1. Solve the inequality \(7 - |x+2| > 2 \), use interval notation.

\[7 - |x+2| > 2 \implies 7 - 2 > |x+2| \]

\[5 > |x+2| \]

Either \(x+2 < 0 \) or \(x+2 > 0 \)

Case 1: \(x+2 < 0 \) \(\implies |x+2| = -(x+2) \) \(\implies 5 > -(x+2) \)

\(-5 < x+2 \)

\(-7 < x \)

Case 2: \(x+2 > 0 \) \(\implies |x+2| = x+2 \) \(\implies 5 > x+2 \)

\(3 > x \)

Solution: \([-7, 3] \)

2. Find the domain of the function \(f(x) = \sqrt{x^2 - 81} \), in interval notation.

We know that for real solutions to exist (not imaginary/complex), we must be taking the square root of a nonnegative number. Therefore, we must have that:

\[x^2 - 81 \geq 0 \]

\[x^2 \geq 81 \]

\[x \geq \pm \sqrt{81} = \pm 9 \]

In I.N. \((-\infty, -9] \cup [9, \infty) \)

we use the brackets when we have \(\leq \) or \(\geq \).
3) Find the difference quotient for \(f(x) = \frac{x+y}{x-a} \)

\[
\frac{f(x+h) - f(x)}{h} = \frac{x+h+y}{x+h-a} - \frac{x+y}{x-a} = \frac{(x+h+y)(x-a) - (x+y)(x+h-a)}{(x+h-a)(x-a)h}
\]

\[
= \frac{x^2 + xh + 4x - 9x - 9h - 36}{(x+h-a)(x-a)h} - \frac{x^2 + xh + 4x + 4h - 36}{(x+h-a)(x-a)h}
\]

\[
= \frac{x^2 + xh - 9x + 9h + 36 - x^2 + xh + 5x - 4h + 36}{(x+h-a)(x-a)h}
\]

\[
= \frac{-13h}{(x+h-a)(x-a)h} = \frac{-13}{(x+h-a)(x-a)}
\]

4) A small company manufacturing surfboards. The profit \(P \) of selling \(x \) boards is given by \(P(x) = 50000 + 120x - 0.6x^2 \). How many boards should be made to maximize profit?

\(P(x) = -0.6x^2 + 120x + 50000 \) is a parabola facing downwards. The maximum is found by taking the \(y \)-value of the vertex. The vertex occurs at:

\[
\frac{-b}{2a} = \frac{-120}{2(-0.6)} = 100
\]

Then \(x=100 \) boards will maximize the profit.
(6) Find the y-intercept, domain, range, and horizontal asymptote at

\[y = 4 + 3^{-x} \]

\[y = 4 + \frac{1}{3^x} = \frac{1}{3^x} + 4 \]

y-intercept: \((0, 5)\)
\[x = 0, \quad \frac{1}{3^0} + 4 = \frac{1}{1} + 4 = 5 \]

Domain: We can't take any real number in an exponent and there is no number \(x\) such that \(3^x = 0\), so our function is defined for all real numbers: \((-\infty, \infty)\)

Range: \(\frac{1}{3^x} > 0\) for every \(x\) in our domain. As \(x \to \infty\), \(\frac{1}{3^x}\) becomes very small. This means we can make \(\frac{1}{3^x}\) as close to zero as we want, but we can never actually get to zero. If \(x\) is negative, then \(\frac{1}{3^x}\) will no longer be a fraction, and will grow unbounded. So range: \((4, \infty)\)

HA: From the range, HA: \(y = 4\)
6. Find fog and gof, with each domain.

\[f(x) = |x - 7|, \quad g(x) = \frac{1}{5x} \]

Remember, \[|x - 7| = |7 - x| \] Why? \[|x - 7| = |(x - x + 7)| = |1||x + 7| = |1| |x + 7| = |x + 7| = |7 - x| \]

\[f \circ g = f(g(x)) = 7 - \frac{1}{5x} = \frac{35x - 1}{5x} \quad \Rightarrow \quad \text{Domain} \ (-\infty, 0) \cup (0, \infty) \]

\[g \circ f = \frac{1}{5|x - 7|} \quad \Rightarrow \quad \text{Domain} \ (-\infty, 7) \cup (7, \infty) \]

