\qquad

1. Let $f(x, y, z)=z \sin (x) \cosh (y)$ and $\mathbf{V}=e^{x^{2} y} \mathbf{i}+2 \ln |y| \mathbf{j}+y \cos (z) \mathbf{k}$. Evaluate the following:
a. ∇f
b. $\nabla \cdot \mathbf{V}$
c. $\nabla \times \mathbf{V}$
d. $\nabla \cdot \nabla f=\nabla^{2} f$.
2. Suppose a particle is traveling along a path given by

$$
\mathbf{R}(t)=2 \cos (t / 2) \mathbf{i}-2 \sin (t / 2) \mathbf{j}+2 t \mathbf{k}, \quad t \in[0,3 \pi]
$$

a. Find the total distance traveled by the particle.
b. If the particle is subjected to a force field with $\mathbf{F}=[2 x \cos (z)-y] \mathbf{i}+\left[3 y^{2}-x\right] \mathbf{j}-x^{2} \sin (z) \mathbf{k}$, then find the total work done by \mathbf{F} as the particle traverses its path.
3. Find the work done by

$$
\mathbf{F}=\left(x y^{2}+y e^{x}\right) \mathbf{i}+\left(e^{x}-x^{2} y\right) \mathbf{j}
$$

for each of the following paths:
a. The path along the y-axis from 3 to 0 .
b. The straight line path from the origin to the point $(3 / \sqrt{2}, 3 / \sqrt{2})$.
c. The circular arc given by $\mathbf{R}(t)=3 \cos (t) \mathbf{i}+3 \sin (t) \mathbf{j}, \quad t \in[\pi / 4, \pi / 2]$. (Hint: You may want to take advantage of the fact that this third curve with the other two creates a closed path.)
4. Consider the elliptical surface Σ cut from the plane $z=c x$ by the cylinder $x^{2}+y^{2}=1$.
a. Find the parametric representation of the surface $\mathbf{r}(u, v)$, including the limits on u and v. Give the normal to this surface.
b. Find the surface area of Σ,

$$
\iint_{\Sigma} d \sigma
$$

c. Let C be the curve formed by the edge of the surface Σ (oriented clockwise when viewed by an observer at the origin), and let $\mathbf{F}=x^{2} \sinh (z) \mathbf{i}+\left(x+2 y e^{z}\right) \mathbf{j}+y^{2} e^{z} \mathbf{k}$. Evaluate

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{R} .
$$

5. Let $\mathbf{F}=y \mathbf{i}+x y \mathbf{j}+\left(z+x^{2}\right) \mathbf{k}$ be a vector field.
a. Find the downward flux of \mathbf{F} across the surface $\Sigma_{1}=\left\{(x, y, z): x^{2}+y^{2} \leq 4, z=0\right\}$ by evaluating

$$
\iint_{\Sigma_{1}} \mathbf{F} \cdot \mathbf{N} d \sigma
$$

b. Find the net outward flux of \mathbf{F} across the region bounded by the surface $\Sigma=\Sigma_{1}+\Sigma_{2}+\Sigma_{3}$ with $\Sigma_{2}=\left\{(x, y, z): x^{2}+y^{2}=4,0 \leq z \leq 4\right\}$ and $\Sigma_{3}=\left\{(x, y, z): z=x^{2}+y^{2}, 0 \leq z \leq 4\right\}$ by evaluating

$$
\iint_{\Sigma} \mathbf{F} \cdot \mathbf{N} d \sigma
$$

