving away
from this point. In a good growth medium, one expects the population
to grow, so this equilibrium should be unstable. At the other equilibrium,
P. = 0.3383, F'/(0.3383) = 0.3762, which is less than one. It follows that
this equilibrium is stable with solutions monotonically approaching this equi-
librium. This equilibrium is the carrying capacity of the culture, and one
expects biologically that a culture will grow to stationary phase and level
off at this equilibrium value.

c. This part begins with a spreadsheet like in Part a for Columns A-
D. Figure (6.4) shows the spreadsheet that we developed for this part of
the problem. In Column E, we insert the Ricker’s updating function,
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R(P) = aPe~"P. It has the parameters a and b, which we name in Cells H1-
I2. (Recall this is done from the menu item Insert selecting Name, then
Create and choosing the appropriate category.) As initial estimates, we
entered ¢ = 1 and b = 0.1. After naming the parameters we enter in E2
the expression =a*C2*EXP (-b*C2), then fill this down to E11. In Col-
umn F, we enter the square error between Columns D and E. Thus, in
F2, we enter = (D2 - E2)" 2, and fill this down to F11. In F12 we sum
the square error by entering =SUM(F2:F11), which is also done by typing
= and clicking on the summation symbol in the second row of the menu bar.

=
:. File Edit  Wew Insert Format Tools  Chart  Window Help  Adobe PDF Tupe & question forhelp =2 @
o =R |E 7 TmeshewRoman v 10f. B I T a el B A 2
TR,
Chart Area = a3
& 5 | & [ © 1 E ] F & T ® [ ¢ 1T F [ ® [ © 1=

L1 t n Pn Pin+1) R(Pn) err a 1.708282 Pn R{Pn) Tl
ezl o a 0.035 0.033  0.056633 0.000311085 b 1.564232 1] 1]

3| 05 1 0.0339 0068  0.062717 3.84782E-05 0.01 0.016828

[ 4 | 1 2 0.063 o 0.105874  1.70256E-05 0.02 0.033133

[&5] 15 3 0.1 017 0.158299  0.000136904 0.03  0.048228

[6] =2 1 017 | 0229 0222728 3.9333E0s [ [ 004 0.064224
|7 | 25 5; 0.229 0.261  0.273578 0.000156202 | | 0.05  0.079035
8] 3 & 0261 | 0.285 | 0.296584 7,36781E05 [ [ 008 |0.09333
13| 35 7 0.238 0308  0.313731 2.23794E-05 0.07 0.10724

[ 10| 4 g 0.309 0.327 0325723 1.B1451E-06 0.08  0.120658

[11] 45 9 0327 0.347  0.335134 0.0007140809 0.09 0133634
|12} & 10 0347 0.000240511 0.1 0.146177
EEY 041 0158298
14| x [ [ 042 | 047001 |

1 15| TUpdating Functions | | 013 0181313
(16| - [ [ 014 |0.19223 |
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[21] - [ [ 019 0241264
2] /‘ | [ 02 [0.250021
[23] [ [ 021 [0.258447 |
[24] N / 022 |0.26EE52
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6 | / 024 0281828
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Figure 6.4: Spreadsheet for the development of the Ricker’s updating func-
tion.

The next step of the process is to let Excel find the least sum of square
errors. This is done by clicking on F12, where the sum of square errors is
computed. Next we go to the Tools on the menu bar and select Solver. In
the menu box that pops up, we select Min and in the box By Changing
Cells we highlight Cells 11-1I2 (the values of a and b). After pressing the
Solve button, solver finds the smallest sum of square errors. In this case
it gives a = 1.7093 and b = 1.5642, so the best fitting Ricker’s function for



98 CHAPTER 6. DERIVATIVES

these data are
R(P,) = 1.7093 P,e~1-%642Pn

A graph of this updating function with the logistic updating function is
shown in Figure (6.5). It is clear that though this function is very different
than the quadratic function of the discrete logistic model, these functions
are extremely close on the interval between P,, = 0 and the equilibrium (the
higher value where the updating functions intersect the identity map). The
differences in these models are at higher populations, which is away from
where there are data.

