# Winning Moves in Fibonacci Nim 

Cody Allen and Vadim Ponomarenko*

Department of Mathematics and Statistics
San Diego State University

## MathFest August 7, 2015

http://www-rohan.sdsu.edu/~vadim/fnim.pdf

## Shameless advertising

Please encourage your students to apply to the
San Diego State University Mathematics REU.
http://www.sci.sdsu.edu/math-reu/index.html
This work was done jointly with REU student Cody Allen. It appeared in Involve 7 (6) 2014, pp. 807-822.

## Fibonacci Nim

Start with one pile of tokens, arbitrary size.
Two players alternate removing tokens.
Remove last token to win.

Special rule: If opponent just removed $k$ tokens, you remove any integer in $[1,2 k]$.

First turn rule: Must move, can't instantly win.

## Zeckendorf Representation

Zeckendorf had a proof in 1939
Lekkerkerker published in 1955
Zeckendorf published in 1972
"Zeckendorf representation" of positive integers
$F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, F_{7}=13, \ldots$
Each positive integer may be written as the sum of nonconsecutive Fibonacci numbers, uniquely.
e.g. $10=F_{6}+F_{3}, 11=F_{6}+F_{4}, 12=F_{6}+F_{4}+F_{2}$

## Schwenk's Strategy

Schwenk published in 1970

Strategy:
Express the number of tokens current remaining in Zeckendorf representation. Take the smallest.

If you can: forced win.
If you can't: opponent has forced win.
e.g. $17=F_{7}+F_{4}+F_{2} \rightarrow$ take $F_{2}$

## Our Question

Suppose you can take the smallest Fibonacci number in the Zeckendorf representation. Hence you can force a win.

Are there any moves other than Schwenk's strategy that will force a win?

## Tails

Given a Zeckendorf representation of the number of tokens remaining, the tails are the consecutive end terms.


Thm 1: If you don't take a tail, you lose.

## Which Tails?

$17=F_{7}+F_{4}+F_{2}$ has tails $F_{2}, F_{4}+F_{2}, F_{7}+F_{4}+F_{2}$
$12=F_{6}+F_{4}+F_{2}$ has tails $F_{2}, F_{4}+F_{2}, F_{6}+F_{4}+F_{2}$

Thm 2: If you do take a tail, you can force a win, UNLESS your tail lets your opponent take the next Fib. number.

Ex.1: $F_{2}+F_{4}=4,2 \cdot 4=8<13=F_{7}$. So $F_{2}+F_{4}$ wins.
Ex.2: $F_{6}=8$, so $F_{2}+F_{4}$ does not win.

## How Likely is Opponent to Accidentally Play Right?

Worst case opening scenario:
$F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}+F_{2 n+3}$
$n$ winning moves, out of $F_{2 n+3}=\left\lfloor\frac{\phi^{2 n+3}}{\sqrt{5}}+0.5\right\rfloor$.
For $n=10$, probability already $0.04 \%$

What to do: Always pick 1, opponent has only 50-50 chance each time.