7. If is one-to-one, find its inverse and the domain/range of \(f \) and \(f^{-1} \).

\[f = \frac{x}{\sqrt{x + 4}} \]

\[y = \frac{x}{\sqrt{x + 4}} \quad \Rightarrow \quad x = \frac{y}{\sqrt{y + 4}} \]

Then, we solve for \(y \) to find \(f^{-1}(x) \).

\[x = \frac{y}{\sqrt{y + 4}} \quad \Rightarrow \quad x\sqrt{y + 4} = y \quad \Rightarrow \quad \sqrt{y + 4} = \frac{y}{x} \quad \Rightarrow \quad y + 4 = \left(\frac{y}{x}\right)^2 = \frac{y^2}{x^2} \]

\[x^2(y + 4) = y^2 \quad \Rightarrow \quad x^2y + 4x^2 = y^2 \quad \Rightarrow \quad 0 = y^2 - x^2y - 4x^2. \]

Now use the quadratic formula with respect to \(y \).

\[y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[y = \frac{-(-x^2) \pm \sqrt{(-x^2)^2 - 4(1)(-4x^2)}}{2(1)} = \frac{x^2 \pm \sqrt{x^4 + 16x^2}}{2} \]

\[x^2 = \frac{x^2 \pm \sqrt{x^4 + 16x^2}}{2} \]

\[x^2 = \sqrt{x^4 + 16x^2} \]

Which one? Try plugging in values:

\[f(x) = y \quad \text{then} \quad f^{-1}(y) = x \]

\[f(12) = \frac{12}{\sqrt{2} + 4} = \frac{12}{5} = 3 \]

So, \(f^{-1}(3) = 12 \), \(f^{-1}(9) = \frac{3 \pm \sqrt{9^2 + 16}}{2} = \frac{3 \pm \sqrt{85}}{2} \)

So, \(f^{-1}(x) = \frac{x^2 + x\sqrt{x^2 + 16}}{2} \)

\[\text{Domain: } (-\infty, 0) \nLeft \rightarrow \nRight \rightarrow \n\text{Range: } (0, \infty) \]

\[f \text{ Domain: } (11, 0) \nLeft \rightarrow \n\text{Range: } (0, 11) \]
(1) Given a zero of \(p(x) \), determine all other zeros.

\[p(x) = x^4 - 15x^2 + 77x - 140 \]

We know \(2 + i \) is a zero because imaginary zeros come in conjugate pairs.

So \((x - (2+i))(x - (2-1)) = (x - 2 - i)(x - 2 + i) = (x-2)^2 - i^2 = x^2 - 4x + 4 + 1 \)

Now divide:

\[x^2 - 4x + 5 \]

\[\frac{x^4 - 15x^2 + 77x - 140}{x^2 - 11x + 28} \]

\[x^2 - 4x + 5 \]

\[- \frac{x^4 - 4x^3 + 5x^2}{0 - 11x^2 + 167x + 140} \]

\[- \frac{-11x^2 + 144x - 55x}{0 + 2x^2 - 112x + 140} \]

\[- \frac{2x^2 - 112x + 140}{0} \]

Now factor: \(x^2 - 11x + 28 = (x - 7)(x - 4) \) \(\Rightarrow x = 7, 4 \)

and \(p(x) = (x - 7)(x - 4)(x - (2+i))(x - (2-1)) \)

(2) Graph: \(F(x) = \frac{-3x^2}{x^2 + 4} \)

Note: Horizontal Asymptote = \(\frac{-3}{4} \) since exponents are equal.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-27/13</td>
</tr>
<tr>
<td>-2</td>
<td>-13/8</td>
</tr>
<tr>
<td>-1</td>
<td>-3/5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1/5</td>
</tr>
<tr>
<td>2</td>
<td>-13/8</td>
</tr>
<tr>
<td>3</td>
<td>-27/13</td>
</tr>
</tbody>
</table>
15. Solve the exponential exactly for x.