Updating Fumctions
0.4
Ricker's __’_,.--""_'
o il
Loaistic
0.z /‘
o 0.2 7/
0.1 /
]
0 0.1 0.2 0.3 0.4 0.5
Py

Figure 6.5: Graph of the logistic growth and Ricker’s updating functions
and the data, P11 vs. Py,.

d. The next step in this example is the qualitative analysis of the Ricker’s
model. We find the equilibria by solving

P, =1.7093 P,e~1:5642F
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One solution is clearly the trivial solution, P, = 0. (Any closed population
model should have this extinction equilibrium.) The other equilibrium sat-
isfies e!:5642F = 1.7093, which is found by taking logarithms of both sides.
Maple can readily find the equilibria using the following commands:

> R:=P->1.7093%Pxexp(-1.5642%P) ;
> solve(R(Pe)=Pe,Pe);

The other equilibrium is P, = 0.34272, which is slightly higher than the
one predicted by the discrete logistic growth model. The derivative of the
Ricker’s function is found using the product rule or by Maple with the
command

> dR := diff(1.7093*P*exp(-1.5642%P), P);
# or if R(P) is defined above by dR := diff(R(P), P);

The result is
R'(P) = (1.7093 — 2.67368706 P) e~ 150427

It follows that the equilibrium at P, = 0 is unstable, since R’(0) = 1.7093,
which is greater than one. With Maple’s help, we evaluate R’(0.34272) at
the other equilibrium, P, = 0.34272, by typing

> subs(P=0.34272), dR); evalf(%);

Thus, R'(0.34272) = 0.4639, which is less than one. It follows that this
equilibrium is stable with solutions monotonically approaching this equilib-
rium. Thus again, this equilibrium is the carrying capacity of the culture,
and solutions approach this population asymptotically.

Figure (6.6) shows the time series graph of the data and both models.
Both models simulate the data very well, and it would be hard to decide
which model fits the data better. From the stability analysis, these models
predict that over a long period of time this culture of S. aureus would stay
in a stationary phase with an ODgsq of approximately 0.34.

6.3 Continuous Logistic Growth Model

The discrete logistic growth model is very easy to simulate, but there is no
solution to the model (unlike the solution found by Maple in Section 5.3).
However, the continuous version of this model, which results from letting
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Figure 6.6: Graph of the discrete logistic and Ricker’s growth model and
the data, P, vs. t.

the time step between P,,1 and P, go to zero, gives a differential equation
that has a solution that we present in the example below.

Example 4: Because of the difficulties noted above for the discrete logistic
growth model, most biologists use the continuous logistic growth model for
their studies of populations. This model is used very extensively and can be
written with the following formula

B PyM
Py + (M — Byet’

p(t)

where Py is the initial population, M is the carrying capacity of the popula-
tion, and r is the Malthusian growth rate (early exponential growth rate) of
the culture. Consider the population data for the bacterium Staphylococcus
aureus presented in Table (6.2) in the previous example.

a. Use Excel to find the best values of parameters Py, M, and r. Include
the sum of squares error. Create a graph showing both the data and the
logistic growth function, p(t). If the value of r gives the Malthusian growth
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rate for low populations (Ppe’™), then use this to determine the doubling
time for this culture of yeast. With the best fitting parameters, find the
actual doubling rate of the logistic model from its initial population.

b. The growth rate for a culture can be found by taking the derivative
of the population function. Differentiate the logistic growth function p(t)
with the parameters found in Part a. Create a graph of the derivative of the
logistic growth function, p’(t).

¢. The turning point of the population or the mid-log phase for this cul-
ture of bacteria is where the growth of the culture is at a maximum. (This
is also the point of inflection for the original logistic growth function, p(t).)
Find when the logistic growth function reaches the turning point by finding
the maximum of the derivative of the logistic growth function, p’(t). Write
the time of the turning point, the maximum growth that you find, and the
population of the culture at this time.

Solution: a. This example starts with an Excel spreadsheet, where we insert
the data in Columns A and B with appropriate headings in the first row,
such as ¢t in A1l. (For graphing purposes later, we extend the time units in
Columns A an additional hour.) We highlight Column A and go to the
Insert on the main menu and select Name and Create, taking the default
setting to have our times labeled ¢t. In Column E, we add the labels PO, r,
and M, then in Column F, we input reasonable guesses. (Note that Excel
changes the label r to r_ for unknown reasons.) We selected Py = 0.035 (the
initial value in the data), » = 1.6 (chosen from our work in Example 4 on
the discrete logistic growth model), and M = 0.35 (a value slightly higher
than the last value in the data). Once again, we Name these parameters
from the Insert item on the main menu.

