Introduction	Features	Overtraining	Feature selection	References
	Maxim	um entropy a	ssignment	
	i i i u Antin	uni chuopy u	Significity	

Jean Mark Gawron

Linguistics 581 San Diego State University

March 2, 2017

Jean Mark Gawron

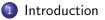
Linguistics 581San Diego State University

3

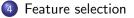
<ロ> <同> <同> < 回> < 回>

Introduction	Overtraining	

Outline







▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Jean Mark Gawron

Linguistics 5815an Diego State University

Introduction	Overtraining	

Algorithm used for model estimation is GIS (Generalized iterative scaling).

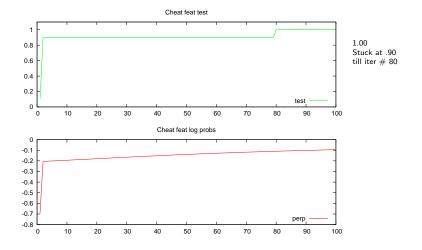
A model that always guesses HARD1 gets 80% (the 'no feat' model):

HARD1 3455 0.797 HARD2 502 0.116 HARD3 376 0.087

• We begin with the 'cheat feat' model

HARD1 True whenever the correct sense is HARD1HARD3 True whenever the correct sense is HARD3

Log Likelihood versus test results



Jean Mark Gawron

Linguistics 581San Diego State University

문어 문

・ロッ ・回 ・ ・ ヨッ ・

Introduction	Overtraining	

Your output

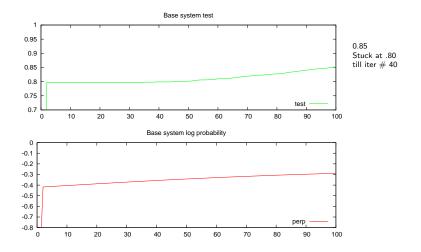
bulba> python -i call_maxent.py senseval-hard.evt 100 Reading data... Senses: HARD1 HARD3 Splitting into test & train... Training classifier...

==> Training (100 iterations)

Iteration	Log Likelihood	Accuracy
1	-0.69315	0.104
2	-0.20886	0.896
3	-0.20371	0.896
4	-0.20233	0.896
5	-0.20101	0.896
6	-0.19968	0.896
7	-0.19834	0.896
8	-0.19697	0.896
78	-0.11112	0.896
79	-0.11028	0.896
80	-0.10944	1.000
98	-0.09600	1.000
99	-0.09534	1.000
100	-0.09468	1.000
Testing classifier Accuracy: 1.0000 Total: 386	·	

Introduction	Overtraining	

Baseline system



Jean Mark Gawron

Linguistics 581San Diego State University

æ

<ロ> <同> <同> < 回> < 回>

Introduction	Overtraining	

Baseline evaluation

Testing classifier... Accuracy: 0.8732 Total: 410

Label	Precision	Recall
HARD1 HARD2 HARD3	0.869 0.909 1.000	1.000 0.303 0.275
Label HARD1	Num Corr 337	
HARD2	10	

11

・ロト・日本・日本・日本・ 日本・ のへの

HARD3

Introduction	Overtraining	

What is optimized

Iter	Log Likelihood	Score
25	-0.36695	0.793
26	-0.36471	0.793
27	-0.36251	0.793
28	-0.36033	0.794
29	-0.35819	0.793
30	-0.35608	0.794
31	-0.35400	0.795

Introduction		Overtraining	
Summariz	ing		

- Log likelihood is guaranteed to increase every iteration, but accuracy is not. Accuracy may remain pegged to one value for many iterations, and then suddenly change.
- Therefore, be patient. For a system with n features, wait at least n iterations [but remember cheat_feats!]
- If log likelihood goes down, look for a bug.
- If score consistently goes down, or remains fixed, look for new features.

Contextual predicates/Features

Contextual predicates based on vocabulary

Baseline	100 most frequent vocab items
Hand	100 most frequent $+$ hand selected
Optimal	100 features selected by feature selection algorithm

Features

Every class cls, contextual predicate cp pair defines a feature:

$$\mathsf{F}_{\mathsf{cp},\mathsf{cls}}(\kappa,c)=1$$
 iff $\mathsf{cp}(\kappa)$ is true and $c=cls$

Example: given training example The cushion is hard, classified HARD3,

 $F_{cushion,HARD3}$ (*The cushion is hard*,HARD3) = 1

(人間) くまり くまり

Adding features by hand

In extract_vocab, add a vocab item plus a fake count:

```
vocab[cushion_NN] = 1000
vocab[soft_JJ] = 1000
vocab[cover_NN] = 1000
```

• • •

3

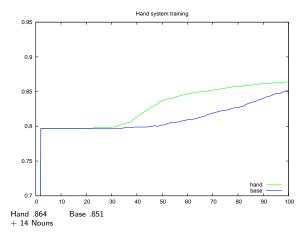
Features	Overtraining	

Running *call_max_ent.py* always shows 20 most informative features: classifier.show_most_informative_features(n=20)

....
1.057 wood_NN==True and label is HARD3
1.026 seat_NN==True and label is HARD3
....