\[\frac{x^2 - 8}{\ln 2} = 2^x \]

\[\iff \quad x^2 - 8 = (\ln 2)^x \]

\[\iff \quad (x^2 - 8) \log_{10} 2 = 2x \log_{10} 2 \]

\[x^2 - 2x - 8 = 0 \]

\[(x - 4)(x + 2) = 0 \]

\[x = 4, -2 \]

16. Graph $y = \log_2 (x + 5) - 2$.

\[\log_2 x \implies \log_2 (x + 5) \implies \log_2 (x + 5) - 2 \]

17. Find amplitude, period, phase shift.

\[y = 5 \sin (\pi x - 3) \]

Amplitude $= 5$

Period $= \frac{2\pi}{\pi} = 2$

Phase Shift $= \frac{3}{\pi}$

\[5 \sin (\pi x - 3) = 5 \sin \left(\pi \left(x - \frac{3}{\pi} \right) \right) \]
22) \[\text{Find } \cos \left(\frac{4\pi}{3} \right) \text{ in Q3.} \]

\[\text{so } \cos \frac{4\pi}{3} = -\frac{1}{2} \]

23) \[\text{Solve } y \cos \left(\frac{1}{2} \theta \right) = -2\sqrt{2} \text{ on } 0 \leq \theta < 2\pi \]

\[\cos \left(\frac{1}{2} \theta \right) = \frac{-2\sqrt{2}}{y} = -\frac{\sqrt{2}}{2} \text{ in QII} \]

\[\frac{\theta}{2} = \cos^{-1} \left(\frac{-\sqrt{2}}{2} \right) = \frac{3\pi}{4} \]

\[\Rightarrow \theta = 2 \left(\frac{3\pi}{4} \right) = \frac{3\pi}{2} \]

24) \[\text{Find } \Theta \text{ such that } \cos \Theta = -1 \text{ in QII.} \]

\[\cos \Theta = -1 \Rightarrow \cos \Theta = -\sin \Theta \]

\[\cos \Theta > 0 \text{ if } \Theta \text{ in Q1 or Q4} \]

\[\sin \Theta < 0 \text{ if } \Theta \text{ in Q3 or Q4} \]

\[\text{so } \Theta = \frac{3\pi}{4} \text{ since } \frac{\cos \Theta}{\sin \Theta} = -\frac{\sqrt{2}}{2} = -1 \]
25. Simplify \(\sec^2 x - \tan^2 x \)

\[\cos^2 x + \sin^2 x = 1 \implies 1 + \tan^2 x = \sec^2 x \]

So \(\sec^2 x - \tan^2 x = (1 + \tan^2 x) - \tan^2 x = 1 \)

26. Write as single trigonometric function

\[\sin (6x) \sin (11x) + \cos (6x) \cos (11x) \]

\[\cos A \cos B + \sin A \sin B = \cos (A-B) \]

\(\implies \sin 6x \sin 11x + \cos 6x \cos 11x = \cos (6x-11x) = \cos (-5x) = \cos (5x) \)

28. Simplify \(\frac{1 - \cos 135}{\sin 135} \)

\[\tan \left(\frac{\theta}{2} \right) = \frac{1 - \cos \theta}{\sin \theta} \]

\[= \tan \left(\frac{135}{2} \right) = \tan \left(67.5 \right) \]

29. Write as product: \(\sin (0.6x) + \sin (0.8x) \)

\[\sin A + \sin B = 2 \sin \left(\frac{A+B}{2} \right) \cos \left(\frac{A-B}{2} \right) \]

\(\implies \sin (0.6x) + \sin (0.8x) = 2 \sin (0.7x) \cos (0.1x) \)

30. Evaluate \(\sin \left(\cos^{-1} \left(\frac{7}{8} \right) \right) \)

\[\cos \theta = \frac{7}{8} \]

\[\sin \left(\cos^{-1} \left(\frac{7}{8} \right) \right) = \frac{x}{8} = \frac{\sqrt{15}}{8} \]

\[8^2 = x^2 + 7^2 \]

\[8^2 - 7^2 = x^2 \]

\[\sqrt{64 - 49} = x \]

\[\sqrt{15} = x \]