In Column C, we insert the formula for p(¢). Thus, in C2, we type
=P0*M/(P0+(M-PO)*EXP (-r_*t)) and fill this formula down to C14.
(We filled down two cells beyond the data for graphing purposes later.) In
Column D, we compute the sum of square errors between the model and
the data, so in D2 we insert the formula = (B2 - C2)~ 2, then fill this
down to D12. In D13, we type =SUM(D2:D12) or simply type = and
select the symbol ¥ on the second line of the main menu and the default
gives us the desired sum.

The next step in the process is computing the least sum of square errors,
which again uses Excel’s Solver. We highlight D13, then invoke Solver
from the Tools listing on the main menu. As before, we check Min, then
click in the window below By Changing Cells and highlight the parameter
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values in F2:F4 (the values of Py, r, and M). Finally, we click on the Solve
button, and we find that D13 changes to 0.0005245, which is the least sum
of square errors for this model with the given data. The parameters change
from their initial values to Py = 0.025414, r = 1.22818, and M = 0.34568.
In Figure (6.7) we see the graph of the data and the best fitting model.

Continuous Logistic Model

0.35 &

03 e sdil
| il

Population (ODss0)
; i =
n (8] [

0.05 -4
0

0 1 2 3 4 3 6
t (hr)

Figure 6.7: Graph of the continuous logistic growth model and the data,
p(t) vs. t.

To find the doubling times, we can solve the algebraic expressions. For
the Malthusian growth model with the best fitting parameters, we need to

solve
m(ty) = Pyt =2R,
et = 9,
tg = 1117(02) = 0.56437.
Though this is not difficult, it becomes much more challenging to solve the

expression for the continuous logistic growth model doubling, p(t4) = 2 Pp.
Below we show how the doubling times are easily found using Maple.
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>m :=t -> POxexp(r*t);p(t);

# This enters the Malthusian growth model.

> p =t —> POxM/(PO+(M-P0O)*exp(-r*t));

# This enters the continuous logistic growth model.

> PO := 0.025414335; r := 1.228178578; M := 0.345683182;

# This assigns the best fitting parameter values.

> fsolve(m(t)=2*P0,t);

# This finds the doubling time for m(t) (Malthusian model)
> fsolve(p(t)=2%P0,t);

# This finds the doubling time for p(t) (logistic model)

The results of Maple are the same as above for the Malthusian growth model
with the doubling time being t; = 0.56437 hr, while Maple computes the
doubling time for the logistic growth model to be t; = 0.63169 hr. The
latter time is longer because of the declining growth rate with increasing
population.

b. The logistic growth function, p(t), is given by

(1) = 0.008785
PR = 0.02541 + 0.3203 ¢ 12282¢

Its derivative is readily found using the Maple command

> diff(p(t), t);
giving the result

0.003456 ¢~ 1:2282¢
(0.02541 + 0.3203 ¢~ 1:2282)2”

p'(t) =

Figure (6.8) shows a graph of the logistic growth function with the best
parameters found in Part a and its derivative.

c. Figure (6.8) shows that the derivative of the logistic growth model
has a maximum, which can be seen matches the point of inflection for the
culture of S. aureus. The maximum of the derivative is found by computing
the zero of the second derivative. The Maple commands that calculate this
zero are shown below. Assume that the function p(t) is entered as shown in
Part a.

> dp := diff(p(t), t); # Computes the derivative of p(t).
> sdp := diff(dp, t); # Computes the second derivative of p(t).
> tp := fsolve(sdp=0,t); # Finds the zero of p"(t).
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Figure 6.8: Graph of the continuous logistic growth model and its derivative.

This last command assigns to the variable tp the zero of the second deriva-
tive of p(t), p”(t), which Maple finds to be tp := 2.06309. It follows
that the turning point or mid-log phase for this culture of S. aureus is
tp = 2.06309 hr. This value is substituted into p(¢) and p’(¢) using Maple
as follows:

> p(tp);
> subs(t=tp, dp); evalf(%);
# The second command gives the decimal answer for the growth rate.

The turning point of the population occurs with a population of p(2.06309) =
0.17284 ODgs50, and the maximum growth rate is p’(2.06309) = 0.10614 ODgs /hr.

6.4 Computer Laboratory Exercises

To simplify listing of web addresses below, we note that the beginning of
the web address begins with the following:

www-rohan.sdsu.edu/~ jmahaffy/courses
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which will be given as ... in the text below.