Features	Overtraining	

Hand vocab system



æ

<ロ> <同> <同> < 回> < 回>

Increasing feats and training iterations

A score > 99%

	Num iter	Vocab size		Error	Log Likelihood
a.	300	100	Training	0.12863	1.44553
			Test	0.15765	1.50773
b.	300	1000	Training	0.05554	1.22309
			Test	0.11059	1.37440
c.	300	2000	Training	0.03022	1.16815
			Test	0.12000	1.40761
d.	500	2000	Training	0.00748	1.05689
			Test	0.12471	1.50585

What is overtraining?

- A very high level of performance on the training set linked with poor performance on tests (unseen data).
- Features that don't carry information about significant reproducible aspects of the problem you're trying to solve still carry information about accidental properties of the training set. [the fact that there's a hyphen in some example with sense HARD2]
- Features that do carry information about significant reproducible aspects of the problem can be overvalued or undervalued because they correlate positively or negatively with accidental properties of the training set.
- The information these uninformative features or wrongly valued features are representing is noise (with respect to our problem)
- In overtraining, the model is learning noise. In effect, it is memorizing the training set.

Causes of overtraining

Class of models too powerful.

Linear models versus K Nearest Neighbors (KNN)

- Too many features: take away some features and the model does better.
- The wrong features: Will look just like too many features, except that taking away features never makes things better.

・ 同 ト ・ ヨ ト ・ ヨ ト

Feature selection: the problem

Earlier we divided the statistical modeling problem into two steps: finding appropriate facts about the data, and incorporating these facts into the model. Up to this point we have proceeded by assuming that the first task was somehow performed for us. Even in the simple example of Section 2, we did not explicitly state how we selected those particular constraints. That is, why is the fact that [French] dans or à was chosen by the expert translator 50% of the time [as the translation of in] any more important than countless other facts contained in the data? Berger et al. (1996), p. 46

< ロ > < 回 > < 回 > < 回 > < 回 > .

A separate problem

In fact, the principle of maximum entropy does not directly concern itself with the issue of feature selection, it merely provides a recipe for combining constraints into a model. But the feature selection problem is critical, since the universe of possible constraints is typically in the thousands or even millions. Berger et al. (1996), p. 46

		Overtraining	Feature selection	
Consequer	ice			

When Python becomes impractical

Choosing model features means running model estimation algorithms countless times on *held out data* (data you're not using for training). In order to do that each run has to be fast. So efficiency becomes a research consideration. At this point the fact that youre using a language like Python (instead of C) becomes important.

Feature selection algorithm

- Start with no feature model (always guesses most likely sense).
- Iterate through all possible feats, estimating the log likelihood gain. using Newton's method to compute a one-dimensional approximation.
- Add the feature with the maximum likelihood gain.
- Re-estimate the model. Repeat from step 2.

- 4 回 ト - 4 回 ト

Stopping criterion

Held-out data [dev training/test]

Test the model on held out data. When the log likelihood goes down, you have evidence of overtraining. Stop adding features. [Probably a little too strict.]

A (1) > A (1) > A

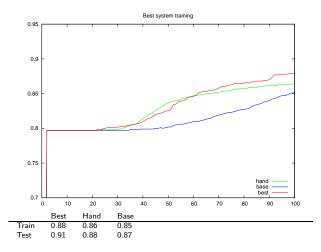
Problems being solved

- Discovery: What aspects of the event carry information relevant to our classification problem.
- Alleviating overtraining problems. Our stopping criterion tries to determine when overtraining has started.

< ロ > < 回 > < 回 > < 回 > < 回 > .

	Overtraining	Feature selection	

Selected feat system



æ

<ロ> <回> <回> <回> <回> < 回>

		Overtraining	References
Reference	25		

Berger, Adam, Stephen A. Della Pietra, and Vincent J. Della Pietra. 1996. A maximum entropy approach to natural language processing. *Computational Linguistics* 22(1):39–71.

<回> < 回> < 回> < 回>

Some of the selected features

[missing now]

Jean Mark Gawron

Linguistics 581San Diego State University