1. (I1) A ball is thrown vertically and data are collected at various times in
its flight. Assume that air resistance can be ignored, then the height of the

Time (sec) | 05| 1.0 | 1.5 | 20 | 25 | 3.0
Height (m) | 7.3 | 12.1 | 14.6 | 144 | 11.8 | 7.0

ball satisfies the quadratic equation:
2

h(t) = vot — %,

due to gravity. (Note: There is no constant term as we are assuming that
the height of the ball is zero at t = 0.)

a. Use the Excel’s Trendline to find the best constants vy and g that fit
the data in the table and write that equation in your report. (Remember
that when you are using Trendline, you must decide if your graph passes
through the origin. Does this one?) Graph both the quadratic function
and the data. Find the time that your model predicts the ball will hit the
ground. Also, find how high the ball goes, and find the time that it reaches
this highest point.

b. The average velocity between two times t; and ¢ is given by the

formula:
h(t2) — h(t1)
ty—t1
Use Excel’s spreadsheet capabilities to create tables showing the average
velocity of the ball based on the t; and t5 values given below.

UG,U@ -

ty 1] 1 1 1 1 1
tp | 2]15]1.2]11]1.05]1.01

t1 | 2] 2 2 2 2 2
ta | 312522211205 201

The velocity of the ball at a given time is the derivative of the height
function at that time. Compute the derivative of h(t),

B'(t) = v(t).



106 CHAPTER 6. DERIVATIVES

t1 125291295299 | 2999
ta | 3 3 3 3 3

Evaluate v(1), v(2), and v(3). How do these values compare to the values
of vgpe that you obtained for each of the tables above?

c. Associate vgye with t1, i.e., let vgpe = v(t1). Once again compute vgye
for the table below, then graph v(t) versus t using these data. Describe the
graph that you have produced. Use Trendline (or any other method) to find
the equation of this graph and find the v and t-intercepts. Compare this
equation to the equation of the derivative h/(t) that you obtained above.

t1 0 05 | 1.0 | 1.5 | 2.0 | 2,5 | 3.0
ta | 0.01 | 0.51 | 1.01 | 1.51 | 2.01 | 2.51 | 3.01

2. (I2) Pediatricians monitor for normal growth of children by the annual
measurement of height and weight. These are expected to increase annually,
the growth curve paralleling a standardized curve. In the note introducing
the idea of a derivative, there are data on juvenile heights from birth to age
18. Below is a table of both heights and weights for American girls in the
50th percentile.

a. Use the data from ages 4 through 18, together with the Trendline
feature of Excel, to find a power law relationship between height and weight.
Give a physiological explanation for this relationship.

b. Include the data back to birth (age 0). What happens to the power
law? Why does this happen? (Think about the morphological changes
between an infant and a small child.)

c. Create a graph of weight versus age, then create another graph of rate
of change in weight versus age (much like the graphs seen in the text book
[5]). Recall that the rate of growth (in height) was relatively constant over
the ages 3 to 12. What happens with the rate of change in weight? Describe
the graph for the rate of weight gain over the early years (0-3), the ages
3-12, then adolescence (13-18).

3. (J1) This problem investigates the concept of a derivative from the ge-
ometric perspective of limiting secant lines going to a tangent line. It also
allows you to explore the rules of differentiation using Maple. (For the the-
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age(years) | height(cm) | weight(kg)
0 50 3.4
0.25 60 5.4
0.5 66 7.3
0.75 71 8.6
1 75 9.5
1.5 81 10.8
2 87 11.8
3 94 15.0
4 102 15.9
5 108 18.2
6 114 20.0
7 121 21.8
8 126 25.0
9 132 29.1
10 138 32.7
11 144 37.3
12 151 41.4
13 156 46.8
14 160 50.0
15 161 52.3
16 163 56.4
17 164 57.7
18 164 58.6

oretical description please refer to Chapter 12 of the text book.)
a. Consider the function

2
f(l“)—m~

We want to investigate the derivative of f(x) at x = 2 by observing secant
lines that pass through the points (2, f(2)) and (24 h, f(2+ h)) for different
values of h. The slope of the secant line is given by
24 h) — f(2
ity = 124D = Q)
h
and this line always passes through the point (2, f(2)). Find the equations
of the 4 secant lines (in slope-intercept form) using h = 0.5, 0.2, 0.1, and
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0.05. Use Excel to graph f(z) and the 4 secant lines for x € [1,2.95]. Limit
the range, so that y is in the interval [—10, 20].

b. Find the general formula for the slope of the secant line through x = 2
and x = 2+ h. The slope of the tangent line is found by taking the slope of
the secant line and letting i tend toward zero. This becomes the derivative
of f(z) at x = 2. Find the derivative of f(x), f'(x), at x = 2. Find the
equation of the tangent line at = 2, then use Maple graph f(x) and the
tangent line for z in the interval [0, 3]. (Use the same limits on the range as
in Part a.)

c. Differentiate the following functions using Maple. You are just about
to learn a collection of differentiation rules, so you should be looking for
patterns to help you in the future as we learn more about derivatives.

1. f(x) = 2%+ 3z -5,

2. f(z) = (2% + 3z — 5)4,
3. flz)=e7"7,

4. f(z) =In(z +4).

Write a brief description of what you observe upon taking the derivative in
each of the above cases.

4. (J2) This problem was given to me by Professor Boyd Collier from his
research in Ecology at San Diego State University. The study examines
the oxygen consumption of the bug Triatoma phyllosoma after ingestion of
a blood meal. In this experiment the bug matures through its fifth instar
stage of development and begins its molt into the adult phase. This is a
bug that causes major problems throughout South America. It spreads the
deadly disease chagas when it obtains a blood meal at night from its sleeping
victims. The poor rural houses may be so infested with thousands of these
bugs that some of the occupants become anemic by losing up to 500 ml of
blood per month.

a. Below are the data for the time, ¢ (in hours), and the oxygen con-
sumption, y (in ml of Oy /hr).

These data are most reasonably fit by a cubic equation. Follow the
techniques you have used before to let Excel find the best fit to the data
using the equation:

y = ag + art + agt® + ast?.
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t (hr) | y ml Og/hr
1 116.6
2 120.1
3 114.9
4 129.9
) 116.5
6 107.7
7 99.0
8 104.0
9 100.7
10 87.5
11 82.7
12 53.8
13 54.0
14 72.4
15 81.1

Have Trendline show the equation of the best cubic polynomial through
these data. Show the plot of the data points and the best cubic polynomial
through the data for ¢ € [0, 15].

b. Differentiate the polynomial that you found in Part a., then determine
where the derivative is zero. What is the correspondence of these numbers to
the maximum and minimum values of oxygen consumption for ¢ in the given
interval? State where the function is increasing and where it is decreasing.

c. Recall that at t = 0, the bug has just finished eating a blood meal, and
at ¢ = 15, it molts to become an adult. With this information briefly present
a biological explanation for why you see the regions of increasing oxygen con-
sumption and decreasing oxygen consumption. (Hint: You might want to
think about your own physiology after eating a meal. The molting stage
could be related to you deciding to exercise at some time after your meal.)

5. (J3) With the death of Sonny Bono, there has been renewed interest in
the Salton Sea. The Salton Sea formed from 1905-1907 when an engineering
mistake plus heavy rains on the watershed of the then undammed Colorado
River combined to break through a levee. The lake was originally freshwater
but became saltier than seawater as there is no outlet and a lot of evapo-
ration. The water going into it is fairly salty (leached from the agricultural
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soils). The creatures in it are mostly marine, some introduced on purpose
and some accidentally with the establishment of a sport fishery. If it weren’t
for the agricultural and municipal wastewater flowing into the Sea it would
have dried up long ago. However this water also has a lot of fertilizers, which
cause massive algal blooms and a large biomass of invertebrates and fish.
People like to fish there because it is so easy to catch fish, but there are
also large fish kills, which are NOT pleasing. There are many birds at the
Sea (there is lots of food for them), but they also experience large die-offs
at times.

There are not very many kinds of metazoan zooplankton in the Salton
Sea, but often there is a high density present. Professor Debbie Dexter is
currently studying marine invertebrates in the Salton Sea, and a presentation
of some of her work can be found on the second floor of the Life Sciences
building. Mary Ann Tiffany provided me with the background information
above and the data below on some of the zooplankton.

The table below lists the number/liter of various zooplankton for data
averaged over depth for station S-1 (in the center of the north basin of the
Salton Sea at a depth of 14 meters). The first column lists the number of
days after January 1, 1997 when the data were taken. The second column
represents the rotifer, Brachionus rotundiformis, the third column represents
the nauplius form of the barnacle (Balanus amphitrite) larvae, and the last
column is the nauplius form of the copepod, Apocyclops dengizicus.

a. Graph each of these species in Excel using a logarithmic scale for the
population. (Create three separate graphs.) Determine the season of the
year when each of these species is most productive.

b. Take the natural logarithm of the data for Rotifers and Barnacles,
then plot these against time. Use Excel’s Trendline to find the best 4th
order polynomial through the logarithm of the data versus time. When Excel
gives you the equation of this 4th order polynomial, click on the formula and
transform the coefficients using scientific notation with 2 decimal places.

c. Differentiate the polynomials found in Part b. and determine where
the derivatives are zero. These should correspond to the three minima or
maxima. Find when these minima and maxima occur and state the popula-
tions at these extrema. (Recall you have the logarithm of the populations,
so you will need to exponentiate your answer.) Give the approximate dates
of the minimum and the maximum that occur in the range of the data based
on the polynomial fit that you found. (One should lie outside the range of
the data.) Note that a maximum would be a good time for birds to feed at
the Salton Sea.
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Date | Rotifers | Barnacles | Copepods
21 0.045 4.466 0.060
34 0.047 2.04 0.063
53 0.073 0.7 0.102
78 0.167 0.573 0.251
106 | 51.785 0.295 0.093
154 | 182.403 0.035 45.687
175 | 372.655 0.031 50.25
199 | 295.288 0.035 14.56
225 | 802.128 0.039 59.539
249 | 532.203 0.031 21.629
277 | 33.723 0.031 2.992
311 9.245 0.056 4.551
329 0.93 0.149 1.65
371 0.047 0.491 0.144
402 0.081 1.618 0.159
423 0.178 1.925 0.097
454 5.826 0.408 0.08
479 | 299.183 1.923 0.08

6. (K1) Consider the function

2

g() = (4 —a%)e ™.

a. Graph g(z) for x € [—5,5]. Also, graph this function for x € [1.9, 3] to
observe behavior near one of the z-intercepts. Find all z- and y-intercepts
(to at least 4 significant figures).

b. Find the derivative of g(x) and write it in your lab report. Graph ¢'(x)
for z € [-5,5] and = € [1.9,3]. Find the points (z and y values) where the
maximum and minimum values of g occur. (Note that there are 3 extrema.)

c. Find the second derivative of g(z). Determine when it is zero, which
is where points of inflection occur. Find all points of inflection (z and y
values) for this function. (There are 4 of them.)

d. Is this function odd, even, or neither?

7. (K2)In this problem use the power rule to determine the pulse (beats
per min) as a function of the weight (kg) of the animal. You are given the
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following data concerning six animals [1]:

Animal Weight (kg) | Pulse
Mouse 0.017 450
Hamster 0.103 347
Guinea Pig 0.437 269
Goat 33 81
Man 68 65
Cattle 500 49

a. Let P be the pulse and w be the weight, then the power law expression
relating the pulse to the weight is given by

P = kw®.

Use the power law under Excel’s Trendline to best fit the data above. Plot
the data and the best power law fit and have Excel write the formula on
your graph. (Note that you will be adding the model from Part c. to this
graph, so wait to enter only one graph in your lab report.)

b. Determine the sum of squares error between the data and the model
that you found in Part a. How well does the graph match the data? Find
the percent error between the pulse given by the model and the actual data
for each of the animals in the table above. (Assume that the weight in the
table is accurate.) Which animal has the highest percent error and explain
why you might expect this? Also, which animal has the lowest percent error
and explain why this might be the case?

c. Use the applet at

.../s00a/math121/1labs/labk/q2vl.htm

to find the nonlinear least squares best fit to the data. (There is a hyperlink
at

.../s00a/math121/lectures/allometic_modeling/nonlinlstsq.html

discussing this nonlinear fit.) Minimize the sum of squares error, then write
in your lab report the equation of the best model and the value for the sum of
squares error. Find the percent error between the pulse given by this model
and the actual data for each of the animals in the table above. Simulate this
model and add its graph to the graph produced in Part a. (Note that this
model has a vertical asymptote at w = 0, so recall how to make Excel graphs
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look good near a vertical asymptote.) Compare this model to the one given
by Excel above. Which is the better model? Explain why differences arise.

d. Use both models to find the missing entries in the table below. Discuss
which estimates are the best and which are the worst.

Animal | Weight (kg) | Pulse
Rat 352
Opossum 187
Swine 100
Elephant 2500

e. Write an expression for the derivative P’(w) for each of the models.
Is the function increasing, decreasing, or neither? Write a brief paragraph
that describes how pulse and weight are related based on these models. [1]

8. (K3) Several of you are considering careers in medicine and biotechnology.
Drug therapy and dose response is very important in the treatment of many
diseases, particularly cancer. Since cancer cells are very similar to your
normal body cells, their destruction relies on very toxic drugs. There are
some very fine lines in certain cancer treatments between an ineffective dose,
one that destroys the cancer, and one that is toxic to all cells in the body.
At the base of many of the calculations for these treatments are simple
mathematical models for drug uptake and elimination.

a. The simplest situation calls for an injection of the drug into the body.
In this case, a fixed amount of the drug enters the body, then its quantity
decreases exponentially as the drug is metabolized and excreted from the
body. Suppose that for a certain patient, it is found that the amount of a
certain drug in his body satisfies the equation

A(t) = 10e7kt,

where your patient has k = 0.03 (day~!). Determine how long the drug is
effective if it has been determined that the patient must have at least 3 mg
in his body.

b. With new materials being developed, the drug can be inserted into
polymers that slowly decay and release the drug into the body. This delivery
system can prevent large toxic doses in the body and maintain the drug level
for longer at therapeutic doses. Suppose that the amount of drug delivered
by this new type of drug delivery system satisfies the model

B(t) = Bo(e ™ — ™),
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where By = 14.3 (mg), ¢ = 0.1 (day~!),andp = 0.03 (day~'). The first
decaying exponential is from the body metabolism, while the second one
is from the polymer degradation. (It can be shown that this is the same
amount of drug as delivered in Part a.) Once again assume that the patient
must have 3 mg in his body to be effective. Over what time period (if any) is
this therapy effective. Is this time period longer or shorter than your answer
from Part a? (Hint: Finding when the level of the drug is at 3 mg uses the
Maple command fsolve(B(t)=3, t=A..B);, where A and B are selected
to include the region where B(t) = 3 by observation of the graph.)

c. On a single graph show both solutions, A(t) and B(t), for 60 days.
Find what the maximum dose is in the body from the second treatment
given in Part b. and when this occurs. Which treatment do you consider to
be superior and why?

9. (L1) A. C. Crombie [2] studied Oryzaephilus surinamensis, the saw-tooth
grain beetle, with an almost constant nutrient supply (maintained 10 g of
cracked wheat weekly). These conditions match the assumptions of the dis-
crete logistic model. The data below show the adult population of Oryza-
ephilus from Crombie’s study (with some minor modifications to fill in un-
collected data and an initial shift of one week).

Week | Adults | Week | Adults

0 4 16 405
2 4 18 471
4 25 20 420
6 63 22 430
8 147 24 420

10 285 26 475
12 345 28 435
14 361 30 480

The discrete logistic growth model for the adult population P, can be
written
Pui1 = f(P,) =rP, —mP2,

where the constants 7 and m must be determined from the data.

a. Plot P,4+1 vs. P,, which you can do by entering the adult population
data from times 2-30 for P,;; and times 0-28 for P,. (Be sure that P,
is on the horizontal axis.) To find the appropriate constants use Excel’s
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Trendline with its polynomial fit of order 2 and with the intercept set to 0
(under options). In your lab, write the equation of the model which fits the
data best. Graph both f(P) and the data.

b. Find the equilibria for this model. Write the derivative of the updating
function. Discuss the behavior of the model near its equilibria. (Note that
if P, is an equilibrium point, then you can determine the behavior of that
equilibrium by evaluating the derivative of the updating function f(P,) at
P.. (For more reference check Chapter 8 of the text book [5]). Simulate the
model and show this simulation compared to the data from the table above
(adult population vs. time). Discuss how well your simulation matches the
data in the table. What do you predict will happen to the adult saw-tooth
grain beetle population for large times (assuming experimental conditions
continue)?

¢. Another common population model is Ricker’s, which is given by

Poi1 = R(P,) = aP,e %",

where a and b are constants to be determined. Use Excel’s solver to find the
least squares best fit of the Ricker’s updating function to the given data by
varying a and b. As initial guesses take a = 2.5 and b = 0.002. Once again
plot P41 vs. P, using this updating function and show how it compares to
the data (much as you did in Part a.

d. Find the equilibria for Ricker’s model. Write the derivative of the
updating function, then discuss the behavior of these equilibria using this
derivative. (Give the value of the derivative at the equilibria.) Simulate the
discrete dynamical system using Ricker’s model. Show the graphs of the
logistic and Ricker’s models with the data. Compare these simulations with
the data. Discuss the similarities and differences that you observe between
models and how well they work for this experimental situation.

10. (L2) We have studied the discrete logistic growth model and seen the
difficulties computing and analyzing populations using this model. As men-
tioned before, most biologists use the continuous version of the logistic
growth model for their studies of populations. This model is used very
extensively and can be written with the following formula

B PyM
- R+ (M — Py)et’

p(t)

where P, is the initial population, M is the carrying capacity of the popula-
tion, and r is the Malthusian growth rate (early exponential growth rate) of
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the culture. Below is a table with data from Gause [3] on a growing culture
of the yeast Schizosaccharomyces kephir (a contaminant culture of brewers
yeast).

Time (hr) 0 14 1 33 o7 | 102 | 126
Volume | 1.27 | 1.7 | 2.73 | 4.87 | 5.8 | 5.83

a. Use Excel to find the best values of parameters Py, M, and r, then
write these values clearly in your lab report. Include the sum of squares
error. Also, write the complete formula with the best parameter fit in your
report. If the value of r gives the Malthusian growth rate for low populations
(Poe™), then use this to determine the doubling time for this culture of yeast.
As noted above, M is the carrying capacity of the population. Give a brief
biological interpretation of this parameter and describe what your value of
M says about what happens to this experimental culture of yeast. Create a
graph showing both the data and the logistic growth function, p(t).

b. The growth rate for a culture can be found by taking the derivative of
the population function. Differentiate the logistic growth function p(t) with
the parameters found in Part a. and write this formula in your lab report.
Create a graph of the derivative of the logistic growth function, p’(t).

c. The turning point of the population or the mid-log phase for this cul-
ture of yeast is where the growth of the culture is at a maximum. (This is
also the point of inflection for the original logistic growth function, p(t).)
Find when the logistic growth function reaches the turning point by finding
the maximum of the derivative of the logistic growth function, p’(t). Write
the time of the turning point, the maximum growth that you find, and the
population (volume) of the culture at this time.

11. (L1) The growth of fish has been shown to satisfy a model given by the
von Bertalanffy equation:

L(t) = Lo(1 — e7%),

where Ly and b are constants that fit the data in previous chapters, it was
shown that there is often an allometric model relating the weight and length
of different animals. A model relating the weight of a fish as a function of
its length

W(L) = kL,

where k and a are constants that fit the data.
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Age (yr) 1] 2 3 4 5 6 7 8 9 | 10
Length (cm) | 83 | 155 | 208 | 249 | 279 | 302 | 319 | 332 | 342 | 349

a. Below are growth data for the Blue Marlin (Makaira mazara) [4].

Find the least squares best fit of the data to the von Bertalanffy equation
above. Give the values of the constants Ly and b (to at least 3 significant
figures) and write the model with these constants. Find the intercepts and
any asymptotes for the length of the Blue Marlin. Graph the data and the
model.

b. Below are data on the length and weight for the Blue Marlin [6].

Length (cm) | 110 | 135 | 160 | 165 | 175 | 190 | 210 | 225 | 255 | 300
Weight (kg) | 13 | 41 | 50 | 53 | 62 | 95 | 119 | 173 | 248 | 426

Use Excel’s Trendline (Power Law) to find an allometric model of the
form above. Give the value of the constants k and a (to at least 3 significant
figures) and write the model with these constants. Graph the data and the
model.

c. Create a composite function to give the weight of the Blue Marlin as a
function of its age, W (t). Find the intercepts and any asymptotes for W (¢).
Graph the weight of a Blue Marlin as it ages.

d. Find the derivative of W (¢) using the chain rule (Refer to Chapter 17
of the text book [5] to learn more about this rule). Also, compute the second
derivative, then determine when this second derivative is zero. From this
information, find at what age the Blue Marlin are increasing their weight
the most and determine what that weight gain is. Graph W'(t).
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